the impact of the fukushima daiichi nuclear power plant accident on the environment, and...

9
ENVU6EH 2332688 The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy On March 11, 2011, the Great East Japan Earthquake triggered a tsunami that traveled almost ten kilometers on land. The 9.0 magnitude earthquake and 40.5 meterhigh tsunami were the highest recorded in Japanese history (Hamada and Ogino 2012). Tokyo Electric Power Company (TEPCO) had six boiling water type nuclear power reactors operating in the Fukushima Daiichi Nuclear Power Plant (FDNPP), which were equipped with sea defenses, but these defenses were not adequate for the tsunami that struck. The reactors were immediately shut down, but the tsunami demolished the reactor’s backup power system, causing the cooling system to malfunction (Ohta 2012). Despite efforts to inject water into the overheated reactor cores in an attempt to cool the system manually, hydrogen explosions occurred in three of the reactors, releasing a multitude of radionuclides into the atmosphere (Saito et al. 2014). The consequences of the FDNPP incident raised concerns regarding the wellbeing of the environment due to impacts from radionuclides, as well as questions of what direction Japan’s energy policy would head in after such a severe nuclear power related incident. Of the radionuclides released, 131 I, 133 Xe, 134 Cs, and 137 Cs were detected, with halflives of 5.24 days, 8.02 days, 2.07 years, and 30.17 years, respectively (Sohtome et al. 2014; Povinec et al. 2013; Ohta et al. 2012). 133 Xe had the highest initial activity, estimated by Povinec (2013) to be between 13,000 to 20,000 PBq, but disappeared quickly due to its relatively short halflife. Additionally, 131 I and 134 Cs had the biggest effect on the external effective dose immediately following the accident, but when these concentrations started to diminish, 137 Cs became the most prominently detected radionuclide. 137 Cs has shown to be a significant concern due to its long halflife, which is substantially longer than that of any radionuclide emitted by the FDNPP and causes chronic, lowlevel exposure to radiation (Taira et al. 2012). Radionuclides entered the earth’s system via both dry and wet deposition from the atmosphere and also directly via waterways from the damaged reactors (Yasunari et al. 2011). FDNPP’s reactors were cooled with seawater, and due to the damage of the accident, large volumes of contaminated water was leaked into the ocean (Sohtome et al. 2014). TEPCO estimated that the 520ton flow of water from the reactor to the open ocean contained 2.8 PBq 131 I, .940 PBq 134 Cs and .940 PBq of 137 Cs in the period between 1 – 6 April, 2011 (Hamada and Ogino 2012). It is difficult to estimate the concentration of radionuclides in the ocean, as they dilute upon hitting the water. Radiocesium from FDNPP was mostly deposited into the North Pacific Ocean, where it was then moved eastward by surface currents and then southward through the Kuroshio Extension Current (Kumamoto 2015). There is a significant concern in how the presence of radionuclides in the oceans will effect the safety of seafood. The Ayu Plecoglossus is a herbivorous fish that is a significant food source for both humans and bird species, and is thus a good indicator of how these radionuclides, particularly 137 Cs, will travel through the food chain. Ayu graze on algae on the

Upload: melissa-miller

Post on 21-Mar-2017

355 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

ENVU6EH     2332688    

The  Impact  of  the  Fukushima  Daiichi  Nuclear  Power  Plant  Accident  on  the  Environment,  and  Consequential  Effects  on  Japanese  Energy  Policy  

 On  March  11,  2011,  the  Great  East  Japan  Earthquake  triggered  a  tsunami  that  

traveled  almost  ten  kilometers  on  land.  The  9.0  magnitude  earthquake  and  40.5  meter-­‐high  tsunami  were  the  highest  recorded  in  Japanese  history  (Hamada  and  Ogino  2012).  Tokyo  Electric  Power  Company  (TEPCO)  had  six  boiling  water  type  nuclear  power  reactors  operating  in  the  Fukushima  Daiichi  Nuclear  Power  Plant  (FDNPP),  which  were  equipped  with  sea  defenses,  but  these  defenses  were  not  adequate  for  the  tsunami  that  struck.  The  reactors  were  immediately  shut  down,  but  the  tsunami  demolished  the  reactor’s  backup  power  system,  causing  the  cooling  system  to  malfunction  (Ohta  2012).  Despite  efforts  to  inject  water  into  the  overheated  reactor  cores  in  an  attempt  to  cool  the  system  manually,  hydrogen  explosions  occurred  in  three  of  the  reactors,  releasing  a  multitude  of  radionuclides  into  the  atmosphere  (Saito  et  al.  2014).  The  consequences  of  the  FDNPP  incident  raised  concerns  regarding  the  well-­‐being  of  the  environment  due  to  impacts  from  radionuclides,  as  well  as  questions  of  what  direction  Japan’s  energy  policy  would  head  in  after  such  a  severe  nuclear  power  related  incident.        

