the structure of organophosphorus compounds

5
LITERATURE CITED 1. K. Brass and E. Klar, Chem. Ber., 65, 1660 (1932). 2. Z.A. Starikova, T. M. Shchegoleva, V. K. Trunov, et al., Kristallografiya, 24, 1211 (1979). 3. R.S. Mulliken, J. Chem. Phys. et Phys.-Chem. Biol., 6_!1, 20 (1964). 4. Z.A. Starikova, T. M. Shchegoleva, V. K. Trunov, et al., Zh. Strukt. Khim., 2__1_1, No. 2, 73 (1980). 5. Z.V. Zvonkova and I. V. Bulgarovskaya, Itogi Nauki Tekh., Kristallokhimiya, 1._~3, 144 (1979). 6. Yu. V. Zefirov and P. M. Zorkii, Zh. Strukt. Khim., 1_~7,994 (1976). 7. A.C. Hazell, Acta Crystallogr., B34, 466 (1978). 8. C.K. l>rout and J. D. Wright, Angew. Chem., 8_00,688 (1968). 9. C.K. Prout and S. C. Wallwork, Acta Crystallogr., 2_~.1, 449 (1966). 10. I.V. Bulgarovskaya, Z. V. Zvonkova, and O. V. Kolninov, Kristallografiya, 2_33,1175 (1978). THE STRUCTURE OF ORGANOPHOSPHORUS COMPOUNDS. XVIIL* CRYSTAL AND MOLECULAR STRUCTURE OF THE TETRAMER OF 2-OXO-5-t-BUTYL-1,3,2-OXAZAPHOSPHOLE, CONTAINING AN EIGHT-MEMBERED PHOSPHAZANE RING M. Yu. Antipin, Yu. T. Struchkov, UDC547.26'118+547. Yu. V. Balitskii, and Yu. G. Gololobov 79+548.737 An x-ray structural study of [P(O)OC(tBu)=C(H)N]4 has been carried out (diffractometer, Mo, 454 reflections, recording at-120~ heavy atom method, anisotropic full-matrix refine- ment, R =0o064). The crystals are tetragonah a =12.41, c=21.09 A, Z =4, space group I41/a. The molecule of the tetramer has a cyclophosphazane structure and occupies a special position of symmetry -4 in the crystal. The eight-membered ring has the saddle conformation with the P and N atoms displaced from the average plane of the ring by 0.163 and 0.721 respectively. The bond lengths are: P-N 1.68 and 1.66, P---O 1.45, and P-O 1.60/~; the valence angles at the P atom are close to tetrahedral (angle NPN 107.8 ~ angle NPO in the ring 94.1~ The coordination of the N atom is planar trigonal, C-N 1.45 A, PNP 128 and PNO 123 ~ The oxazaphospholine ring is planar to within 0.01 A. INTRODUCTION The reaction of a-aminopinacoline hydrobromide (I) and PC13 in the presence of triethylamine gives a mixture of crystalline oligomers of 5-t-butyl-l,3,2-oxazaphosphole (C6H10NOP)m, where m=2, 3, or 4 (II), identified from the infrared, NMR, and mass spectra [2]: A t-BuCOCH2NH2 HBr -b PC13 -~ 4Et3N > (CsHI~ Vo~ (C6HI0NOP)'~On" I --3Et3N. HE1 II~ re=S, 3, 4 III. m=3,4 --Et3N ttBr n~l--4 It might be assumed that the compounds II consist of phosphazane rings of different dimensions [3]. The extraction of the mixture II with boiling toluene in air for 4 h gives a mixture of crystalline substances III with mp> 300 ~ which according to the mass spectra have the overall formula (C6H10NOP)mOn, where m =3 or 4 and n =1-4. The infrared and 1H and 31p NMR spectra of the mixture III do not contradict the cyclophospha- zane structure. The main bulk of the mixture III consists of very fine crystals together with a small quantity * For Part XVII, see [1]. Institute of geteroorganic Compounds, Academy of Sciences of the USSR. Institute of Organic Chemistry, Academy of Sciences of the Ukrainian SSR. Translated from Zhurnal Strukturnoi Khimii, Vol. 22, No. 4, pp. 98-102, July-August, 1981. Original article submitted February 28, 1980. 0022-4766/81/2204-0557507.50 1982 Plenum Publishing Corporation 557

