synthesis of 5-membered heterocycles using benzoylacetonitriles

27
Turk J Chem (2013) 37: 685 – 711 c T ¨ UB ˙ ITAK doi:10.3906/kim-1211-31 Turkish Journal of Chemistry http://journals.tubitak.gov.tr/chem/ Review Article Synthesis of 5-membered heterocycles using benzoylacetonitriles as synthon Rizk Elsayed KHIDRE, 1, * Bakr Fathy ABDELWAHAB 2 1 Chemistry Department, Faculty of Science, Jazan University, Saudi Arabia 2 Shaqra University, Al-Dawadami, Saudi Arabia Received: 21.11.2012 Accepted: 08.03.2013 Published Online: 16.09.2013 Printed: 21.10.2013 Abstract: This review article represents a survey covering the synthetic strategies leading to 5-membered heterocycles. The reactions are subdivided into groups that cover the synthetic methods of those heterocycles, i.e. pyrroles, furans, thiophenes, pyrazoles, isoxazoles, thiazoles, and others, utilizing benzoylacetonitriles as starting precursor from 1985 up to the present. The reactions are subdivided into groups that cover the synthetic methods for those heterocycles from benzoylacetonitriles. Key words: Benzoylacetonitrile, pyrroles, furans, thiophenes, pyrazoles, isoxazoles, thiazoles 1. Introduction Benzoylacetonitrile derivatives are easily available and have high chemical reactivity due to the presence of 3 ac- tive moieties: nitrile, carbonyl, and active methylene functions. Benzoylacetonitrile, known as phenacylcyanide or ω -cyanoacetophenone, was named as 3-oxo-3-phenylpropanenitrile using the IUPAC system. Benzoylacetoni- triles are versatile and convenient intermediates in organic synthesis and have attracted a great deal of interest. 1 Benzoylacetonitriles opened up an important area of heterocyclic chemistry on account of the fact that many of them are subunits of natural products and pharmaceutical agents, e.g., antimicrobial, 2,3 antineoplastic, 4,5 antiviral, 6,7 and anti-inflammatory agents; 8,9 as inhibitors of poly(adp-ribose) polymerase (PARP); 10,11 as GABAB allosteric enhancers for treating CNS disorders 12 and pain; 13 and as allosteric enhancers at the hu- man A1 adenosine receptor. 14-16 Despite this important versatility, and in connection with our previous review articles, 17 the utility of benzoylacetonitrile in the synthesis of 5-membered heterocycles has not been previously reviewed. The present review aims to demonstrate the synthetic applications of benzoylacetonitrile in the syn- thesis of 5-membered heterocycles from 1985 up to the end of 2011 and provide useful and up-to-date data for organic and medicinal chemists. 2. Synthesis of 5-membered rings with 1 heteroatom 2.1. Pyrroles and their fused derivatives Synthesis of 4-cyanopyrroles via mild Knorr reactions with β -ketonitriles was achieved. Ethyl 3-(4-bromophenyl)- 4-cyano-5-phenyl-1 H -pyrrole-2-carboxylate 3 was prepared by reaction of ethyl 3-(4-bromophenyl)-2-(hydroxyi- mino)-3-oxopropanoate 2 with compound 1. 18 Azoalkenes 4 were reacted with 1 to afford methyl 1-amino-4- cyano-5-phenyl-1 H -pyrrole-3-carboxylates 5. 19 1-Cyanoformanilide 6 was reacted with 1 in refluxed ethanol in * Correspondence: [email protected] 685

Upload: trankhue

Post on 05-Jan-2017

236 views

Category:

Documents


8 download

TRANSCRIPT

Turk J Chem

(2013) 37: 685 – 711

c⃝ TUBITAK

doi:10.3906/kim-1211-31

Turkish Journal of Chemistry

http :// journa l s . tub i tak .gov . t r/chem/

Review Article

Synthesis of 5-membered heterocycles using benzoylacetonitriles as synthon

Rizk Elsayed KHIDRE,1,∗Bakr Fathy ABDELWAHAB2

1Chemistry Department, Faculty of Science, Jazan University, Saudi Arabia2Shaqra University, Al-Dawadami, Saudi Arabia

Received: 21.11.2012 • Accepted: 08.03.2013 • Published Online: 16.09.2013 • Printed: 21.10.2013

Abstract:This review article represents a survey covering the synthetic strategies leading to 5-membered heterocycles.