Of  the  radionuclides  released,  131I,  133Xe,  134Cs,  and  137Cs  were  detected,  with  half-­‐lives  of  5.24  days,  8.02  days,  2.07  years,  and  30.17  years,  respectively  (Sohtome  et  al.  2014;  Povinec  et  al.  2013;  Ohta  et  al.  2012).  133Xe  had  the  highest  initial  activity,  estimated  by  Povinec  (2013)  to  be  between  13,000  to  20,000  PBq,  but  disappeared  quickly  due  to  its  relatively  short  half-­‐life.  Additionally,  131I  and  134Cs  had  the  biggest  effect  on  the  external  effective  dose  immediately  following  the  accident,  but  when  these  concentrations  started  to  diminish,  137Cs  became  the  most  prominently  detected  radionuclide.  137Cs  has  shown  to  be  a  significant  concern  due  to  its  long  half-­‐life,  which  is  substantially  longer  than  that  of  any  radionuclide  emitted  by  the  FDNPP  and  causes  chronic,  low-­‐level  exposure  to  radiation  (Taira  et  al.  2012).       Radionuclides  entered  the  earth’s  system  via  both  dry  and  wet  deposition  from  the  atmosphere  and  also  directly  via  waterways  from  the  damaged  reactors  (Yasunari  et  al.  2011).  FDNPP’s  reactors  were  cooled  with  seawater,  and  due  to  the  damage  of  the  accident,  large  volumes  of  contaminated  water  was  leaked  into  the  ocean  (Sohtome  et  al.  2014).  TEPCO  estimated  that  the  520-­‐ton  flow  of  water  from  the  reactor  to  the  open  ocean  contained  2.8  PBq  131I,  .940  PBq  134Cs  and  .940  PBq  of  137Cs    in  the  period  between  1  –  6  April,  2011  (Hamada  and  Ogino  2012).  It  is  difficult  to  estimate  the  concentration  of  radionuclides  in  the  ocean,  as  they  dilute  upon  hitting  the  water.    

Radiocesium  from  FDNPP  was  mostly  deposited  into  the  North  Pacific  Ocean,  where  it  was  then  moved  eastward  by  surface  currents  and  then  southward  through  the  Kuroshio  Extension  Current  (Kumamoto  2015).  There  is  a  significant  concern  in  how  the  presence  of  radionuclides  in  the  oceans  will  effect  the  safety  of  seafood.  The  Ayu  Plecoglossus  is  a  herbivorous  fish  that  is  a  significant  food  source  for  both  humans  and  bird  species,  and  is  thus  a  good  indicator  of  how  these  radionuclides,  particularly  137Cs,  will  travel  through  the  food  chain.  Ayu  graze  on  algae  on  the  

Page 2: The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

ENVU6EH     2332688    

bottom  of  riverbeds,  where  particles  of  radiocesium  had  gathered  after  the  Fukushima  accident.  While  concentrations  of  radiocesium  in  the  muscles  and  internal  organs  of  Ayu  have  decreased  since  the  accident  in  2011,  indicating  a  decrease  in  the  risk  of  radiocesium  moving  up  the  food  chain,  the  sediment  at  the  bottom  of  rivers  still  act  as  a  considerable  source  of  radionuclide  exposure.  Radiocesium  is  highly  insoluble  and  its  granular  nature  interacts  strongly  with  clay  minerals,  causing  it  to  physically  attach  to  sediment,  making  removal  extremely  difficult  (Niimura  et  al.  2015;  Tsuboi  et  al.  2015).     It  is  estimated  that  the  22%  of  137Cs  emitted  from  the  accident  deposited  over  Japanese  land  is  likely  to  stay  there;  radiocesium  is  strongly  adsorbed  by  micaceous  clay  minerals,  which  tightly  hold  the  radiocesium  within  the  soil,  causing  it  to  stay  there  for  many  years  (Kumamoto  et  al.  2015;  Yasunari  et  al.  2011).  Radiocesium  has  high  biological  availability  and  the  primary  pathway  for  exposure  to  cesium  is  through  ingestion.    Despite  its  tight  adsorption  to  clay  minerals,  there  is  some  transfer  of  radiocesium  to  edible  parts  of  crops  via  plant  root  uptake  (Takeda  et  al.  2014).  However,  this  transfer  has  been  shown  to  decrease  rapidly  in  a  short  period  of  time.  Fujimura  et  al.  