Upload: m-yu-antipin

Post on 10-Jul-2016

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The structure of organophosphorus compounds

L I T E R A T U R E C I T E D

1. K. Bras s and E. Klar, Chem. Ber . , 65, 1660 (1932). 2. Z . A . Starikova, T. M. Shchegoleva, V. K. Trunov, et al., Kris ta l lograf iya , 24, 1211 (1979). 3. R . S . Mulliken, J. Chem. Phys. et Phys . -Chem. Biol., 6_!1, 20 (1964). 4. Z . A . Starikova, T. M. Shchegoleva, V. K. Trunov, et al., Zh. Strukt. Khim., 2__1_1, No. 2, 73 (1980). 5. Z . V . Zvonkova and I. V. Bulgarovskaya, Itogi Nauki Tekh., Kristal lokhimiya, 1._~3, 144 (1979). 6. Yu. V. Zef i rov and P. M. Zorkii , Zh. Strukt. Khim., 1_~7, 994 (1976). 7. A . C . Hazell , Acta Crys ta l logr . , B34, 466 (1978). 8. C . K . l>rout and J. D. Wright, Angew. Chem., 8_00, 688 (1968). 9. C . K . Prout and S. C. Wallwork, Acta Crys ta l logr . , 2_~.1, 449 (1966).

10. I . V . Bulgarovskaya, Z. V. Zvonkova, and O. V. Kolninov, Kris ta l lograf iya , 2_33, 1175 (1978).

T H E S T R U C T U R E OF O R G A N O P H O S P H O R U S C O M P O U N D S .

XVIIL* CRYSTAL AND MOLECULAR STRUCTURE OF THE

TETRAMER OF 2-OXO-5-t-BUTYL-1,3,2-OXAZAPHOSPHOLE,

CONTAINING AN EIGHT-MEMBERED PHOSPHAZANE RING

M. Yu . A n t i p i n , Y u . T . S t r u c h k o v , UDC547.26'118+547. Y u . V. B a l i t s k i i , a n d Y u . G. G o l o l o b o v 79+548.737

An x - r a y s t ruc tura l study of [P(O)OC(tBu)=C(H)N]4 has been car r ied out (di f f ractometer , Mo, 454 ref lec t ions , record ing a t -120~ heavy atom method, anisotropic fu l l -mat r ix re f ine-

ment, R =0o064). The c rys ta l s a re te t ragonah a =12.41, c=21.09 A, Z =4, space group I41/a. The molecule of the t e t r a m e r has a cyclophosphazane s t ruc tu re and occupies a special position of symmet ry -4 in the crys ta l . The e igh t -membered ring has the saddle conformation with the P and N atoms displaced f rom the average plane of the r ing by �9 0.163 and �9 0.721

respec t ive ly . The bond lengths are: P - N 1.68 and 1.66, P---O 1.45, and P - O 1.60/~; the valence angles at the P atom are c lose to t e t rahedra l (angle NPN 107.8 ~ angle NPO in the r ing 94.1~ The coordination of the N atom is planar tr igonal, C - N 1.45 A, PNP 128 and PNO 123 ~ The oxazaphospholine r ing is planar to within 0.01 A.

I N T R O D U C T I O N

The react ion of a -aminopinaco l ine hydrobromide (I) and PC13 in the p resence of t r ie thylamine gives a mixture of crys ta l l ine o l igomers of 5- t -bu ty l - l ,3 ,2-oxazaphosphole (C6H10NOP)m, where m=2 , 3, or 4 (II), identified f rom the infrared, NMR, and mass spec t r a [2]:

A t-BuCOCH2NH 2 HBr -b PC13 -~ 4Et3N > (CsHI~ Vo~ (C6HI0NOP)'~On"

I --3Et3N. HE1 II~ re=S, 3, 4 I I I . m=3,4 --Et3N �9 t t B r n ~ l - - 4

It might be assumed that the compounds II consis t of phosphazane r ings of different dimensions [3]. The extract ion of the mixture II with boiling toluene in air for 4 h gives a mixture of crys ta l l ine substances III with mp> 300 ~ which according to the mass spec t ra have the overa l l formula (C6H10NOP)mOn, where m =3 or 4 and n =1-4. The inf rared and 1H and 31p NMR spec t ra of the mixture III do not contradict the cyclophospha- zane s t ruc tu re . The main bulk of the mixture III consists of very fine c rys ta l s together with a smal l quantity

* F o r Pa r t XVII, see [1].