The reactions are subdivided into groups that cover the synthetic methods of those heterocycles, i.e. pyrroles, furans,

thiophenes, pyrazoles, isoxazoles, thiazoles, and others, utilizing benzoylacetonitriles as starting precursor from 1985 up

to the present. The reactions are subdivided into groups that cover the synthetic methods for those heterocycles from

benzoylacetonitriles.

Key words: Benzoylacetonitrile, pyrroles, furans, thiophenes, pyrazoles, isoxazoles, thiazoles

1. Introduction

Benzoylacetonitrile derivatives are easily available and have high chemical reactivity due to the presence of 3 ac-

tive moieties: nitrile, carbonyl, and active methylene functions. Benzoylacetonitrile, known as phenacylcyanide

or ω -cyanoacetophenone, was named as 3-oxo-3-phenylpropanenitrile using the IUPAC system. Benzoylacetoni-

triles are versatile and convenient intermediates in organic synthesis and have attracted a great deal of interest.1

Benzoylacetonitriles opened up an important area of heterocyclic chemistry on account of the fact that many

of them are subunits of natural products and pharmaceutical agents, e.g., antimicrobial,2,3 antineoplastic,4,5

antiviral,6,7 and anti-inflammatory agents;8,9 as inhibitors of poly(adp-ribose) polymerase (PARP);10,11 as

GABAB allosteric enhancers for treating CNS disorders12 and pain;13 and as allosteric enhancers at the hu-

man A1 adenosine receptor.14−16 Despite this important versatility, and in connection with our previous review

articles,17 the utility of benzoylacetonitrile in the synthesis of 5-membered heterocycles has not been previously

reviewed. The present review aims to demonstrate the synthetic applications of benzoylacetonitrile in the syn-

thesis of 5-membered heterocycles from 1985 up to the end of 2011 and provide useful and up-to-date data for

organic and medicinal chemists.

2. Synthesis of 5-membered rings with 1 heteroatom

2.1. Pyrroles and their fused derivatives

Synthesis of 4-cyanopyrroles via mild Knorr reactions with β -ketonitriles was achieved. Ethyl 3-(4-bromophenyl)-

4-cyano-5-phenyl-1H -pyrrole-2-carboxylate 3 was prepared by reaction of ethyl 3-(4-bromophenyl)-2-(hydroxyi-

mino)-3-oxopropanoate 2 with compound 1.18 Azoalkenes 4 were reacted with 1 to afford methyl 1-amino-4-

cyano-5-phenyl-1H -pyrrole-3-carboxylates 5.19 1-Cyanoformanilide 6 was reacted with 1 in refluxed ethanol in

∗Correspondence: [email protected]

685

KHIDRE and ABDELWAHAB/Turk J Chem

the presence of triethylamine to give 3-amino-4-benzoyl-5-imino-1-phenyl-1H -pyrrol-2(5H)-one 7.20 Regiose-

lective synthesis of 2,3,4-trisubstituted pyrrole 10 has been achieved via [3,3] sigmatropic rearrangements of

O -vinyl oximes 9. O -allyl oximes 8 enable rapid access to O -vinyl oximes (Scheme 1).21

O NH2 . HCl

N

Ph

CN

OHNPh

NCMe

a: i) AcONa, MeOH, 30 min, 25°C; ii) MeOH, 5 min, 25°C; 12 h, 60°Cb: [(cod)IrCl]2, AgO3SCF3, NaBH4, THF, 75°C, 24 h

a

b

R

O

CO2Et

NOH

O

PhCN

i) Zn, EtOH; ii) AcOH

HN

NC

PhCO2Et

R Ar = 4-BrC6H43, 54%

5, 65%

N

R

N

OMe

R1

O

MeONa

N

HN

R

CO2MeNC

Ph

R1

R = Me, Et;R1 = CO2Me, CO2CMe3, CONH2, CONHPh

PhHN

O

CN

Et3N, EtOH

N

H2N COPh

NHO

Ph

N

Ph

CN

OMe

1

2

46

7

8 910

Scheme 1.

Three-component 1-pot condensation reactions of ethyl glycinate 11, 3-hydroxybutan-2-one 12, and 1

yielded ethyl 2-(3-cyano-4,5-dimethyl-2-phenyl-1H -pyrrol-1-yl)acetate 13, which was consequently hydrolyzed

to produce the corresponding carboxylic acid 14 (Scheme 2).9

+

O

EtO NH2 . HCl

O

MeMe

OHNaHCO3EtOH, PhMe

+N

Ph

CNMe

Me

O

OEtH3O

NPh

CNMe

Me

O

OH

1

1112 13 14

Scheme 2.