(2015)  studied  the  transfer  factor  (a  measurement  estimating  the  concentration  of  radionuclides  in  plants)  of  137Cs  in  rice,  and  found  

that  it  decreased  67%  in  one  year,  and  it  decreased  exponentially  to  0  in  just  3  to  4  years,  suggesting  that  clay  minerals  prevented  the  uptake  of  the  radiocesium.    

Figure  1.  Distribution  of  air  dose  rates  taken  by  car-­‐borne  surveys  from  June  4  –  13,  2011  (Andoh  et  al.  2015)  

Figure  2.  Distribution  of  air  dose  rates  taken  by  car-­‐borne  surveys  from  November  5  –  December  10,  2012  (Andoh  et  al.  2015)  

Page 3: The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

ENVU6EH     2332688    

  Due  to  the  adsorption  of    137Cs  by  micaceous  clay  minerals,  it  has  a  very  low  chance  of  seeping  from  the  soil  into  the  groundwater.  Studies  done  after  the  Chernobyl  nuclear  power  plant  accident  (CNPP)  and  from  atmospheric  weapons  tests  in  the  50s  and  60s  have  shown  that  the  downward  movement  of  137Cs  decreases  significantly  within  a  matter  of  years  due  to  its  fixation  to  soil  particles  (Takahashi  et  al.  2015).  A  majority  of  the  radiocesium  becomes  trapped  within  the  top  1  cm  of  soil  and  will  not  travel  much  further  downwards  (Yasunari  et  al.  2011).  Due  to  this  

limited  movement,  the  137Cs  is  likely  to  only  move  18  cm  within  300  years,  which  constitutes  10  half-­‐lives.  This  is  comparatively  less  movement  than  was  seen  after  the  dropping  of  the  atomic  bomb  at  Nagasaki,  where  137Cs  moved  downward  30  cm  within  40  years  (Ohta  2012).       Car-­‐borne  surveys  enabled  the  compilation  of  very  precise  data  relating  to  the  airborne  spread  of  radionucldies  after  the  accident  and  the  air  dose  rate.  Figures  1  and  2  show  how  the  areas  of  high  dose  rates,  with  Figure  1  showing  movement  from  June  4  -­‐13,  2011  and  Figure  2  illustrating  November  5  –  December  10,  2012.  The  difference  in  these  illustrations  highlights  the  dissipation  of  radionuclides  out  away  from  Fukushima  and  the  decrease  in  severity  of  dose  rates  over  time  (Andoh  et  al.  2015).    

When  compared  to  a  map  showing  the  deposition  of  137Cs  on  June  14,  2011  (Figure  3),  it  is  clear  to  see  that  there  is  marked  overlap  between  areas  of  high  dose  rate  and  high  concentrations  of  137Cs  (measured  in  kBq/m2).  This  follows  with  conclusions  made  by  Saito  et  al.  (2015),  whom  stated  that  radiocesium  had  substantially  higher  radiation  doses  than  the  other  radionuclides  emitted  from  FDNPP,  and  was  found  to  create  an  external  effective  dose  rate  greater  than  the  public  dose  limit  of  1  mSv  y-­‐1,  (Taira  et  al.  2012).    

The  Chernobyl  Nuclear  Power  Plant  (CNPP)  accident  of  1986  and  previous  radionuclide  emissions  from  atomic  weapons  testing  in  the  50s  and  60s  provide  critical  information  on  the  behavior  and  movements  of  radiocesium  through  time.  Povinec  et  al.  (2013)  created  a  model  using  137Cs  patterns  from  the  CNPP  accident  and  nuclear  weapons  testing  to  predict  what  path  FDNPP  radiocesium  would  take.  This  model  concluded  that  137Cs  activity  would  not  exceed  20  Bq/m3,  a  level  of  activity  similar  to  the  observed  activity  from  atmospheric  nuclear  weapons  tests.  This  information  enabled  the  conclusion  that  the  global  population  does  not  face  a  risk  of  radiation  from  consumption  of  seafood  from  the  Fukushima  region.    

