teppei katori, indiana university1 prd74(2006)105009 global 3 parameter lorentz violation model for...

39
Teppei Katori, Indiana University 1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori, V. Alan Kostelecky, and Rex Tayloe Indiana University Pheno'08, Madison, Apr. 28, 08

Upload: salvador-higham

Post on 16-Dec-2015

225 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 1

PRD74(2006)105009

Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE

Teppei Katori, V. Alan Kostelecky, and Rex TayloeIndiana University

Pheno'08, Madison, Apr. 28, 08

Page 2: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 2

PRD74(2006)105009

Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE

Teppei Katori, V. Alan Kostelecky, and Rex TayloeIndiana University

Pheno'08, Madison, Apr. 28, 08

Page 3: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 3

PRD74(2006)105009

Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE

1. Neutrino oscillation - A natural interferometer2. Tandem model3. Tandem model oscillation signals 3.1 Solar neutrinos 3.2 Atmospheric neutrinos 3.3 Reactor neutrinos 3.4 LSND neutrinos and prediction for MiniBooNE4. Global fit with MiniBooNE data5. Conclusion

Page 4: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 4

1. Neutrino oscillation - A natural interferometer

2. Tandem model

3. Tandem model oscillation signals

3.1 Solar neutrino

3.2 Atmospheric neutrino

3.3 Reactor neutrino

3.4 LSND neutrinos and prediction for MiniBooNE

4. Global fit with MiniBooNE data

5. Conclusion

Page 5: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 509/19/2007

nm

nm

1. Neutrino oscillation - A natural interferometer

Neutrino oscillation is an interference experiment (cf. double slit experiment)

- If 2 neutrino Hamiltonian eigenstates, n1 and n2, have different phase rotation, they

cause quantum interference.

Page 6: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 609/19/2007

nm n1

n2

U 1m Ue1*

n2n1nm

1. Neutrino oscillation - A natural interferometer

Neutrino oscillation is an interference experiment (cf. double slit experiment)

- If 2 neutrino Hamiltonian eigenstates, n1 and n2, have different phase rotation, they

cause quantum interference.

ne

neU 2m Ue2

*

Page 7: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 709/19/2007

nm n1

n2

U 1m Ue1*

nm

1. Neutrino oscillation - A natural interferometer

Neutrino oscillation is an interference experiment (cf. double slit experiment)

- If 2 neutrino Hamiltonian eigenstates, n1 and n2, have different phase rotation, they

cause quantum interference. - If n1 and n2, have different coupling with space-time properties (i.e. Lorentz violating

field), interference fringe (oscillation pattern) depend on their couplings - The measured scale of neutrino eigenvalue difference is comparable the target scale of Lorentz violation (<10-19GeV).

n1 n2 ne

ne

U 2m Ue2*

Page 8: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 8

1. Neutrino oscillation - A natural interferometer

2. Tandem model

3. Tandem model oscillation signals

3.1 Solar neutrinos

3.2 Atmospheric neutrinos

3.3 Reactor neutrinos

3.4 LSND neutrinos and prediction for MiniBooNE

4. Global fit with MiniBooNE data

5. Conclusion

Page 9: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 9

Standard Hamiltonian (7 free parameters)

Em

E

m

Em

E

m

E

m

E

mEm

E

m

Em

h

e

e

eeee

abeff

222

222

222

)(

222

222

222

2. Standard massive neutrino model

Page 10: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 10

Em

E

m

Em

E

m

E

m

E

mEm

E

m

Em

h

e

e

eeee

abeff

222

222

222

)(

222

222

222

45

34

100.8

105.2

23

12

252

232

eVm

eVm

sol

atm

2 mass differences and 2 mixing angles are sufficient to describe al known phenomena of neutrino oscillation.

2. Standard massive neutrino model

Standard Hamiltonian (4 free parameters)

Page 11: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 11

Lorentz and CPT violating Hamiltonian (18 free parameters for real rotation invariant model)

Em

aEcE

maEc

Em

aEc

E

maEc

E

maEc

E

maEc

Em

aEcE

maEc

Em

aEc

h

eee

e

ee

eee

e

eeee

eeee

abeff

222

222

222

)(

222

222

222

Standard Model Extension (SME) is the minimum extension of Standard Model to include Particle Lorentz and CPT violation. It has all possible type of Lorentz and CPT violating tensors in the Lagrangian.