2-Formyl-1,4-dihydropyridines 15 underwent the tandem Knoevenagel condensation/aminonitrile cycliza-

tion with 1 to afford methyl 2-cyano-5-methyl-3-phenylindolizine-8-carboxylate 17 in 65%–93% yields (Scheme

3).22

2.2. Furans and their fused derivatives

2.2.1. Michael addition reaction

4-Cyano-2,3-dihydrofuran-3-carboxamides 19 were obtained in moderate yields by the oxidative cyclization of

1 with unsaturated amides using manganese(III) acetate. Treatment of 3-oxopropanenitriles 1 with (2E)-3-(5-

methyl-2-furyl)acrylamide 18 gave dihydrofuran-3-carboxamides 19 in moderate yields (Scheme 4).23,24

686

KHIDRE and ABDELWAHAB/Turk J Chem

+

NH

CHOMe

CO2Me

R2

R1NMe

CO2Me

Ph CN

R1, R2 = EtO2C, 2-O2NC6H4 (93%); a, pip., EtOHR1, R2 = MeCO, 3-O2NC6H4 (88%); Me2CHO2C, 5-nitro-2-furyl (65%); b, AcOH, 30 min, reflux

R1

R2

NHN

O

Ph

MeR1

R2

MeO2C

a or b

1

15 16 17

Scheme 3.

XR2O

R4+

O

R1CN

Mn(OAc)3/AcOH

70°C, 30-60 min

O

NC

R1

O

R4

X R2

R1 = Ph, 4-MeC6H4, 4-MeOC6H4, 4-ClC6H4, 2-thienyl, 2-benzofuryl, t-butyl

R2 = Me, R3 = H, R4 = NH2, X = O (42%-64%)R2 = R3 = Me, H, R4 = NH2, OEt, X = S (45%-91%)

1 18 19

R3R3

Scheme 4.

4,5-Dihydro-3-furancarbonitrile derivatives 21 were obtained through radical cyclization of 1, mediated

either by manganese(III) acetate in acetic acid2,25,26 or by cerium(IV) ammonium nitrate in THF27 with

substituted ethylene 20. Cerium(IV)/THF radical cyclization was compared with that performed with man-

ganese(III) acetate/AcOH; the cerium(IV)/THF system turned out to be much more efficient. The synthesized

compounds showed better results against test bacteria than some known antibiotics.2 Similarly 1-pot synthesis

of tetrasubstituted furan derivatives 23, catalyzed by acidic alumina and in the absence of solvent, was reported

from the reaction between compound 1 and ethyl 3-nitrooct-2-enoate 22 (Scheme 5).28

NO2

C5H11EtO2COPh

NC CO2Et

C5H11

Al2O3, 3 h, rt, 3 h, 60°C

R2

R3 R4 O

R3

R2

R4NC

R1

a) Mn(OAc)3, AcOH, 80oC; R1 = Ph; R2 = Ph, 2-thienyl; R3 = Me, Ph, n-Pr, H; R4 = Et, Ph, H (40-83%)

O

R1CN

b) Ce(NH4)2(NO3)6, NaHCO3,THF, 10 - 30 min, 60°C; R1 = R2 = R3 = Ph, R4 = H(97%);R1 = R2 = R3 = Ph, R4= Et (83%); R1 = Ph, R2 = R3 = 4-FC6H4, R4 = H (86%); R1 = 2-furanyl, R2 = R3 = Ph, R4 = H (90%); R1 = 1-benzofuran-2-yl, R2 = R3 = Ph, R4 = H (96%); R1 = R2 = Ph,R3 = R4 = H (42%); R1 = R2 = Ph,R3 = H, R4 =Me (75%); R1 = R2 = Ph,R3 = Me, R4 = H (80%)

a or b

R1 = Ph

1

20

2123

22

Scheme 5.

Propargyl bromide 24 was reacted with 1 in the presence of copper iodide and 2,3,4,6,7,8,9,10-octahydropy-

rimido[1,2-a]azepine (DBU) in toluene to give 5-methyl-2-phenyl-3-furancarbonitrile 25 in 55% yield (Scheme

6).29

687

KHIDRE and ABDELWAHAB/Turk J Chem

+

CH2Br

OMe

NC

PhO

PhCN DBU,CuI, PhMe

25, 55%241

Scheme 6.