Based  on  conclusions  from  the  literature  on  the  environmental  impacts  of  the  FDNPP  accident,  it  can  be  determined  that  the  environmental  risks  posed  by  

Figure  3  Deposition  density  of  137Cs  on  June  14,  2011  

Page 4: The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

ENVU6EH     2332688    

radionuclides  are  substantial,  but  not  astronomical.  While  there  is  still  a  significant  concern  over  the  long-­‐term  presence  of  137Cs,  there  are  recorded  decreases  in  air  dose  rates,  concentrations  of  radionuclides  in  marine  biota,  and  in  edible  portions  of  crops,  and  there  is  evidence  showing  that  groundwater  is  highly  unlikely  to  become  contaminated.    

Additionally,  information  on  radionuclide  concentration  and  activity  from  the  CDNPP  accident  and  atmospheric  atomic  weapons  testing  enables  the  comparison  of  the  detriment  of  the  FDNPP  accident.  When  put  into  perspective  with  the  CDNPP  accident  and  weapons  testing,  the  impact  of  the  FDNPP  accident  seems  less  severe;  the  Nuclear  and  Industrial  Safety  Agency  (NISA)  estimated  that  the  total  emitted  radiation  of  the  CNPP  accident  measured  to  be  about  5,200  PBq  (Hamada  and  Ogino  2012),  while  radiation  from  atmospheric  nuclear  weapons  testing  was  measured  at  about  2,000  PBq  (Povinec  et  al.  2013).  Recently,  TEPCO  released  a  statement  stating  that  more  radionuclides  were  released  from  the  accident  than  previously  imagined,  reporting  radiation  levels  of  just  over  1,000  PBq  (TEPCO  2012).    

Since  the  accident,  all  nuclear  reactors  were  decommissioned  and  Japanese  citizens  have  firmly  opposed  resuming  nuclear  operations.  As  the  world’s  fifth-­‐largest  energy  consumer  (Vivoda  2012),  it  stands  in  a  precarious  position  as  an  importer  of  95%  of  total  energy  consumption  (Hong  et  al.  2013).  Previously,  30%  of  the  country’s  electricity  was  generated  from  nuclear  power  (Hayashi  and  Hughes  2013),  and  prices  in  electricity  experienced  an  incredulous  increase  in  the  absence  of  nuclear  power.  The  Japanese  government  is  now  left  with  the  daunting  task  of  creating  an  energy  scheme  that  is  affordable,  substantial,  and  sustainable.    

In  June  of  2010,  the  Japanese  government  devised  the  Basic  Energy  Plan,  which  devised  a  set  of  energy  and  emissions  goals,  including  a  goal  to  increase  its  use  of  nuclear  energy  to  50%,  while  receiving  70%  of  its  electricity  through  zero-­‐emission  sources  by  2030,  which  would  cut  its  emissions  by  25%  (Hayashi  and  Hughes  2013).  These  goals  became  unrealistic  with  the  decommissioning  of  the  54  nuclear  power  plants.  While  nuclear  power  constituted  only  30%  of  the  nation’s  power,  28%  was  from  liquid  natural  gas  (LNG),  25%  from  coal,  and  13%  from  petroleum  (Meltzer  2011).  In  a  scenario  whereby  Japan  completely  abandons  nuclear,  one  or  more  of  these  sources  would  need  to  be  greatly  increased  to  meet  the  energy  deficit,  placing  economic  pressures  on  the  country  and  backpedaling  on  environmental  goals.  

In  the  wake  of  the  FDNPP  accident  in  2011,  the  former  prime  minister,  Naoto  Kan  declared  that  Japan’s  energy  policy  would  receive  a  complete  overhaul.  He  proposed  a  new  energy  scheme  that  would  promote  solar  and  renewable  energies,  having  them  generate  20%  of  the  nation’s  power  by  2020  (Vivoda  2012).  Zero-­‐carbon  sources  such  as  photovoltaics  or  wind  turbines  are  highly  appealing,  but  are  severely  costly;  in  Japan,  the  price  of  electricity  from  photovoltaic  panels  is  twice  as  high  for  homeowners  and  five  times  as  high  for  businesses,  diminishing  the  practicality  of  the  source.  While  more  economically  feasible,  wind  turbines  face  a  tipping  risk  in  an  area  that  experiences  a  multitude  of  hurricanes  (Meltzer  2011).    