Kostelecky and Mewes, PRD,69(2004)016005;70(2004)076002

2. Standard Model Extension (SME) for neutrino oscillations

Page 12: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 12

Lorentz and CPT violating Hamiltonian (18 free parameters for real rotation invariant model)

2. Standard Model Extension (SME) for neutrino oscillations

Em

aEcE

maEc

Em

aEc

E

maEc

E

maEc

E

maEc

Em

aEcE

maEc

Em

aEc

h

eee

e

ee

eee

e

eeee

eeee

abeff

222

222

222

)(

222

222

222

Lorentz violating coefficients (CPT-even)

Lorentz and CPT violating coefficients (CPT-odd)

Kostelecky and Mewes, PRD,69(2004)016005;70(2004)076002

Page 13: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 13

Lorentz and CPT violating Hamiltonian (3 free parameters for real rotation invariant model)

2. Tandem model

),,(),,(),,(

),,(),,(),,(

),,(),,(),,(

)(

mcaHmcaHmcaH

mcaHmcaHmcaH

mcaHmcaHmcaH

h

e

e

eeee

abeff

Numerical parameter search shows 3 parameters model reasonably works to describe all 4 classes of known neutrino oscillation data (solar, atmospheric, reactor, and LSND signals).

TK, Kostelecky and Tayloe, PRD74(2006)105009

Page 14: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 14

1. Neutrino oscillation - A natural interferometer

2. Tandem model

3. Tandem model oscillation signals

3.1 Solar neutrinos

3.2 Atmospheric neutrinos

3.3 Reactor neutrinos

3.4 LSND neutrinos and prediction for MiniBooNE

4. Global fit with MiniBooNE data

5. Conclusions

Page 15: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 15

3.1 Solar neutrinos

Solar neutrino suppression is created by the energy dependences of mixing angles. So even long base line limit has energy dependence for neutrino oscillation.

Since Lorentz violating terms are bigger than solar matter potential, this model doesn't use MSW effect.

Barger et al., PLB,617(2005)78

Solar neutrino dataTheoretical signals (no experimental smearing)

Page 16: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 16

1. Neutrino oscillation - A natural interferometer

2. Tandem model

3. Tandem model oscillation signals

3.1 Solar neutrinos

3.2 Atmospheric neutrinos

3.3 Reactor neutrinos

3.4 LSND neutrinos and prediction for MiniBooNE

4. Global fit with MiniBooNE data

5. Conclusions

Page 17: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 17

3.2 Atmospheric neutrinos

Although model has CPT-odd term, there is no difference for neutrinos and anti-neutrinos oscillation at high energy region (consistent with MINOS).

PRL,94(2005)101801

Super-Kamiokande data

PRD,73(2006)072002

Theoretical signals (no experimental smearing)

High energy neutrino oscillation is identical with standard maximum nm-nt oscillation.

Page 18: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 18

1. Neutrino oscillation - A natural interferometer

2. Tandem model

3. Tandem model oscillation signals

3.1 Solar neutrinos

3.2 Atmospheric neutrinos

3.3 Reactor neutrinos

3.4 LSND neutrinos and prediction for MiniBooNE

4. Global fit with MiniBooNE data

5. Conclusions

Page 19: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 19

3.3 Reactor neutrinos

KamLAND neutrino oscillation is created by the combination of all oscillation channels.

PRL,94(2005)081801

KamLAND dataTheoretical signals (no experimental smearing)

All ne oscillation amplitudes go to zero at

high energy limit (>100MeV), so this model predicts null signal for NOvA and T2K.

Page 20: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 20

1. Neutrino oscillation - A natural interferometer

2. Tandem model

3. Tandem model oscillation signals

3.1 Solar neutrinos

3.2 Atmospheric neutrinos

3.3 Reactor neutrinos

3.4 LSND neutrinos and prediction for MiniBooNE

4. Global fit with MiniBooNE data

5. Conclusions

Page 21: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 21

LSND signal is created by small, yet non zero amplitudes around 10-100 MeV region.

