the development team - compadre · successive stern-gerlach spin experiments (schroeder &...

1
PARADIGMS IN PHYSICS - OREGON STATE UNIVERSITY LABORATORIES IN THE PARADIGMS IN PHYSICS CURRICULUM The Paradigms in Physics project at Oregon State University has reformed the entire upper-level physics curriculum. This has involved both a rearrangement of content to better reflect the way professional physicists think about the field and also the use of a number of reform pedagogies that place responsibility for learning more firmly in the hands of the students. We have taken advantage of years of results from physics education research that indicate that students learn better when they are actively engaged in the learning process. We integrate laboratory experiments into the curriculum in addition to our use of white board questions, kinesthetic activities, small group problem solving, and computer activities. Our revised schedule has 2-hour class sessions twice a week that allow us to do laboratory experiments in the same time slot as the lecture; there is no separate large block of lab time, which is often the case in traditional physics courses. The labs are supervised in the same way as the lectures—by the instructor with TA support. The labs are broken up into smaller components than is usual, and class time is used for discussion of results and modeling. We do not have an advanced lab course, but we do have labs in our optics, electronics, and computer interfacing classes, and we require all majors to do a senior thesis. William M. Hetherington Henri J. F. Jansen Kenneth S. Krane Albert W. Stetz William W. Warren, Jr. Yun-Shik Lee Ethan Minot Dedra Demaree Elizabeth Gire (postdoc) Mary Bridget Kustusch (postdoc) Website http://www.physics. oregonstate . edu/portfolioswiki Textbooks Quantum Mechanics: A Paradigms Approach, David H. McIntyre (Addison Wesley, 2012). The Geometry of Vector Calculus, Tevian Dray & Corinne A. Manogue (web, 2010). The Geometry of Special Relativity, Tevian Dray (A.K. Peters/CRC Press, 2012). Thermal Physics: Concepts and Practice, Allen Wasserman (Cambridge Press, 2011). Publications 1. D. H. McIntyre, Using Great Circles to Understand Motion on a Rotating Sphere, Am. J. Phys. 68, 1097-1105 (2000). 2. C. A. Manogue, P. J. Siemens, J. Tate, and K. Browne (Department of Physics) & M. L. Niess and A. J. Wolfer (Department of Science and Mathematics Education), Paradigms in Physics: A New Upper-Division Curriculum, Am. J. Phys. 69, 978-990 (2001). 3. C. A. Manogue and K. S. Krane, The Oregon State University Paradigms Project: Re- envisioning the Upper Level, Phys. Today 56, 53-58 (2003). 4. C. A. Manogue, K. Browne, T. Dray, and B. Edwards, Why is Ampere's law so hard? A look at middle-division physics, Am. J. Phys. 74, 344-350 (2006). 5. D. H. McIntyre, J. Tate, and C. A. Manogue, Integrating Computational Activities into the Upper-Level Paradigms in Physics Curriculum at Oregon State University, Am. J. Phys. 76, 340-346 (2008). EXAMPLES National Science Foundation •DUE-9653250, 0231194, 0618877 •DUE-0088901, 0231032 Mount Holyoke College •Hutchcroft Fund Grinnell College •Noyce Visiting Professorship ACKNOWLEDGEMENTS Oregon State University •Department of Physics •College of Science •Academic Affairs RESOURCES INTEGRATED LABORATORIES Stern-Gerlach Simulation Our spins-first approach to quantum mechanics is supported by a computer simulation of successive Stern-Gerlach spin experiments (Schroeder & Moore, Am. J. Phys. 61, 798-805, 1993). Students take "data" and then infer the state vector, as in real experiments. Traditional curricula approach these problems backwards: predicting the results of experiment from a given wave function. SPINS Labs (Java software available on web site) • Spins Lab 1 - Spin-1/2 Stern-Gerlach measurements • Spins Lab 2 - Determine unknown states, spin interferometer, "which path" experiment • Spins Lab 3 - Spin-1 Stern-Gerlach measurements • Spins Lab 4 - Spin precession in a uniform magnetic field The Development Team FACULTY: Corinne A. Manogue David H. McIntyre Janet Tate Tevian Dray Emily Van Zee Barbara Edwards David Roundy Allen L. Wasserman Philip J. Siemens PARADIGMS CURRICULUM Paradigms (P) & Capstones (C) The junior year consists of short case studies of paradigmatic physical situations which span two or more traditional subdisciplines