the life cycle of giant molecular clouds charlotte christensen

76
The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Upload: ashlyn-white

Post on 24-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

The Life Cycle of Giant Molecular Clouds

Charlotte Christensen

Page 2: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Observational Constraints onThe Life Cycle of

Giant Molecular Clouds in Milky Way-like Galaxies

Charlotte Christensen

Page 3: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Coming up

• Physical Background

• Lifecycle• Formation•Core Formation• Protostar Formation• Star Formation•Dispersal

• Nagging Questions

Page 4: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Meet the Molecules

Page 5: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Meet the Molecules

HIIHII

Page 6: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Meet the Molecules

HIHI

Page 7: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Meet the Molecules

HH22

Page 8: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Meet the Molecules1212COCO

Page 9: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Meet the Molecules

1313COCO

Page 10: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Meet the Molecules

NHNH33

Page 11: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

3 Phase Interstellar Media

• Hot Ionized Medium

• Warm Neutral/Ionized Medium

• Cold Neutral Medium

Page 12: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

3 Phase Interstellar Media

• Hot Ionized Medium•HII• T 106 - 107 K• 10-4 - 10-2 cm-3

• Warm Neutral/Ionized Medium• Cold Neutral Medium

Haffner et al, 2003Haffner et al, 2003

Page 13: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

3 Phase Interstellar Media

• Hot Ionized Media• Warm Neutral/Ionized Media

•HII & HI• T 6000 -- 12,000K• 0.01 cm-3

• Cold Neutral Media

MW 21cm radiationMW 21cm radiation

Dickey & Lockman, 1990Dickey & Lockman, 1990

Page 14: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

3 Phase Interstellar Media

• Hot Ionized Media• Warm Neutral/Ionized Media• Cold Neutral Media

•HI & H2

• T 15 -- 100K• 100 -- 5000 cm-3

Dame et al, 2001Dame et al, 2001

MW CO emissionMW CO emission

Page 15: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Molecular Hydrogen Clouds

• Self-gravitating (rather than diffuse)

• H2, molecules, and dust grains

• 30 - 60% of the gas mass

• Occupy > 1% of the volume

• Site of star formation

Eagle NebulaHST

Page 16: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Size ScalesMass (MO) Size (pc) (cm-3)

Superclouds / GMAs

107 -- --

Giant Molecular Clouds

104 -- 106 50 100

Molecular Clouds 103 -- 104 10 100

Bok Globules 1 -- 1000 1 104

Cores 1 -- 1000 1 104

Page 17: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Size ScalesMass (MO) Size (pc) (cm-3)

Superclouds / GMAs

107 -- --

Giant Molecular Clouds

104 -- 106 50 100

Molecular Clouds 103 -- 104 10 100

Bok Globules 1 -- 1000 1 104

Cores 1 -- 1000 1 104

Page 18: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Some Timescales

• Crossing Time• Time for a sound wave to propagate

through

• c = 10 Myr

• Dynamical Time• Time for a particle to free fall to center

• dyn = G-1/2 2 Myr

• “Dynamic” vs “Quasi-Static” Evolution

Page 19: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Support

• Assume Equilibrium• Virial Theorem

2 T + W = 02 T + W = 0

Kinetic EnergyKinetic Energy

Potential EnergyPotential Energy

Jeans Mass:

Page 20: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Support

• Assume Equilibrium•Outside Pressure

2(T - T2(T - T00) + W = 0) + W = 0

Potential EnergyPotential Energy

KE from External PressureKE from External Pressure

Kinetic EnergyKinetic Energy

Page 21: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Support

• Assume Equilibrium• Turbulence vs Thermal KE

2(T2(T + T + TPP - T - T00) + W = 0) + W = 0

Potential EnergyPotential Energy

KE from External PressureKE from External Pressure

Thermal KEThermal KE

Turbulent KETurbulent KE

Page 22: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Support

• Assume Equilibrium•Magnetic Field

2(T2(T + T + TPP - T - T00) + W + B = 0) + W + B = 0

Potential EnergyPotential Energy

KE from External PressureKE from External Pressure

Thermal KEThermal KE

Turbulent KETurbulent KE

Mag. EnegryMag. Enegry

Page 23: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Support

• Assume Equilibrium•Magnetic Field

2(T2(T + T + TPP - T - T00) + W + B = 0) + W + B = 0

Potential Energy

KE from External Pressure

Thermal KE

Turbulent KE

Mag. EnegryMag. Enegry

Page 24: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Turbulent Support -- Source