Furo[2,3-b ]indole-3-carboxylate 27 was synthesized from the reaction between 1 and ethyl 2-cyano-2-(2-

oxoindolin-3-ylidene)acetate 26 in ethanol at reflux (Scheme 7).30

EtOH

HN

O

CO2EtNC

N

O

NH2CO2EtCN

PhOC

27, 67%

+ 1

26

Scheme 7.

2.2.2. [3+2]Cycloaddition

Reagent-controlled [3+2] annulation of γ -functionalized 2-butynoates and 1C, 3O-bisnucleophiles is reported,

which leads to 3 distinct furan skeletons. A PPh3 catalyst preferentially attached to the β -position of

AcOCH2C≡CCO2Me, facilitating α -addition to furnish type I annulations. With the assistance of Ag2O,

type II annulations were achieved via selective γ -substitution. In the absence of the PPh3 catalyst, the reagent

Cs2CO3 promoted β -addition to realize type III annulations (Scheme 8).31

Ph

O

CN

+

CO2Me

O

NC

Ph

CO2Me

LG

1a: LG = OAc

20 mol % PPh3

γ

βα

α

βγ

1d: LG = Br

20 mol % PPh31 equiv Ag2O

O

NC

Ph α

β

γ

CO2Me

1a or 1d

1 equiv CsCO3O

NC

Ph

α

β

γ

CO2Me

Type I

Type II

Type III

DMSO,

80 oC

1

28

29a

30b

30c

Scheme 8.

Polysubstituted furans 29 were synthesized by the reaction between methyl 4-acetoxybut-2-ynoate 28

and derivatives of compound 1 using type I annulations (Scheme 9).31

The mechanism of the above reaction is proposed. Addition of catalyst to 28 generates zwitterionic

intermediate A. In the presence of 1, A works as a base to initiate H-transfer, leading to the formation of

688

KHIDRE and ABDELWAHAB/Turk J Chem

intermediate B and a nucleophile. Then addition and elimination of acetate produce intermediate C, which is

converted to intermediate F via double continuous steps of H-transfer and isomerization. Finally, the addition–

elimination process takes place to regenerate the catalyst and give product 29 (Scheme 10).

R1

O

CN +

CO2Me

OAc

20 mol % PPh3

DMSO, 80 oC, 3 h O

NC

R1

CO2Me

R2

R1 = Ph, R2 = H (91%); R1 = 4-MeOC6H4, R2 = H (62%);R1 = 4-BrC6H4, R2 = H (92%); R1 = 4-ClC6H4, R2 = H (94%);R1 = 2-furanyl,, R2 = H (71%); R1 = 2-thienyl , R2 = H (82%);R1 = Ph, R2 = Ph (56%); R1 = Ph, R2 = 2-thienyl (65%);R1 = Ph, R2 = Bu (32%)

R2

1 28 29

Scheme 9.

CO2Me

OAc

PPh3

MeO2C

OAc

Ph3PR1

O

CN

MeO2C

OAc

Ph3P

+ R1

O

CN

-AcO

O

R1

CN

MeO2C

Ph3PO

R1

CN

MeO2C

Ph3PO

R1

CN

MeO2C

Ph3P

O

R1

CN

MeO2C

Ph3PO

R1

CN

MeO2C

Ph3P O

MeO2C CN

R1

28 A B

CDE

F G 29

Scheme 10.

2.2.3. Miscellaneous methods

Alkylation of 1 with either ethyl 2-chloro-3-oxobutanoate 30 or ethyl 3-bromo-2-oxopropanoate 32 in the

presence of ethyldiisopropyl amine and MgCl2 gave furan derivatives 31 and 32, respectively.32 6a-Amino-

2,5-diphenyl-3a,6a-dihydrofuro[2,3-b ]furan-3,3a,4-tricarbonitrile 35 was synthesized from the reaction of 1 with

2-bromomalononitrile 34 in refluxed ethanol containing sodium ethoxide.33 Furo[2,3-c ]pyrazole 37 was prepared

in 83% yields by treating 4-bromo-3-methyl-2-pyrazolin-5-one 36 with 1 in EtOH in the presence of piperidine

at reflux temperature (Scheme 11).34

5-Aryl-3-aminofuran-2-carboxylate esters 39, key intermediates in pathways for synthesis of the amine

substituted furan-2-carbonylguanidines, were prepared from the reaction of 1 with methyl glycolate under

