today ’ s lecture topics whole genome sequencing shotgun sequencing method

32
Today’s Lecture Topics Whole genome sequencing Shotgun sequencing method Sequencing the human genome Functional/comparative genomics Transcriptome & RNA-Seq Proteomics

Upload: glenna-murray

Post on 02-Jan-2016

54 views

Category:

Documents


2 download

DESCRIPTION

Today ’ s Lecture Topics Whole genome sequencing Shotgun sequencing method Sequencing the human genome Functional/comparative genomics Transcriptome & RNA-Seq Proteomics. Shotgun DNA sequencing: Sequence the entire genome rapidly. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Today’s Lecture Topics

Whole genome sequencing

Shotgun sequencing method

Sequencing the human genome

Functional/comparative genomics

Transcriptome & RNA-Seq

Proteomics

Page 2: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Shotgun DNA sequencing:

Sequence the entire genome rapidly.

No requirement for a high resolution linkage or physical map.

Just break the genome up into small pieces, sequence it, and find the gene of interest/do the bioinformatic analysis later.

Reverses the way genetic studies proceeds.

It used to be we had to find the gene first to study the cause of the disease.

Now we can study effects of genes we didn’t even knew exist.

Page 3: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method
Page 4: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method
Page 5: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Fig. 8.13, Shotgun sequencing a genome

Page 6: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Shotgun DNA sequencing---dideoxy method:

1. Begin with genomic DNA and/or 200-300 kb BAC clone library.

2. Mechanically shear DNA into ~2 kb bp overlapping fragments.

3. Isolate on agarose, purify, and clone into standard plasmid vectors.

4. Sequence ~500 bp from each end of each 2 kb insert.

5. Sequence from the middle 1,000 bp of each insert is obtained from overlapping clones.

6. Repeat the process so that 4-5x the total length of the genome is sequenced (dideoxy sequencing is 99.99% accurate).

7. Results in a contig library with ~97% genome coverage (the missing 3% is composed mostly of repeated DNA sequence).

8. Assemble hundreds of thousands of overlapping ~500 bp sequences with fast computers operating in parallel (supercomputer).

Page 7: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method
Page 8: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

How to deal with the repeated DNA - 2 kb clones present a problem, solved with 10 kb clones:

1. Many repeated sequences in the genome are in regions spanning ~5 kb in size.

2. So many 2 kb clones contain entirely repeated DNA.

3. Results in a dead stop in the assembly, because there is ambiguity about where each clone goes.

Repeated sequences occur all over the genome.

4. On average, 10 kb clones contain less repeated DNA sequence.

5. Solution is to create and sequence a 10 kb clone library derived from the same genomic DNA or BAC library.

6. Complete genome coverage requires combining the sequences from the 2 kb & 10 kb libraries.

Page 9: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Genome Date Size Institute Method

Homo sapiens mtDNA

1981 16,159 bp (1 circular)

- -

Haemophilus influenzae (bacteria)

1995 1,830,137 bp (1 circular)

TIGR Shotgun

Mycoplasma genitalium(bacteria)

1995 580,070 bp(1 circular)

TIGR Shotgun

Escherichia coli (bacteria)

1997 4,639,221 bp(1 circular)

University of Wisconsin-Madison

Shotgun

Methanococcus jannaschii(Archaeon)

1996 1,739,933 bp(3 circular)

DOE Shotgun

Saccharomyces cerevisiae (yeast)

1996 12,067,280 bp(16 linear)

100+ labs Mapping

Caenorhabditis elegans(nematode)

1998 97,000,000 bp(6 linear)

Consortium Mapping

Page 10: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Genome Date Size Institute Method

Drosophila melanogaster(fruit fly)

2000 180,000,000 bp UC BerkleyCelera Genomics

Shotgun w/BAC map

Arabidopsis thaliana(angiosperm)

2000 125,000,000 bp(5 linear)

Consortium

Homo sapiens(human)

2000 3,400,000,000 bp Human Genome Project &Celera Genomics

Mapping & Shotgun

Page 11: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Sequencing the human genome:

Two major players:

Human Genome Project (HGP):

Publicly funded international consortium (NIH, DOE, etc.) Francis Collins, National Human Genome Res. Inst. (NHGRI) Began in U.S. in 1990 with a goal of 15 years Genetic and physical mapping approach + dideoxy sequencing

Celera Genomics Corporation (CRA):

Spin-off of Applied Biosystems (ABI) J. Craig Venter, CEO Created in 1998 with a goal of 3 years Direct shotgun approach + dideoxy sequencing (+ HGP’s maps

for validation)

Both groups collected blood and sperm samples from anonymous male and female donors of different ethnic backgrounds.

Page 12: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

J. Craig Venter Celera Genomics

Francis Collins Human Genome Project

Page 13: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Milestone: 26 June 2000 - White House press conference with Bill Clinton:

HGP:

Started 1990~22.1 billion nucleotides of sequence data7-fold coverageUnfinished (24% completely finished, 50% near-finished)

Celera:

Started 1998~14.5 billion nucleotides of sequence data4.6-fold coverageComplete assembled genome with >99% coverage

First assembled draft of human genome simultaneously published in Nature & Science 15 & 16 February 2001 (Nature published 1 day earlier).

Page 14: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

How did Celera et al. assemble the sequences using shotgun methods?

Method A:

1. Assembly of 26.4 million 550 bp sequences 4.6-fold coverage, without reference to a physical map of any kind.

2. Covered >99% of the genome.

3. 500 million trillion base-to-base comparisons.

4. 20,000 CPU hours (833 CPU days) on a year 2000 supercomputer.