• Internal• Stellar Winds• Bipolar Outflows•HII

• External•Density Waves•Differential Rotation• Supernovae•Winds from Massive Stars

Page 25: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Turbulent Support -- Decay

• Close to a Kolmogrov Spectrum

• Cascade down to lower energies• Large eddies form small eddies• Small eddies dissipated through friction

• Timescale: 1 Myr

Page 26: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Magnetic Field Support -- Source

• Galactic Dynamo• Seed Magnetic Field• Differential Rotation• Convection

• Throughout MW• Seen in polarization

and Zeeman splitting

MPIfR Bonn

NGC 6946

Page 27: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Magnetic Field Support -- Decay

• Ambipolar Diffusion -- Decoupling of charged and neutral particles

• Timescale: 10 Myr

• Depends on: •Density•Magnetic Flux• Ionization Fraction

Page 28: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Life Cycle

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Page 29: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Life Cycle

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Page 30: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Theories

• Collisional build up of molecular clouds•Growth time collisional time

• Quiescent growth of ambient H2

• Gravitational/magnetic instability• Shock compression

• Spiral Arms• Supernovae• From HI of H2?

Page 31: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

w/ CO

all HIall HI

Correlation with HI

• Filaments of HI around all GMCs

Engargiola et al, 2003Engargiola et al, 2003

M33M33

DensityDensity

Page 32: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Correlation with Spiral Arms

M33M33

• 60% of H2 in spiral arms

• Grand design spirals: • > 90% (Nieten et al. 2006, Garcia-Burillo et al 1993)

Rosolowsky et al, 2007

Page 33: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Age Limits

• = 10-20 Myr• Collisional build

up of molecular clouds• = 2000 Myr

• Quiescent growth of ambient H2

• H2 = 0.3 MO pc2

• = 100 MyrEngargiola et al, 2003Engargiola et al, 2003

M33M33

Page 34: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Shocks

• Observation of a shocked GMA

Tosaki, 2007Tosaki, 2007

1212CC 1313CC

M31

Page 35: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

GMC Formation -- Conclusions

• Formed primarily from either HI or H2

• Compressed to self-gravitating clouds in spiral arms

Page 36: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Life Cycle

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Page 37: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Cloud Core Formation

• GMC is supported by:• Magnetic flux• Turbulence

• Support is removed either• Slowly by Ambipolar diffusion• Fast by decay of turbulence and

turbulence amplified diffusion

• Cores (regions 2-4 times ambient density) form at 10% efficiency

Lagoon Nebula

Page 38: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Initial Conditions

• Cloud envelope is• In non-equilibrium•Magnetically subcritical (Cortes et al, 2005)

• Very inhomogenous

Carina, HST

Page 39: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Observations of Cores

Myers & Fuller, 1991

Page 40: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Observations of Cores

• Cores are:•Non-isotropic•More prolate than oblate•Not necessarily aligned

with the magnetic field (Glenn 1999)

Prolate

Oblate

Page 41: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Ratio of Clouds without Stars

• One last test of timescale:•NNS/NT = NS/ T

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Page 42: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Ratio of Clouds without Stars

• Very few MW GMCs without SF

• 25% of GMCs in other galaxies have no associate HII regions (Blitz, 2006)

Engargiola, et al 2003Engargiola, et al 2003

M33 -- Distance between GMC and HII

Page 43: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Ratio of Clouds without Stars

• NNS/NT = NS/ T 1/4

• Dynamic Collapse

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Page 44: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Life Cycle