of physics. Most have both a classical and quantum base. They are designed explicitly to help students gradually develop problem-solving skills. The senior year consists of more conventional single-quarter lecture classes in each of the traditional subdisciplines of physics. The format is more condensed than in the old, traditional curriculum because the content builds on the examples of the paradigms in the junior year. An overview of our curriculum is shown at right. Sr C Jr P •Thermal Physics •Quantum Mechanics •Optics •Class Mech •E & M •Energy & Entropy •Periodic Systems •Rigid Bodies / Reference Frames •Math Methods(C) •1-D Waves •Spin & Quantum Measurements •Central Forces •Symmetries & Idealizations •Static Vector Fields •Oscillations Course Lab activity Key Physics • Oscillations • Pendulum with large amplitude • Harmonic and anharmonic oscillation • Oscillations • LRC circuit - sinusoidal excitation • Damped, driven harmonic oscillation • Oscillations • LRC circuit - impulse excitation • Fourier analysis, spectral analysis • Waves • Vibrating string • Dispersion relation • Waves • Coaxial cable - impedance mismatch • Wave reflection and transmission at boundary • Spins • Stern-Gerlach (simulation) • Quantum measurements • Energy & Entropy • Melting ice calorimetry • Heat capacity, entropy • Energy & Entropy • Rubber band • Equation of state, Maxwell relations • Rigid bodies • Rotating cages • Principal axes Reflections Integrating labs and lectures seamlessly into a curriculum requires a move away from the "grand project" approach typical of labs that occupy a separate time slot (usually a substantial block of time) from the lecture. Active engagement is obviously built into a physical measurement, but students must also be actively engaged in the assessment of their experiments, and this can be challenging. The following are reflections from a particular instructor's experience with the integrated labs approach: 1. Reporting on the lab experience is important, but students' technical writing skills are not well developed and must be explicitly developed along with physics knowledge 2. A template approach to reporting on labs is not effective 3. Couching the investigations in terms of "modeling" rather than "verification" is much more reflective of what professional physicists do, and more satisfying to students (but most students start with the latter mindset) 4. Explicit attention to non-textual presentation (particularly graphs) is important 5. Gradually increasing the complexity of assignments is useful 6. A "research" component to some later labs is useful Coaxial Cable - Impedance Mismatch Students send a pulse down a long coaxial cable with an adjustable terminating resistor and monitor the excitation and return pulses on an oscilloscope. Student Activities • Measurement of propagation speed • Quantitative measurement of reflected pulse • Reconcile with class work on reflection of ropes from sharp boundaries • Study damping as a quasi-independent project • Find cable parameters Z 1 and R/ Z 1 from fit • Understand modeling – what is “known” and what is “given”, if indeed either Experimental lessons • Correct grounds are important • Disconnect the function generator when you measure R term with a multimeter • The oscilloscope is your friend, with many important buttons (calibration, trigger, etc.) • Good record keeping, good experimental habits like appropriate data spacing Lossy cable: Z 1 = 75 W, R' = 0.154 W/m Not-so-lossy cable: Z 1 = 50 W, R' = 0.042 W/m Rubber Band Experiment This lab demonstrates the negative thermal expansion of rubber, which is the principle prediction of the entropic spring statistical model. Student Activities • Assemble a stretched rubber band inside a pipe sealed at one end • Use hot water and ice to measure the tension of the rubber band as a function of temperature • Repeat measurements for different rubber band lengths to determine the equation of state LRC Circuit - Sinusoidal and Impulse Excitation Students build an LRC series circuit and measure the voltage across the resistor when the circuit is driven with a sinusoidal voltage, and then again with a voltage pulse. Student Activities • Measure amplitude and phase of sinusoidal response • Measure response to short impulse • Relate frequency and temporal responses with Fourier transform