Method B:

1. Used BAC clone scaffold (combined lots of smaller maps) to validate the whole genome direct shotgun assembly approach.

2. Also helped resolved ambiguities resulting from the assembly of short repeated DNA fragments.

Page 15: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Features of the human genome:

32,000 genes estimated (50,000-100,000 were predicted).

Not many more genes than Drosophila, and only 50% more genes than Caenorhabditis elegans (nematode worm).

Only 1-1.5% of the genome codes for protein.

50% of the sequence is repeated DNA.

Humans share 223 genes found in bacteria, but not yeast, nematodes, or fruit flies.

Page 16: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Next-generation shotgun genome sequencing:

The shotgun method is fundamentally the same, but uses shorter read lengths (~100 bp paired-ends on Illumina).

300-500 bp fragments + mate-pairs of 2-12 kb to aid assembly

The throughput has increased and the cost has decreased.

Not uncommon to assemble trillions of sequence reads.

Some things to consider:

If error rates are high (454, Illumina) 30-50x genome sequencing is required to get a good genome.

If error rates are low (SOLiD, Ion Torrent) 4-5x coverage is sufficient.

Costs are falling from $10K to $1K.

Page 17: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method
Page 18: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Sequencing is no longer the primary need; data storage/retrieval and computational needs are outpacing everything else.

How much data storage does 1 human genome require?

About 1.5 GB (2 CDs) if your stored only one copy of each letter.

For the raw format containing image files and base quality data 2-30 TB are required.

30-50x coverage requires more data storage capacity.

Sequence + quality scores is compressed to format called FASTQ.

@SEQ_IDGATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT+!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

Page 19: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

FASTQ

'!' represents the lowest quality while '~' is the highest.

Left-to-right increasing order of quality (ASCII):

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

Illumina Sequence Identifiers

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

Page 20: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Sequence assembly & genotyping

• Trimming and filtering sequences based on base quality scores Aligning reads to a reference genome Genotyping to determine homozygous & heterozygous SNPs

http://gatkforums.broadinstitute.org/

Page 21: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Post-genome sequencing era is very different:

Classical genetics studies started with a phenotype and set out to identify the gene.

But we now have the ability to start with a complete genome and set out to identify the phenotype.

Large data sets required many computational and mathematical tools, which requires strong bioinformatics skillsets.

Lots of applications:

1. Identify genes within genomic DNA sequences.

2. Align and match homologous gene sequences in databases and seek to determine function.

3. Predict structure of gene products.

4. Describe interactions between genes and gene products.

5. Study gene expression.

Page 22: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

1. Identifying genes in DNA sequences:

First step is annotation = identification and description of putative genes and other important sequences.

Open reading frames (ORFs)

ORF = potential protein coding sequence that begins with a start codon and ends with a stop codon.

ORFs come in all sizes.

Not all ORFs encode proteins (6-7% do not in yeast).

ORFs with introns can require sophisticated computer algorithms to detect.

Page 23: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

2. Homology searches to assign gene function:

Homology search = identify gene function by searching database.

Similarities reflect evolutionary relationships and shared function.

Homology searches are performed for nucleotides and amino acids using BLAST = Basic Local Alignment Search Tool.

GenBank’s BLAST site: http://www.ncbi.nlm.nih.gov/BLAST/

Example, human mtDNA control region sequence:

TTCTCTGTTCTTCATGGGGAAGCAGATTTGGGTACCACCCAAGTATTGACTCACCCACAACAACCGCTATGTATTTCGTACATTACTGCCAGCCACCATGAATATTGCACGGTACCATAAATACTTGACCACCTGTAGTACATAAAAACCCAATCCACATCAAAA

Page 24: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Fig. 9.2, Summary of genes in the yeast genome.

Page 25: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

3. Gene function can be identified and studied in other ways:

Gene knockout approach = systematically delete different genes and observe the phenotypes (PCR + cloning is one method).

Synthesize tecombinant proteins with modified amino acid sequence and expressed in E. coli.

Test effects of mutations that don’t exist in nature.

Page 26: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Study the transcriptome = complete set of mRNAs in a cell

mRNAs are not stable, but types and levels change with different experimental conditions.

1. Sample mRNA at experimental intervals and convert to cDNA using reverse transcriptase.

2. Probe unknown cDNAs with DNA microarray of PCR-generated ORF sequences (requires known sequence for each probe).

3. Or better yet, sequence the entire transcriptome using:

RNA-Seq = Whole Transcriptome Shotgun Sequencing of all expressed RNAs.

Page 27: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

http://www.nature.com/nbt/journal/v28/n5/images_article/nbt0510-421-F1.gif

Page 28: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

Fig. 9.7b, Microarray study of gene expression

Page 29: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

“Proteomics”:

Proteome = complete set of expressed proteins in a cell

Major goals of proteomics:

• Identify every protein, isolate and purify.

• Determine the sequence and structure of each protein (and its function).

• Create a database with the sequence of each protein.

• Analyze protein levels and interactions in different cell types, at different times, and at different stages of development.

Rationale:

Genes are two-steps removed from disease (DNA mRNA protein).

Most gene products involved in disease are composed of protein.

Understanding protein means understanding disease.

Page 30: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

http://biol.lf1.cuni.cz/ucebnice/en/proteomics.htm

Page 31: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method
Page 32: Today ’ s Lecture Topics Whole genome sequencing  Shotgun sequencing method

“Systems Biology”

Computational and mathematic modeling of complex biological systems---Wikipedia

Requires integration of genomic, proteomic, and metabolic data.