Recently,  in  the  absence  of  nuclear  power  generation,  Japan  has  been  forced  to  increase  reliance  on  LNG  and  coal,  which  greatly  interferes  with  its  climate  

Page 5: The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

ENVU6EH     2332688    

change  goals.  These  imported  fuel  sources  are  costly  and  have  caused  the  price  of  electricity  in  Japan  to  greatly  increase  (The  Economist  2014).    

Japan  has  several  options  for  proceeding  with  its  future  energy  plan:  it  can  play  it  safe  and  choose  to  turn  its  back  on  nuclear  completely,  it  can  reopen  some  of  its  nuclear  reactors  to  help  lessen  the  blow  of  its  energy  struggles,  or  it  can  continue  down  the  path  it  forged  with  nuclear  power.  

If  Japan  chooses  to  abandon  nuclear  power  all  together,  it  will  have  to  increase  its  dependence  on  other  energy  sources  to  make  up  for  the  30%  of  electricity  previously  generated  by  nuclear  energy.  Hong  et  al.  (2013)  estimates  that  if  Japan  moves  away  from  nuclear  power,  it  will  have  to  increase  its  electricity  production  by  renewable  sources  to  35%  (with  natural  gas  as  a  backup  source),  and  meet  the  rest  of  the  country’s  energy  demand  with  fossil  fuels.    

Problems  with  this  projection  immediately  become  evident;  photovoltaics  and  wind  turbines  are  costly  and  impractical  for  Japan  (Meltzer  2011),  the  levelized  cost  of  electricity  will  skyrocket  to  £16/MWh  (Hayashi  and  Hughes  2013),  new  infrastructure  supporting  these  sources  will  need  to  be  built,  and  it  will  greatly  increase  greenhouse  gas  emissions.  The  Intergovernmental  Panel  on  Climate  Change  (IPCC)  set  forward  an  emissions  goal  of  50  -­‐150  kg  CO2  MWh-­‐1,  and  the  hypothetical  nuclear-­‐free  energy  scheme  would  likely  emit  262  kg  CO2  MWh-­‐1  due  to  the  increased  reliance  on  fossil  fuels  (Hayashi  and  Hughes  2013;  Hong  et  al.  2013).  

These  issues  can  largely  be  avoided  if  Japan  chooses  to  reopen  its  nuclear  reactors.  Hong  et  al.  (2013)  estimates  that  if  Japan  were  to  increase  its  nuclear  power  generation  to  35%,  greenhouse  gas  emissions  would  be  40%  lower  than  in  the  nuclear-­‐free  scenario  (only  262  kg  CO2  MWh-­‐1).  According  to  a  study  by  the  IEA,  Japan  will  need  to  double  its  generation  of  nuclear  power  by  2050  in  order  for  the  world  to  achieve  the  “international  2  degree  C  warming  goal”  (IEA  2015).  Doing  so  would  decrease  Japan’s  dependence  on  imported  energy,  while  decreasing  the  cost  of  electricity.      

The  literature  suggests  that  a  move  toward  nuclear  would  be  strongly  in  Japan’s  favor.  The  rolling  blackouts,  extremely  high  cost  of  electricity,  and  increased  fossil  fuel  emissions  that  are  occurring  as  a  result  of  a  lack  of  nuclear  power  is  in  no  way  in  the  best  interest  of  Japanese  citizens  (Hiranuma  2014;  Hayashi  and  Hughes  2013).  Additionally,  there  are  few  energy  sources  that  are  more  suitable  to  Japan’s  needs  than  nuclear  power,  and  relying  less  on  imported  sources  such  as  LNG  and  coal  would  increase  Japan’s  energy  independence  and  ensure  that  fuel  prices  remain  low  (Economist,  2014a).  

The  Japanese  government  seems  to  be  in  agreement  with  a  shift  back  towards  nuclear  power.  In  April  2013,  Prime  Minister  Shinzo  Abe  adopted  the  Policy  on  Electricity  System  Reform,  which  outlined  goals  of  a  stable  supply  of  electricity  with  low  rates.  Almost  a  year  later  in  April  of  2014,  the  Strategic  Energy  Plan  was  updated  to  include  the  “3E  +  S”  strategy,  which  aims  to  enhance  energy  security  while  striving  for  economic  efficiency  and  environmental  sustainability,  all  while  emphasizing  the  importance  of  safety  (Hiranuma  2014).    Since  the  accident,  the  Nuclear  Regulation  Authority  (NRA)  of  Japan  has  been  creating  new  standards  on  nuclear  reactors  in  hopes  of  restoring  public  faith  in  nuclear.  