Institute of ge te roorgan ic Compounds, Academy of Sciences of the USSR. Institute of Organic Chemistry, Academy of Sciences of the Ukrainian SSR. Trans la ted f ro m Zhurnal Strukturnoi Khimii, Vol. 22, No. 4, pp. 98-102, July-August , 1981. Original a r t ic le submitted F e b r u a r y 28, 1980.

0022-4766/81/2204-0557507.50 �9 1982 Plenum Publishing Corporat ion 557

Page 2: The structure of organophosphorus compounds

c 2"~c) c I" 1,~88<18).~

." 6 i l )s

" J \ \ I1 , , # ~ : ,AM ^ rD

o

O

F i g . 1. G e n e r a l f o r m of t h e m o l e - c u l e wi th the bond leng ths and p r i n c i p a l v a l e n c e a ng l e s . T h e ' 4 ax i s of s y m m e t r y is v e r t i c a l .

T A B L E 1. gen a t o m s and x 104 fo r t h e o t h e r a t o m s *

Atom x y z Atom x y z

P o O(P) N C0) C(2) C(3) C(4) C(5) C(6)

--89(4) 386(7)

-5~(8) 930(7)

--60(I) -780(9)

37000) -8o(to) t58o(1o)

4000)

C o o r d i n a t e s of the A t o m s (•

1172(2) t784(4) 692(5)

t592(,f) 2350(5) 2259(5) 2927(6) 349~(7) 29~6(7) 2928(6)

H(2) H(4,1) H6,2) H(4,3) H(5,t) H(5,2) H(5,3) H(6,9 H (6,2) n(6,3)

03 fo r t he h y d r o -

4197(3) 4788(7) 4900(10) i592(8) 437000) 3635(9) 4910(i0) 4340(10) 485000) 6070(10)

329 ~50 354 I 459 401 5f9 I 5i7 659 65O 619

--147

--89 t73 t92 t91 35

--80

247 381 3~,4 353 293 333 255 247 332 293

* The h y d r o g e n a t o m s a r e g iven the n u m b e r s of t he c a r - bon a t o m s to which they a r e jo ined .

of l a r g e r (0 .10-0.15 m m d i a m e t e r ) w e l l - f a c e t e d c r y s t a l s of o c t a h e d r a l shape . The l a t t e r w e r e s e l e c t e d fo r x - r a y s t r u c t u r a l a n a l y s i s , wh ich p r o v e d tha t t h e s e c r y s t a l s c o n s i s t of the t e t r a m e r (C6Hi0NOP)40 4 (IV) wi th the c y c l o p h o s p h a z a n e s t r u c t u r e .

E X P E R I M E N T A L

The c r y s t a l s of compound IV a r e t e t r a g o n a l ; a t - 1 2 0 ~ a = 1 2 . 4 1 ( 1 ) , c = 2 1 . 0 9 ( 2 ) / ~ , V=3248(5)A 3, d e a l t = 1.309 g / c m 3, Z =4, s p a c e g r o u p I4~ /a . S ince the c r y s t a l s of compound IV showed only weak r e f l e c t i o n at r o o m t e m p e r a t u r e , l o w - t e m p e r a t u r e r e c o r d i n g was used to i n c r e a s e t he i n t ens i t y of the d i f f r a c t i o n p a t t e r n . The i n t e n s i t i e s of 599 independen t r e f l e c t i o n s w e r e m e a s u r e d at a t e m p e r a t u r e o f - 1 2 0 ~ on a Syntex P2i a u t o - m a t i c f o u r - c i r c l e d i f f r a c t o m e t e r ( M o I ~ r a d i a t i o n , g r a p h i t e m o n o c h r o m a t o r , 0/20 scann ing , 20 -< 40~ 454 r e f l e c t i o n s wi th I > 2~ (I) w e r e used in t he s t r u c t u r a l c a l c u l a t i o n s . The s t r u c t u r e was d e t e r m i n e d by the h e a v y - a tom method and r e f i n e d in t h e a n i s o t r o p i c f u l l - m a t r i x a p p r o x i m a t i o n . A l l the h y d r o g e n a t o m s w e r e d e t e c t e d in the d i f f e r e n c e s y n t h e s e s and inc luded in the r e f i n e m e n t wi th f ixed p o s i t i o n a l and t h e r m a l p a r a m e t e r s wi th B i so =6 A 2. With a l l o w a n c e fo r t h e s e , the f ina l va lue s w e r e R =0.0641 and RG = 0.0752 (R = 0.0910 and R G = 0.0768 r e s p e c t i v e l y f o r a l l 599 r e f l e c t i o n s ) . The g e n e r a l f o r m of the m o l e c u l e of compound IV wi th t he num- b e r i n g of the a t o m s and the m o s t i m p o r t a n t bond l eng ths and v a l e n c e ang l e s a r e g iven in F i g . 1, and the co- o r d i n a t e s of the a t o m s and the bond l eng ths and v a l e n c e a n g l e s a r e g iven in T a b l e s 1 and 2.*