The tandem model predicts;

(1) factor 3 smaller appearance signal for KARMEN than LSND

(2) small (~0.1%), but non zero appearance signal for LSND

(3) factor 3 large appearance signal for OscSNS than LSND

(4) Large signal at MiniBooNE low energy region with energy dependence.

Theoretical signals (no experimental smearing)

3.4 LSND neutrinos and MiniBooNE prediction

Page 22: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 22

1. Neutrino oscillation - A natural interferometer

2. Tandem model

3. Tandem model oscillation signals

3.1 Solar neutrinos

3.2 Atmospheric neutrinos

3.3 Reactor neutrinos

3.4 LSND neutrinos and prediction for MiniBooNE

4. Global fit with MiniBooNE data

5. Conclusions

Page 23: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 23

MiniBooNE didn't see the oscillation signal in the region where signal is expected from LSND motivated massive neutrino model.

However MiniBooNE observed interesting excess of events at low energy region.

4 MiniBooNE low energy excess

Excludedregion

Any 2 neutrino massive models fit with this excess.

Is this signal predicted by Tandem model?

PRL,98(2007)231801

MiniBooNE ne candidate data

Page 24: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 24

We used MiniBooNE public databasehttp://www-boone.fnal.gov/for_physicists/april07datarelease/index.html

We did a quick survey in the parameter space to maximize MiniBooNE signal without breaking other oscillation signals.

4 MiniBooNE low energy excess

Ongoing...but...

It is difficult to enhance MiniBooNE low E signal without breaking other oscillation signal.

The extension of the model is required?

data with all errorspredicted total eventspredicted backgroundspredicted signals

Preliminary

Tandem model predictionev

ents

/MeV

Page 25: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 25

5. Conclusions

Reactor Atmospheric

solar

LSND

Tandem model

Lorentz and CPT violation is a predicted phenomenon from Planck scale physics.

The tandem model reasonably describes the existing all 4 classes of neutrino oscillation data (solar, atmospheric, KamLAND, and LSND) using only 3 parameters.

Tandem model predicts MiniBooNE low E excess, and fitting is ongoing

Quantitative predictions are offered for OscSNS, NOvA, and T2K.

Thank you for your attention!

MiniBooNE

Page 26: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 26

Backup

Page 27: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 2709/19/2007

The neutrino weak eigenstate is described by neutrino Hamiltonian eigenstates, n1,

n2, and n3 and Hamiltonian mixing matrix elements.

The time evolution of neutrino weak eigenstate is written by Hamiltonian mixing matrix elements and eigenvalues of n1, n2, and n3.

Then the transition probability from weak eigenstate nm to ne is (assuming everything

is real)

This formula is model independent

3

1

||i

ieie U

3

1

|)(|i

i

ti

eieieUt

LUUUUttP ij

jiejeijiee 2sin4|)()( 22

1. Neutrino oscillation - A natural interferometer

Page 28: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 28

2. Tandem model

(1) Analytical solution of cubic equation (Ferro-Cardano solution)

AQ

AQ

AQ

31

32

cos2

31

32

cos2

31

3cos2

3

2

1

33

2

22

22

2

/arccos

54/2792

9/3

2/2

32/

2/

QR

cabAR

bAQ

EmacEac

acmb

EmcEA

We used 2 independent methods to diagonalize our Hamiltonian. The solutions come from same Hamiltonian but different method should be same.

Page 29: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 29

2. Tandem model

(2) Numerical matrix diagonalization (Jacobi method)

UOOO

U

OOO

OO

hh

hh

h

OOO

hhh

hh

hh

O

hhh

hhh

hhh

T

TTT

ee

TT

e

eee

T

e

e

eeee

3

2

1

122111

~0~0~

0~~0~

0~0~~

0

0

0

0

These 2 methods are independent algorithms, and important check for the diagonalization of the Hamiltonian.

Page 30: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 30

3. Tandem modelMixing angles are energy dependent now, and the model creates maximum ne -

nm mixing at low energy and maximum nm -nt mixing at high energy regions.