Page 6: The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

ENVU6EH     2332688    

Despite  the  government’s  goals  to  increase  safety  move  towards  a  secure  energy  future,  there  is  still  strong  public  opposition  of  nuclear  power.  Regardless,  the  Japanese  government  is  pursuing  the  reactivation  of  nuclear  reactors.  A  city  in  the  Kagoshima  prefecture  voted  to  reopen  two  nuclear  reactors  in  the  local  Sendai  power  plant,  despite  disapproval  from  the  local  citizenry,  and  is  expected  to  resume  operations  by  the  end  of  2015  (The  Economist  2014a).  Prime  Minister  Shinzo  Abe  recognizes  that  total  reliance  on  nuclear  power  is  still  risky,  and  although  he  has  come  out  as  a  supporter  of  reopening  nuclear  reactors,  he  has  done  so  while  also  stating  that  he  would  like  to  reduce  reliance  on  the  energy  source  as  much  as  possible  (Tsukimori  and  Saito  2015).  The  NRA  approved  the  reactors  in  Sendai  despite  its  location  in  an  active  volcano  area.  Although  the  NRA  has  the  self-­‐proclaimed  most-­‐strict  safety  regulations  in  the  world,  citizens  are  skeptical  of  the  agency;  it  seems  unclear  as  to  whether  the  agency  is  simply  driving  the  Abe  administration’s  ambitious  agenda,  or  if  it  is  truly  proceeding  with  the  public’s  best  interests  in  mind  (The  Economist  2014b)    

Japan  does  not  have  many  options  when  it  comes  to  the  fate  of  its  idled  reactors.  The  factors  of  electricity  cost,  emissions  goals,  and  energy  availability  are  all  pushing  the  Japanese  government  back  towards  nuclear  power.  If  it  chooses  to  disregard  nuclear  power  completely,  Japan  will  be  faced  with  an  unreasonable  cost  of  electricity  while  spewing  an  irresponsible  amount  of  greenhouse  gasses  from  costly  imported  fossil  fuel  sources  into  the  atmosphere.  It  seems,  then,  that  the  Japanese  government  is  now  stuck  in  a  situation  where  it  can  gamble  the  livelihood  of  its  citizens  with  nuclear  operations,  or  dig  itself  into  an  environmental  and  economic  sinkhole.  

Public  opposition  to  resuming  nuclear  operations  is  reasonable;  the  risks  associated  with  nuclear  power  are  severe,  long-­‐lasting,  and  dangerous.  In  an  area  so  susceptible  to  natural  disasters,  it  is  not  inconceivable  that  another  string  of  natural  disasters  could  cause  more  complications  with  nuclear  reactors.  However,  a  comprehensive  look  at  the  evidence  shows  that,  while  the  FDNPP  accident  was  serious  and  had  a  series  of  impacts  on  the  integrity  of  the  environment,  scientific  studies  have  shown  that  these  impacts  are  diminishing  and  are  less  severe  than  previously  realized.  The  CNPP  accident  and  atmospheric  weapons  testing  both  had  more  negative  consequences  on  humans  and  the  environment  than  the  FDNPP  accident.  In  order  to  make  meaningful  steps  towards  energy  security,  the  Japanese  government  must  take  these  environmental  impacts  into  account  when  considering  its  stance  on  nuclear  power.      Word  Count:  2,743                  

Page 7: The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

ENVU6EH     2332688    

Reference  List    

Andoh,  M.,  Nakahara,  Y.,  Tsuda,  S.,  Yoshida,  T.,  Matsuda,  N.,  Takahashi,  F.,  Mikami,  S.,  Kinouchi,  N.,  Sato,  T.,  Tanigaki,  M.,  Takamiya,  K.,  Sato,  N.,  Okumura,  R.,  Uchihori,  Y.  and  Saito,  K.  (2015)  Measurement  of  air  dose  rates  over  a  wide  area  around  the  Fukushima  Dai-­‐ichi  Nuclear  Power  Plant  through  a  series  of  car-­‐borne  surveys.  Journal  of  Environmental  Radioactivity,  139  (0),  pp.  266-­‐280.    Economist.  (2014a)    The  country  lurches  towards  a  nuclear  comeback.  The  Economist    Economist.  (2014b) Restarting  nuclear  plants  is  unpopular  but  crucial  for  Shinzo  Abe.  The  Economist

Fujimura,  S.,  Muramatsu,  Y.,  Ohno,  T.,  Saitou,  M.,  Suzuki,  Y.,  Kobayashi,  T.,  Yoshioka,  K.  and  Ueda,  Y.  (2015)  Accumulation  of  137Cs  by  rice  grown  in  four  types  of  soil  contaminated  by  the  Fukushima  Dai-­‐ichi  Nuclear  Power  Plant  accident  in  2011  and  2012.  Journal  of  Environmental  Radioactivity,  140  (0),  pp.  59-­‐64.  