* T h e t a b l e of a n i s o t r o p i c t e m p e r a t u r e f a c t o r s can be ob ta ined f r o m t h e a u t h o r s ,

558

Page 3: The structure of organophosphorus compounds

TABLE 2. Bond Lengths and Valence Angles*

Bond d, ~ Angle w, deg Angle oJ, deg

P - - N '

P--N P--O(P) P--O c( t ) -o C(i)--C(2) C(t)--C!3) C(3)--C{4) C(3)--C(5) C(3)--C(6) C(2)--N

t,65800) t,68t (t0) t,447(t3) t,597(9) t,4t6(14) 1,288(t8) t,490(t8) 1,499(20) t,5t2(22) t,496(2t) t,447(t4)

OPO(P) 0PN' 0PN O(P)PN' O(P)PN NPN' POC(1) oc(t)c(2) oc(i)c(3) c(2)c(1)c(3) C(t)C(2)N

tt5,5(7) to5,o(5) 94,1(5)

t13,4(7) 118,8(7) 1o7,s(5) 1it,5{7) 113,9(t,t) 1t2,4(t,0) i35,5(i,2) 11t,8(t,0)

C(2)NP" PNP" C(2)NP c(1)c(3)c(4) c(l)c(3)c(~) C0)C(3)C(6) c(4)c(3)c(5) c(4)c(3)c(6) �9 C(5)C(3)C(6)

t23,0(7) i27,9(6) i08,6(7) i07,7(i,2) t10,8(t,2) tlo,1(t,t) to9,50,2) t10,5(t,2) t08,3(t,2)

* The coordinates of the a toms N' and pn a r e re la ted to the coor - dinates of the a toms N and P by the t r an s fo rma t ions ( 0 . 2 5 - y , 0.25 + x, 0 . 25 -z ) and ( - 0 . 2 5 +y, 0 . 2 5 - x , 0 . 2 5 - z ) .

D I S C U S S I O N OF R E S U L T S

The presen t work proved conclusively that the compound IV studied has a t e t r a m e r i c s t ruc tu re with an e i g h t - m e m b e r e d phosphazane r ing. In accordance with the spec ia l position of the molecule in the c rys ta l , the phosphazane r ing P4N4 has "4 s y m m e t r y , which co r responds to the boat (S4) and saddle (D2d) conformat ions or conformat ions in te rmedia te between them.

The s t ruc tu r e s of cycl ic phosphorus-n i t rogen compounds with single P - N bonds (cyclophosphazanes) have been studied in much less detai l than the cor responding cycl ic phosphazenes, cha rac t e r i zed by a l te rnat ing fo rma l ly double and single P - N bonds in the r ing. At the p resen t t ime, the s t r u c t u r e s of the s i x - m e m b e r e d [MeNP(O)OMe] 3 (V) [4] and the e i gh t -m em bered [MeNP(O)OMe]4 (VI) [5] cyclophosphazanes a re known. These compounds, of genera l f o rm u l a [RNP(O)OR]n, a r e r e m a r k a b l e in that they can be obtained by the r e a r r a n g e - ment of the cor responding alkoxyphosphazenes [NP(OR)2] n [6]. F o r example, compound VI is fo rmed f r o m [NP(OMe)2] 4 (VII) in the p re sence of methyl iodide [7]. The s t ruc tu r e s of H4[HNPO2] .2H20(VIII ) [8], K4[HNPO214"4H20(IX),andCs4[HNPO2] "6H20 (X) [9], containing the cyclic phosphazane anion [HNPO2]~- , have also been establ ished. In addition, the s t ruc tu r e s have been studied for a whole s e r i e s of t e t r aphosphazenes [NPR2]4, differ ing in the nature of the subst i tuents R on the phosphorus a tom (R =F , C1, Me, NMe2, OMe, etc.) (XI-XIV) [3, 10-14]. Table 3 c o m p a r e s var ious geomet r i c p a r a m e t e r s of the cyclophosphazanes and cyclophosphazenes for which s t ruc tu ra l studies have been ca r r i ed out.