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Page 45: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Core Collapse to Protostar

• Overdensties collapse

• Collapse regulated by• Turbulence•Magnetic Field

• Fragmentation

• Protostar formation when core becomes opaque

Page 46: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Core Sizes &Densities

Radius (pc)

Lee et al, 1999

Enoch et al, 2008

Log Density

Page 47: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Protostar Formation

Size

Page 48: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Magnetic Support

• Cores are (probably) supercritical, i.e. not supported by the magnetic field

• M/B = c G-1/2

• c 0.12

Crutcher, 1999

Critical

Page 49: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Turbulence

• Cores are turbulent

• Motions are Supersonic

• Turbulence from shocks or MHD waves

Myers & Khersonsky, 1994

Page 50: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

MHD Turbulence

• Dependent on Ionization

• Decays by ***

• Decay rate is still comparable to non-magnetic turbulence

• Speeds close to Alfven speed

Page 51: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Time Scales

• We have flow of material onto magnetically-unsupported cores

• Larger, more massive cores collapse to protostars

• How fast does this happen?

Page 52: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Time Scales -- Spiral Arm Offset

Page 53: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Time Scales -- Spiral Arm Offset

Tosaki, 2002

M51 13CO12CO H

Page 54: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Time Scales -- Spiral Arm Offset

• Difference between peaks 10 Myr

• Long delay of SF OR staggered SF

Tosaki, 2002

Page 55: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Time Scales --Statistcs

• Ratio of clouds without protostars:•NNSC/NC = NSC/ C

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Page 56: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Time Scales --Statistics

• Optically Selected MW Cores:•NNSC/NC = 306/400

(Lee & Myers, 1999)

• Perseus, Serpens, & Ophiuchus:•NNSC/NC = 108/200

(Enoch et al, 2008)

• 25% - 50% of core life before SF (Enoch et al, 2008)

Page 57: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Time Scales --Statistics

• Lifetime of a protostar 2 - 5 x 105 Myr

• Lifetime of a core 0.3 - 1 x 106 Myr

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

0.5 Myr

Page 58: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Life Cycle

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Page 59: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Stars Form

• Powered by gravitational energy

• Envelopes of accreting material

• T Tauri Stars

Trifid, HST

Page 60: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Size

Hatchel & Fullerl, 2008

Younger Protostar

Older Protostar

Starless

Perseus Cores

Page 61: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Time Scale

• T Tauri Problem•Most stars

form within 3 Myr

Palla & Stahler, 2000

Page 62: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Location

Huff & Stahler, 2006

Page 63: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Time Scale

• Star formation lasts 2 - 4 Myr

• Clouds gone after 5 - 10 Myr

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

2 - 4 Myr

Page 64: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Lifecycle

Cloud Formation

Cloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Page 65: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Clouds Dispersing

Leisawitz, 1989

Page 66: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Proximity to New Stars

• Star clusters older than 10 Myr have no associated clouds

Leisawitz, 1989

Page 67: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Cascading SF

• Dispersing clouds may spark SF elsewhere

Hartmann

M51, HST

Page 68: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Putting it all TogetherCloud Core Formation

Protostar Collapse

Stars Form

Cloud Dispersal

Cloud Formation

Cascading SF

0 1 4

10 - 20 Myr

Page 69: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Nagging Questions

• Do clouds form from HI of H2?

• How long before cores form?

• What effect does the magnetic field have on turbulence?

Page 70: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Thanks

• Tom Quinn, Fabio Governato, Julianne Dalcanton, Andrew Connely, Bruce Hevly

• Adrienne and David for making me dinner

• Everybody who came to my practice talk

Page 71: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Gas In-fall Onto Cores

Lee, 2001

Page 72: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Alignment

Page 73: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

MHD Turbulence

Padoan, 2004

Page 74: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Core Densities

Enoch, 2008

Page 75: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

Location

Huff & Stahler, 2006

Page 76: The Life Cycle of Giant Molecular Clouds Charlotte Christensen

More Dispersal

Jorgensen, 2007