Hamada,  N.  and  Ogino,  H.  (2012)  Food  safety  regulations:  what  we  learned  from  the  Fukushima  nuclear  accident.  Journal  of  Environmental  Radioactivity,  111  (0),  pp.  83-­‐99.  

Hayashi,  M.  and  Hughes,  L.  (2013)  The  policy  responses  to  the  Fukushima  nuclear  accident  and  their  effect  on  Japanese  energy  security.  Energy  Policy,  59  (0),  pp.  86-­‐101.    Hiranuma,  H.  (2014)  Japan’s  Energy  Policy  in  a  Post-­‐3/11  World:Juggling  Safety,  Sustainability  and  Economics.  The  Tokyo  Foundation,  .    Hong,  S.,  Bradshaw,  C.J.A.  and  Brook,  B.W.  (2013)  Evaluating  options  for  the  future  energy  mix  of  Japan  after  the  Fukushima  nuclear  crisis.  Energy  Policy,  56  (0),  pp.  418-­‐424.    International  Energy  Association  (IEA).  (2015)  Technology  Roadmap:  Nuclear  Energy.  

Kumamoto,  Y.,  Aoyama,  M.,  Hamajima,  Y.,  Murata,  A.  and  Kawano,  T.  (2015)  Impact  of  Fukushima-­‐derived  radiocesium  in  the  western  North  Pacific  Ocean  about  ten  months  after  the  Fukushima  Dai-­‐ichi  nuclear  power  plant  accident.Journal  of  Environmental  Radioactivity,  140  (0),  pp.  114-­‐122.  

Meltzer,  J.  (2011)  After  Fukushima:  What’s  Next  for  Japan’s  Energy  and  Climate  Change  Policy?  Global  Economy  and  Development  at  Brookings,    

Page 8: The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

ENVU6EH     2332688    

Niimura,  N.,  Kikuchi,  K.,  Tuyen,  N.D.,  Komatsuzaki,  M.  and  Motohashi,  Y.  (2015)  Physical  properties,  structure,  and  shape  of  radioactive  Cs  from  the  Fukushima  Daiichi  Nuclear  Power  Plant  accident  derived  from  soil,  bamboo  and  shiitake  mushroom  measurements.  Journal  of  Environmental  Radioactivity,  139  (0),  pp.  234-­‐239.  

Ohta,  T.,  Mahara,  Y.,  Kubota,  T.,  Fukutani,  S.,  Fujiwara,  K.,  Takamiya,  K.,  Yoshinaga,  H.,  Mizuochi,  H.  and  Igarashi,  T.  (2012)  Prediction  of  groundwater  contamination  with  137Cs  and  131I  from  the  Fukushima  nuclear  accident  in  the  Kanto  district.  Journal  of  Environmental  Radioactivity,  111  (0),  pp.  38-­‐41.  

Povinec,  P.P.,  Gera,  M.,  Holý,  K.,  Hirose,  K.,  Lujaniené,  G.,  Nakano,  M.,  Plastino,  W.,  Sýkora,  I.,  Bartok,  J.  and  Gažák,  M.  (2013)  Dispersion  of  Fukushima  radionuclides  in  the  global  atmosphere  and  the  ocean.  Applied  Radiation  and  Isotopes,  81  (0),  pp.  383-­‐392.  

Saito,  K.,  Tanihata,  I.,  Fujiwara,  M.,  Saito,  T.,  Shimoura,  S.,  Otsuka,  T.,  Onda,  Y.,  Hoshi,  M.,  Ikeuchi,  Y.,  Takahashi,  F.,  Kinouchi,  N.,  Saegusa,  J.,  Seki,  A.,  Takemiya,  H.  and  Shibata,  T.  (2015)  Detailed  deposition  density  maps  constructed  by  large-­‐scale  soil  sampling  for  gamma-­‐ray  emitting  radioactive  nuclides  from  the  Fukushima  Dai-­‐ichi  Nuclear  Power  Plant  accident.  Journal  of  Environmental  Radioactivity,  139  (0),  pp.  308-­‐319.  