Upload: others

Post on 18-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Development Team - ComPADRE · successive Stern-Gerlach spin experiments (Schroeder & Moore, Am. J. Phys. 61, 798-805, 1993). Students take "data" and then infer the state vector,

PARADIGMS IN PHYSICS - OREGON STATE UNIVERSITYLABORATORIES IN THE PARADIGMS IN PHYSICS CURRICULUM

The Paradigms in Physics project at Oregon State University has reformed the entire upper-level physics curriculum. This has involved both a rearrangement of content tobetter reflect the way professional physicists think about the field and also the use of a number of reform pedagogies that place responsibility for learning more firmly in thehands of the students. We have taken advantage of years of results from physics education research that indicate that students learn better when they are actively engagedin the learning process. We integrate laboratory experiments into the curriculum in addition to our use of white board questions, kinesthetic activities, small group problemsolving, and computer activities. Our revised schedule has 2-hour class sessions twice a week that allow us to do laboratory experiments in the same time slot as thelecture; there is no separate large block of lab time, which is often the case in traditional physics courses. The labs are supervised in the same way as the lectures—by theinstructor with TA support. The labs are broken up into smaller components than is usual, and class time is used for discussion of results and modeling. We do not have anadvanced lab course, but we do have labs in our optics, electronics, and computer interfacing classes, and we require all majors to do a senior thesis.

William M. HetheringtonHenri J. F. JansenKenneth S. KraneAlbert W. StetzWilliam W. Warren, Jr.Yun-Shik LeeEthan MinotDedra DemareeElizabeth Gire (postdoc)Mary Bridget Kustusch (postdoc)

Websitehttp://www.physics.oregonstate.edu/portfolioswiki

TextbooksQuantum Mechanics: A Paradigms Approach, David H. McIntyre (Addison Wesley, 2012).The Geometry of Vector Calculus, Tevian Dray & Corinne A. Manogue (web, 2010).The Geometry of Special Relativity, Tevian Dray (A.K. Peters/CRC Press, 2012).Thermal Physics: Concepts and Practice, Allen Wasserman (Cambridge Press, 2011).

Publications1. D. H. McIntyre, Using Great Circles to Understand Motion on a Rotating Sphere, Am. J.

Phys. 68, 1097-1105 (2000).2. C. A. Manogue, P. J. Siemens, J. Tate, and K. Browne (Department of Physics) & M. L.

Niess and A. J. Wolfer (Department of Science and Mathematics Education), Paradigmsin Physics: A New Upper-Division Curriculum, Am. J. Phys. 69, 978-990 (2001).

3. C. A. Manogue and K. S. Krane, The Oregon State University Paradigms Project: Re-envisioning the Upper Level, Phys. Today 56, 53-58 (2003).

4. C. A. Manogue, K. Browne, T. Dray, and B. Edwards, Why is Ampere's law so hard? Alook at middle-division physics, Am. J. Phys. 74, 344-350 (2006).

5. D. H. McIntyre, J. Tate, and C. A. Manogue, Integrating Computational Activities into theUpper-Level Paradigms in Physics Curriculum at Oregon State University, Am. J. Phys.76, 340-346 (2008).

EXAMPLES

National Science Foundation•DUE-9653250, 0231194, 0618877•DUE-0088901, 0231032

Mount Holyoke College•Hutchcroft Fund

Grinnell College•Noyce Visiting Professorship

ACKNOWLEDGEMENTSOregon State University

•Department of Physics•College of Science•Academic Affairs

RESOURCES

INTEGRATED LABORATORIES

Stern-Gerlach SimulationOur spins-first approach to quantum mechanics is supported by a computer simulation ofsuccessive Stern-Gerlach spin experiments (Schroeder & Moore, Am. J. Phys. 61, 798-805,1993). Students take "data" and then infer the state vector, as in real experiments. Traditionalcurricula approach these problems backwards: predicting the results of experiment from a givenwave function.