It can be seen f r o m Table 3 that the P - N bonds in the cyclophosphazanes a r e approximate ly 0.1 A longer than those in the cyclophosphazenes . This is due to the d e c r e a s e in the mult ipl ici ty of the P - N bonds, but

o

the i r length does not r e a c h the value 1.77 A, cha r ac t e r i s t i c of a s ingle P - N bond [3], and is s m a l l e r than it o

by approx imate ly 0.1 A. Most authors a t t r ibute this d e c r e a s e in the length of the fo rmal ly single P - N bonds in phosphazanes to the par t ic ipat ion in the in teract ion of the unoccupied d -o rb i t a l s of phosphorus and the un- shared pair of e lec t rons of the nitrogen, leading to an inc rease in the mult ipl ici ty. The possibi l i ty of this additional interact ion is indicated by the planar t r igonal coordination of the ni t rogen a tom in the phosphazanes studied, including compound IV.

The geome t r i c p a r a m e t e r s of the phosphazane s y s t e m IV a re typical and l ie in the range of values found for other phosphazanes (see Table 3). The angles N - P - N a r e c lose to t e t r ahedra l , unlike those in the phos- phazenes , where the ave r age value of the angle N - - P = N is 120 ~ The angles at the ni t rogen a toms a re also s m a l l e r than those in phosphazenes , but the s ca t t e r in the individual values is ex t remely l a rge (122-132~ and this poss ib ly re f l ec t s the f lexibi l i ty of the PN r ings .

It is of in te res t to c o m p a r e the conformat ions of the e igh t -membered r ings in the phosphazenes and phosphazanes. These conformat ions a r e ex t r eme ly var ied, and, with the exception of compound XI, all the r ings have a nonplanar s t ruc tu re . According to [3], a s y s t e m of a l te rnat ing double and single P - N bonds does not impose r ig id r e s t r i c t i o n s on the conformat ion of the PN r ing, and its nonplanari ty does not prevent the rea l iza t ion of both delocal ized and " isola ted unit" 7r-systems, as a r e su l t of which equlization of the P - N bond lengths takes place. A decis ive influence on the conformat ion of the r ing is apparent ly exerted by nonvalence in teract ions ( t r ans -annu ta r in teract ions of the subst i tuents , packing effects , etc.). F o r example, the anion [HNPO2144- in the s t r u c t u r e of compound VIII has the boat conformation, whereas in s t r uc tu r e s IX and X, that is in the K and Cs sa l t s of the acid H4[HNPO2]t, it takes the chai r and saddle f o r m s respec t ive ly . The cation

559

Page 4: The structure of organophosphorus compounds

TABLE 3. zane and Phosphazene Rings

Compar ison of the Geomet r i c P a r a m e t e r s of Phospha-

Litera- . Compound P--N, ~ ~:: :-N' ture

cited

[P(O)OC(t- Bu) = t,658(t0) c(H)Nh t,68t(10) [MeNP(O)OMe ]a t,663 [MeNP(O)OMe ]4 1,673(3) [NP(OMe)2]4 t,57 H4[HNPO2]4.2H~O 1,661 K4[HNPO2h.4H20 1,673 Cs4 [HNPO2]~.6H20 t,676(7) (NPF2)~ t,5t (2)

(NPMe2h t ,596 (3)

[NP(NMe.2)e ]4 1,53 [NPCl2]4 1,56

1,56

No.