Saito,  T.,  Makino,  H.  and  Tanaka,  S.  (2014)  Geochemical  and  grain-­‐size  distribution  of  radioactive  and  stable  cesium  in  Fukushima  soils:  implications  for  their  long-­‐term  behavior.  Journal  of  Environmental  Radioactivity,  138  (0),  pp.  11-­‐18.  

Sohtome,  T.,  Wada,  T.,  Mizuno,  T.,  Nemoto,  Y.,  Igarashi,  S.,  Nishimune,  A.,  Aono,  T.,  Ito,  Y.,  Kanda,  J.  and  Ishimaru,  T.  (2014)  Radiological  impact  of  TEPCO's  Fukushima  Dai-­‐ichi  Nuclear  Power  Plant  accident  on  invertebrates  in  the  coastal  benthic  food  web.  Journal  of  Environmental  Radioactivity,  138  (0),  pp.  106-­‐115.  

Taira,  Y.,  Hayashida,  N.,  Yamashita,  S.,  Kudo,  T.,  Matsuda,  N.,  Takahashi,  J.,  Gutevitc,  A.,  Kazlovsky,  A.  and  Takamura,  N.  (2012)  Environmental  contamination  and  external  radiation  dose  rates  from  radionuclides  released  from  the  Fukushima  nuclear  power  plant.  Radiation  Protection  Dosimetry,  151  (3),  pp.  537-­‐545.  

Takahashi,  J.,  Tamura,  K.,  Suda,  T.,  Matsumura,  R.  and  Onda,  Y.  (2015)  Vertical  distribution  and  temporal  changes  of  137Cs  in  soil  profiles  under  various  land  uses  after  the  Fukushima  Dai-­‐ichi  Nuclear  Power  Plant  accident.  Journal  of  Environmental  Radioactivity,  139  (0),  pp.  351-­‐361.  

Takeda,  A.,  Tsukada,  H.,  Yamaguchi,  N.,  Takeuchi,  M.,  Sato,  M.,  Nakao,  A.  and  Hisamatsu,  S.  (2014)  Relationship  between  the  radiocesium  interception  potential  and  the  transfer  of  radiocesium  from  soil  to  soybean  cultivated  in  2011  in  

Page 9: The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

ENVU6EH     2332688    

Fukushima  Prefecture,  Japan.  Journal  of  Environmental  Radioactivity,  137  (0),  pp.  119-­‐124.  

TEPCO.  (2012)  The  Estimated  Amount  of  Radioactive  Materials  Released  into  the  Air  and  the  Ocean  Caused  by  Fukushima  Daiichi  Nuclear  Power  Station  Accident  Due  to  the  Tohoku-­‐Chihou-­‐Taiheiyou-­‐Oki  Earthquake  (As  of  May  2012).  

Tsuboi,  J.,  Abe,  S.,  Fujimoto,  K.,  Kaeriyama,  H.,  Ambe,  D.,  Matsuda,  K.,  Enomoto,  M.,  Tomiya,  A.,  Morita,  T.,  Ono,  T.,  Yamamoto,  S.  and  Iguchi,  K.  (2015)  Exposure  of  a  herbivorous  fish  to  134Cs  and  137Cs  from  the  riverbed  following  the  Fukushima  disaster.  Journal  of  Environmental  Radioactivity,  141  (0),  pp.  32-­‐37.  

Tsukimori,  O.  and  Saito,  M.  (2015)  Japan  looks  at  2030  energy  targets  in  shadow  of  Fukushima  cleanup.  Reuters.    Vivoda,  V.  (2012)  Japan’s  energy  security  predicament  post-­‐Fukushima.  Energy  Policy,  46  (0),  pp.  135-­‐143.  

Yasunari,  T.J.,  Stohl,  A.,  Hayano,  R.S.,  Burkhart,  J.F.,  Eckhardt,  S.  and  Yasunari,  T.  (2011)  Cesium-­‐137  deposition  and  contamination  of  Japanese  soils  due  to  the  Fukushima  nuclear  accident.  Proceedings  of  the  National  Academy  of  Sciences  in  the  United  States  of  America,  108  (49),  pp.  19530-­‐19534.