021

21

021

21

100

)()()(

)()()(

)()()(

100

021

21

021

21

HighE

e

e

eeee

LowE

EUEUEU

EUEUEU

EUEUEU

maximum ne -nm mixingby D12

maximum nm -nt mixingby D12

KamLANDAtmospheric

Middle energy region is responsible for LSND and solar. But it has a complicated energy dependences, and only understandable by numerical calculation (see next).

High ELow E

Mixing angles of Hamiltonian

Page 31: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 31

4-5. Global signal predictions

neutrinodisappearance

anti-neutrinodisappearance

neutrinoappearance

anti-neutrinoappearance

disappearance signalsP>10%

appearance signalsP>0.1%

Page 32: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 32

1-1. Motivation

amam

am

SSB

PRD,39(1989)683

In a field theory, spontaneous symmetry breaking (SSB) occurs when symmetries of the Lagrangian are not respected by the ground state of the theory

In string theory, there is a possibility that some Lorentz tensor fields acquire a nonzero vacuum expectation value (spontaneous Lorentz symmetry breaking)

Page 33: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 33

1-1. Motivation

Universe might be polarized!

The polarization of vacuum is the source of Particle Lorentz violation.

The signature of Lorentz violation is sidereal time variation of physics observables in a fixed coordinate system.

(Today's talk is nothing about sidereal variation).

Page 34: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 34

1-4. Standard Model Extension (SME)

SME parameters

0)( BABAB Mi

ABABABABABAB

ABABABABABABAB

HbaimmM

gifedc

21

21

555

55

PRD,55(1997)6760;58(1998)116002

SME is the minimum extension of Standard Model to include Particle Lorentz and CPT violation. It has all possible type of Lorentz and CPT violating tensors in the Lagrangian.

Modified Dirac Equation

Page 35: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 35

1-4. Standard Model Extension (SME)

SME parameters

0)( BABAB Mi

ABABABABABAB

ABABABABABABAB

HbaimmM

gifedc

21

21

555

55

PRD,55(1997)6760;58(1998)116002

SME is the minimum extension of Standard Model to include Particle Lorentz and CPT violation. It has all possible type of Lorentz and CPT violating tensors in the Lagrangian.

Modified Dirac Equation

Lorentz and CPT violating coefficients (CPT-odd)

Lorentz violating coefficients (CPT-even)

Page 36: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 36

1-5. SME for neutrino oscillation

Effective Hamiltonian (minimal SME)

Rotation invariant form (no sidereal dependence)

Real hermitian matrix expression (18 free parameters)

abLLabababeff ppcpap

mp

ph ])()[(||1

)(||2

1)( 2

abLLabababeff EcamE

Eh ])(34

)[()(21

)( 2

Em

aEcE

maEc

Em

aEc

E

maEc

E

maEc

E

maEc

Em

aEcE

maEc

Em

aEc

h

eee

e

ee

eee

e

eeee

eeee

abeff

222

222

222

)(

222

222

222

ababL baa )()(

ababL dcc )()(

PRD,69(2004)016005;70(2004)076002

CPT-odd CPT-even

Page 37: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 37

2-2. L-E plane

Criteria for alternative model may be;

(1) based on quantum field theory(2) renormalisable (3) acceptable description of data(4) mass is < 0.1eV for seesaw compatibility(5) less than equal 4 parameters(6) Lorentz violation is < 10-17 ~ (Mz / MPlanck )

(7) has LSND signal

Page 38: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 38

2-2. L-E plane

The solution of global 3-parameter model using Lorentz violation (tandem model).

In fact, energy dependence of the amplitudes are also important.

This model can reproduce all data with acceptable values.

Neutrino behavior in the tandem model

Page 39: Teppei Katori, Indiana University1 PRD74(2006)105009 Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,

Teppei Katori, Indiana University 39

2-2. L-E plane

Solution is different for neutrino and anti-neutrino due to CPT-odd terms.

Although there is CPT violation, in tandem model, sometimes there is no difference between neutrinos and anti-neutrinos.

Anti-neutrino behavior in the tandem model