SPINS Labs (Java software available on web site)• Spins Lab 1 - Spin-1/2 Stern-Gerlach measurements• Spins Lab 2 - Determine unknown states, spin interferometer, "which path" experiment• Spins Lab 3 - Spin-1 Stern-Gerlach measurements• Spins Lab 4 - Spin precession in a uniform magnetic field

The Development TeamFACULTY:Corinne A. ManogueDavid H. McIntyreJanet TateTevian DrayEmily Van ZeeBarbara EdwardsDavid RoundyAllen L. WassermanPhilip J. Siemens

PARADIGMS CURRICULUMParadigms (P) & Capstones (C)The junior year consists of short case studies of paradigmaticphysical situations which span two or more traditionalsubdisciplines of physics. Most have both a classical andquantum base. They are designed explicitly to help studentsgradually develop problem-solving skills. The senior yearconsists of more conventional single-quarter lecture classes ineach of the traditional subdisciplines of physics. The format ismore condensed than in the old, traditional curriculum becausethe content builds on the examples of the paradigms in the junioryear. An overview of our curriculum is shown at right.

SrC

JrP

•Thermal Physics•QuantumMechanics

•Optics

•Class Mech•E & M

•Energy & Entropy•Periodic Systems•Rigid Bodies /Reference Frames

•Math Methods(C)

•1-D Waves•Spin &QuantumMeasurements

•Central Forces

•Symmetries &Idealizations

•Static VectorFields

•Oscillations

Course Lab activity Key Physics• Oscillations • Pendulum with large amplitude • Harmonic and anharmonic oscillation• Oscillations • LRC circuit - sinusoidal excitation • Damped, driven harmonic oscillation• Oscillations • LRC circuit - impulse excitation • Fourier analysis, spectral analysis• Waves • Vibrating string • Dispersion relation• Waves • Coaxial cable - impedance mismatch • Wave reflection and transmission at boundary• Spins • Stern-Gerlach (simulation) • Quantum measurements• Energy & Entropy • Melting ice calorimetry • Heat capacity, entropy• Energy & Entropy • Rubber band • Equation of state, Maxwell relations• Rigid bodies • Rotating cages • Principal axes

ReflectionsIntegrating labs and lectures seamlessly into a curriculum requires a move away from the"grand project" approach typical of labs that occupy a separate time slot (usually asubstantial block of time) from the lecture. Active engagement is obviously built into aphysical measurement, but students must also be actively engaged in the assessment oftheir experiments, and this can be challenging. The following are reflections from a particularinstructor's experience with the integrated labs approach:

1. Reporting on the lab experience is important, but students' technical writing skillsare not well developed and must be explicitly developed along with physicsknowledge

2. A template approach to reporting on labs is not effective3. Couching the investigations in terms of "modeling" rather than "verification" is

much more reflective of what professional physicists do, and more satisfying tostudents (but most students start with the latter mindset)

4. Explicit attention to non-textual presentation (particularly graphs) is important5. Gradually increasing the complexity of assignments is useful6. A "research" component to some later labs is useful

Coaxial Cable - Impedance MismatchStudents send a pulse down a long coaxial cable with an adjustable terminatingresistor and monitor the excitation and return pulses on an oscilloscope.Student Activities

• Measurement of propagation speed• Quantitative measurement of reflected pulse• Reconcile with class work on reflection of ropes from sharp boundaries• Study damping as a quasi-independent project• Find cable parameters Z1 and R/Z1 from fit• Understand modeling – what is “known” and what is “given”, if indeed either

Experimental lessons• Correct grounds are important• Disconnect the function generator when you measure Rterm with a multimeter• The oscilloscope is your friend, with many important buttons (calibration, trigger, etc.)• Good record keeping, good experimental habits like appropriate data spacing

Lossy cable: Z1 = 75 W, R' = 0.154 W/mNot-so-lossy cable: Z1 = 50 W, R' = 0.042 W/m

Rubber Band ExperimentThis lab demonstrates the negative thermal expansion of rubber, which is the principleprediction of the entropic spring statistical model.

Student Activities• Assemble a stretched rubber band inside a pipe sealed at one end• Use hot water and ice to measure the tension of the rubber band as a function of temperature• Repeat measurements for different rubber band lengths to determine the equation of state

LRC Circuit - Sinusoidal and Impulse ExcitationStudents build an LRC series circuit and measure the voltage across the resistor when thecircuit is driven with a sinusoidal voltage, and then again with a voltage pulse.

Student Activities• Measure amplitude and phase of sinusoidal response• Measure response to short impulse• Relate frequency and temporal responses with Fourier transform