689

KHIDRE and ABDELWAHAB/Turk J Chem

Mitsunobu conditions to afford the vinyl ethers 38, which upon treatment with sodium hydride cyclized to the

3-aminofurans 39 in 40%–60% yield (Scheme 12).35

O

PhOC

H2N

HN N

Me

BrO

NH

N

Me

37, 83%

EtN(Pr-i)2MgCl2

Me

O

Cl

CO2Et

OPh

CNEtO2C

Me

Br

O

CO2Et

OPh

CN

EtO2C

EtN(Pr-i)2MgCl2

EtONa, EtOH

NC CN

Br

O O

Ph

CNNC

Ph

NH2

CN

35, 30%

130

31

32

33

34

36

Scheme 11.

2.3. Thiophenes and their fused derivatives

2.3.1. Gewald reaction

The synthesis of π -conjugated thiophenes starting from substituted 3-oxopropanenitriles via the Gewald reaction

has been reported. Thus treatment of 1 with methyl cyanoacetate and elemental sulfur gave thiophene derivative

40 in 72% yields.36 Similarly, 2-(5-acetyl-4-methylthiazol-2-yl)acetonitrile 41 was reacted with 1 in dioxane in

the presence of sulfur to yield the 5-(5-acetyl-4-methylthiazol-2-yl)-4-amino-2-phenylthiophene-3-carbonitrile 42

(Scheme 13).37

O

CN

Ph3P, DEAD, methyl glycolate

THF, 0°C→rt

O

CN

O

OMe NaH, rt

O

NH2

O

OMeXX X

X = H, 2-F, 2-Me, 2-OMe, 3-F, 3-Cl, 3-Me, 2,5-F2, 2,5-Cl2, 2,5-Me2, 2-MeO-5-Cl, 2-MeO-5-F

39, 40%–60%381

Scheme 12.

690

KHIDRE and ABDELWAHAB/Turk J Chem

NC CO2Me

i) S / morpholine / 110°Cii) MeOH / 20-45°C

SCN

Ph

H2N

MeO2CS

N

Ac

Me

CN

S, Et3N, dioxane,4 h, ref lux

S

S

N Me

Ac

Ph

NC NH242, 56%

41

40, 72%

1

Scheme 13.

In the same fashion, compound 1 was reacted with 1-acetylpiperidin-4-one 43a to give 1-(2-amino-3-

benzoyl-4,5-dihydrothieno[2,3-c ]pyridin-6(7H)-yl)ethanone 44a, which was evaluated for its abilities to inhibit

lipopolysaccharide (LPS)-stimulated production of TNF-α in rat whole blood.38 On the other hand, the

microwave-assisted aromatization method has been used for the synthesis of compound 44b. The synthesized

molecule has been evaluated as a potential new series of allosteric enhancers acting at the adenosine A1

receptor.14 Thienofuran derivatives, as CB2 cannabinoid receptor ligands, were prepared by heterocyclization

of compound 1 with 2-methyltetrahydrofuran-3-one.39 The Gewald reaction of 1 with cyclopentanone,7,12

cyclohexanone,40 or cyclooctanone41 and sulfur in ethanol in the presence of morpholine yielded thiophen-2-

amines 47. The latter compounds were evaluated as potential allosteric modulators of the A1 adenosine receptor

(AR) (Scheme 14).41

(CH2)n

O

n(H2C)

S

NH2

O Ph

b) Reaction conditions:S, morpholine,EtOH, 2 h, 90°C,n =1 (98%), n = 2 (78%)

N

O

R

N S

NH2

COPh

R

a) Reaction conditions:R = Ac; S, Et3N, DMF (93%)R = t-BuOCO; Morpholine, S, EtOH, 1 h, 70°C

O

O

MeS + morpholine, 60°C

S

O

MeO

Ph

H2N

(i)TiCl4, CH2Cl2, cooled(ii) S, Et2NH, THF, 1 h, rt ; n = 4 (12%)

a b

43

441

45

46

47

R1

O

CN

R1 = Ph

R1 = Ph R1 = Ph; 3,4-Cl2C6H3

Scheme 14.