IV

V vI

VII VIII

IX

x x I

x I I

xIII xIr

107,8(5)

t05,2 106,9(2) 121,0 107,4 108,t 106,9(5) i22,7(t,0~

it9,5

120 121

12t

Conforma- P--N--P, tion of the

deg ring

t27,9(6) Saddle

t21,7 t22,5(2) Boat t32,2 Saddle t25,6 Boat 13t,9 Chair t28,8(6) Saddle t47,2(1,4) Planar

ring t32,0 Bent

ring ta3 Boat 131 Boat

(K-form) 134,I38 Chair

(t-form)

Data �9 ~ presented

4 5 7 8 9 9

t0

tl

12 13

t4

[NP(Me)2]4H + exists in the boat and saddle conformat ions in the s a m e c rys t a l s t r u c t u r e [15], and in the case of compound XIV, two modif icat ions with different conformat ions of the r ing have been detected: the K- fo rm (boat) and the T - f o r m (chair) [14]. These data apparent ly indicate that t he re is only a slight energy d i f ference in the conformations of the e i gh t -m em bered PN r ings . This conclusion is conf i rmed by a recen t conforma- tional calculation for a number of cycl ic phosphazenes [16] and agrees with data on the high mobil i ty of the PN r ings in the liquid s ta te [17].

It is known that e i g h t - m e m b e r e d PN r ings may be planar and also take the crown, chair , saddle, and boat fo rms [18]. In cyclophosphazanes and cyclophosphazenes , the boat and saddle conformat ions a r e most frequently encountered. In the ideal case for the la t t e r , the values of ~P/6N, where 6P and ~N a re the devia- tions of the P and N a toms f r o m the average plane of the r ing perpendicular t o the ~ axis , is equal to 1 for the boat fo rm and 0 for the saddle f o r m [5]. F o r compound IV, 5P-- -0 .163 A, 5N = ~-0.721 A, and 5P/(~N =0.22. F o r s t ruc tures VI, VII, and XIV (K-form) , 5P/~N has the values 0.48, 0.20, and 0.75 re spec t ive ly . Thus the conformation of the e igh t -membered r ing in compound IV is c lose to the saddle f o r m (as in compound VII), whereas in compotmd XIV it has the boat fo rm; the r ing in compound VI has an in te rmedia te conformat ion . The values of the tors ional angles PNPN and NPNP (*66.5 and 51.89 also indicate that the conformat ion of c o m - pound IV is c lose r to the saddle f o r m *

In contrast to the previously studied [19] 2 - o x o - 2 - m e t h y l - 3 , 5 - d i - t - b u t y l - A q3 ,2-oxazaphosphol ine (XV), the molecule of which has the envelope conformation with the P a tom displaced f r o m the plane of the other atoms of the f ive -membered r ing by 0.206 A towards the O(P) atom, the f i v e - m e m b e r e d oxazaphospholine r ing in compound IV is planar to within 0.01 A. The bond lengths in the f i v e - m e m b e r e d r ings of compounds IV and XV coincide within the l imits of e r r o r . The only d i f fe rence is observed in the valence configurat ion of the nitrogen atom, which is planar t r igonal in compound IV (sum of the angles 359.5~ but which is apprec iably nonplanar in compound XV (sum of the angles 354.9~ As in compound XV, the phosphorus atom in compound IV has a distorted te t rahedra l coordination. The OPN angle within the r ing is dec rea sed to 94.1(5 ~ (to 94.5(1) ~ in compound XV), and the angles involving the "double-bonded" phosphoryl a tom O(P) a r e g r e a t e r than the ideal t e t rahedra l values: O(P)PN' 113.4(7) ~ O(P)PN 118.8(7) ~, andO(P)PO 115.5(7 ~ (the las t two angles in compound XV are 118.2(1) and 115.6(1)~ h noteworthy fea tu re is the inc rease in the exocycl ie angle C(2)C(1)C(3) at the C(1)-C(2) double bond to 133.5(1.2) ~ in compound IV and 133.7(3) ~ in compound XV, evi- dently due to the repulsion of the t -butyl group f r o m the H(2) atom. The slight d e c r e a s e inothe length of the C - C single bonds in the t -butyl group compared with the genera l ly accepted value of 1.54 A can be at tr ibuted to the neglect of l ibrational cor rec t ions .

The crysta l s t ruc ture of compound IV is made up of d i s c r e t e molec ' l les , separa ted f r o m one another by the usual van der Waals dis tances .

* The tors ional angles a re �9 73 ~ in the ideal boat fo rm, and • 52 ~ in the ideal saddle f o r m [20].

560

Page 5: The structure of organophosphorus compounds

L I T E R A T U R E C I T E D

1. M. Yu. Antipin, Yu. T. Struchkov, N. A. Tikhonina, et al., Zh. Strukt. Khim., 2__22, No. 2, 93 (1981). 2. Yu. G. Gololobov and Yu. V. ]3alitskii, Zh. Obshch~ Khim., 4_44, 2356 (1974). 3. H . R . Allcock, Phospho rus -N i t rogen Compounds, Academic P r e s s (1972)o 4. G . B . Ansell and G. J. ]3ullen, J. Chem. Soc. (A), 3026 (1968). 5. G . J . ]3ullen, N. L. Paddock, and D. J. Pa tmore , Acta Crysta l logr . , ]333, 1367 (1977). 6. ]3. W. F i t z s immons , C. Hewlett, and R. A. Shaw, J. Chem. Soc., 4459 (1964). 7. G . B . Ansel l and G~ J. ]3ullen, J. Chem. Soc. (A), 2498 (1971). 8. T. Migchelsen, R. Olthof, and A. Vos, Acta Crysta l logr . , 1_99, 603 {1965). 9. ]3. ]3erking and D. Mootz, Acta Crysta l logr . , ]327, 740 (1971).

10. H . M . McGeachin and F. R. Tromas , J . Chem. Soc., 4777 (1961). 11. M.W. Dougill, J. Chem. Soc., 5471 (1961). 12. G . J . ]3ullen, J. Chem. Soc., 3193 (1962). 13. R. Hazekamp, T. Mighelsen, and A. Vos, Acta Crysta l logr . , 1_5.5, 539 (1962). 14. A . J . Wagner and A. Vos, Acta Crysta l logr . , I324, 707 (1968). 15~ J. T r o t t e r and S. H. Whitlow, J. Chem. Soc. (A), 460 (1970). 16. R . H . ]3oyd and L. Kesner , J. Am. Chem. Soc~ 9_99, 4248 (1977). 17. Ao C. Chapman and N. L. Paddock, J. Chem. Soc., 635 (1962). 18. N . G . ]3okii, Yu. T. Struchkov, A. E. Kalinin, et al., P ro g re s s in Science. Crys ta l Chemistry , Vol. 12,

VINITI, Moscow (1977). 19. Yu. V. ]3alitskii, Yu. G. Gololobov, V. M. Yurchenko, et al., Zh. Obshch. Khim., 5__00, 291 (1980). 20. J. ]3. Hendrickson, J. Chem. Soc., 8._9_9, 7043 (1967).

CRYSTAL STRUCTURE OF ORGANOSILICON COMPOUNDS.

XXVI.* cis-l, 7-DIPHENYL-3,3,5,5,9,9,11,11-

OCTAMETHYLBICYCLOHEPTASILOXANE AND eis-I,I,7,7,9,9-

HEXAME THYL-3,5,1 I, 13-TE TRAPHENYLTRICYCLONONASILOXANE

V. E . S h k l o v e r , Y u . T , S t r u c h k o v , N. N. M a k a r o v a , a n d A. A. Z h d a n o v

UDC 548.737

The molecular s t ruc tu re in the c rys ta l of the two s implest cyc lo- l inear organopolysi loxanes has been de te rmined . The geometry of the siloxane r ings present in these molecules , and also the cha rac t e r i s t i c fea tures of thei r s t ruc tu re as the s imples t cyc lo- l inear o l igomers , has been discussed.

INTRODUCTION

After Brown's r epo r t [2] of the synthesis of macromolecu la r polyphenylsi lasesquioxanes, the chemis t ry and physical chemis t ry of the organosi lasesquioxanes began to develop rapidly. Of considerable importance for an understanding of the s t ruc tu re of these polymers is information on the charac te r i s t i c fea tures of the s t ruc tu re of thei r e lementary unit, that is the f ragments of the cyc lo- l inear condensed siloxane rings. Of par t icu la r in te res t is the s t ruc tu re of te t ras i loxane rings present in a t rans and in a cis environment, as f rag- ments of the two cyc lo - l inea r polymers (a) and (b) (Fig. 1), which have actually been obtained [2, 3]. The s t ruc tu res of various molecules with te t ras i loxane r ings included in a polycyclic sys tem are already k n o w n

* F o r Par t NXV, see [1].

Insti tute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Trans la ted f rom Zhurnal Strukturnoi Khimii, Vol. 22, No. 4, pp. 103-112, July-August , 1981. Original a r t ic le submitted F e b r u a r y 27, 1980.

0022-4766/81/2204-0561507.50 �9 1982 Plenum Publishing Corporat ion 561