Preparation of thiophene derivatives 49 as PPARδ agonists was reported. Cyclocondensation of 1 with

butyraldehyde and sulfur was followed by acylation with thiodiglycolic anhydride 48.42 Similarly, 2-amino-3-

benzoylthiophenes 51 and 53, which have been widely reported to act as allosteric enhancers (AEs) at the

A1 adenosine receptor (A1AR), were prepared from the reaction of 1 with substituted 1-Indanone 50 or 1,4-

dithiane-2,5-diol 52, respectively, as described in Scheme 15.15,43

691

KHIDRE and ABDELWAHAB/Turk J Chem

R1

O

CN

SNH2

O

R1S

S

OH

HO

Et2NH, EtOH

R1 = Ph, 4-ClC6H4; R2 = H, 4-CF3, 6-CF3

a: i)TiCl4, pyridine; ii) S8, Et2NH, THF or i) β -ala, PhCO2H, 110-120oC; ii) S8, morpholine, EtOH

O

R2

SNH2

O

R1R2

51, 9-21%

PrCHO

O

S

OO

Morpholine, S, EtOH

,

S

Et

OR1

NH

O

SHO2C

R1 = 4-OCF3C6H4

48

49

1

5250

53, 64 %

a

Scheme 15.

Compound 1 was reacted with 2-bromo-1-(3-(trifluoromethyl)phenyl)ethanone 54 and sulfur in ethanol in

the presence of diethylamine to afford (2-amino-5-bromo-4-(3-(trifluoromethyl)phenyl)thiophen-3-yl)(phenyl)met-

hanone 55 in 48% yield (Scheme 16).44

S, Et2NH, EtOH

5 h,rt

+

55, 48%

F3C

O

Br

S BrH2N

PhOCCF3

1

54

Scheme 16.

2.3.2. Miscellaneous methods

Ethyl 3-amino-4-benzoyl-5-(phenylamino)thiophene-2-carboxylate 57 was synthesized in 2 steps. The first step

consisted of the formation of the N -phenyl S -methyl ketene-N ,S -acetals 56, obtained in a 1-pot reaction from

1, phenyl isothiocyanate, and methyl iodide under basic conditions (K2CO3 /DMF) in 90% yield. In the second

step, ketene-N ,S -acetals 56 were reacted with ethyl thioglycolate in ethanol containing potassium carbonate

(Scheme 17).45

2,3,4-Trimethyl-5-phenylthiophene 60 and (2-amino-4-methyl-5-phenylthiophen-3-yl)(phenyl)methanone

59 were prepared in ratio 95:5 by regioselective Knoevenagel condensation of 1 with 3-chlorobutan-2-one 58 fol-

lowed by intermolecular addition in pyridine and then the Gewald reaction.46 Aminobenzoylthiophene 61, as al-

losteric modulator of the adenosine A1 receptor, was prepared in 60% yield by alkylation of 1 with phenacyl bro-

mide followed by cyclocondensation with sodium hydrosulfide.16 2-Amino-3-benzoyl-4-phenylthiophene deriva-

692

KHIDRE and ABDELWAHAB/Turk J Chem

tives 62 as A1 adenosine receptor allosteric enhancers were prepared from the reaction of 1 with 3-trifluromethyl

aceteophenone (Scheme 18).13

i) K2CO3, DMF, 1 h, rt

ii) PhNCS, 2 h, rtiii) MeI, 4 h, rt

MeS

PhHN

CN

COPh

56, 80%

HSCH2CO2Et

K2CO3/EtOH SCO2Et

NH2PhOC

PhHN

57, 32%

1

Scheme 17.

O

PhBr

i) TiCl4, CH2Cl2

ii) C5H5Niii) NaSH / EtOHiv) HCl/H2O

SNH2

Ph

O

Ph

O

Me

Me

Cl

i) TiCl4/ CH2Cl2ii) C5H5Niii) NaSH/ EtOH

SMe

MeMe

Ph SNH2

Me

Ph

O

Ph

+

60

R

O

CH3i) TiCl4 / CH2Cl2ii) C5H5Niii) NaSH/ EtOH

S

H2N

OPh

R

62, 33%

R = 4-F3CC6H4

158

5961, 60%

Scheme 18.

Disclosed are thiophene compounds of formula 63, which are useful as therapeutics, especially in an-

tineoplastic therapy and in other therapeutic regimes where cysteine protease inhibition is implicated. Com-

pound 63 was prepared from the reaction of 1, carbon disulfide, ethyl 2-chloroacetate, and methyl iodide.4

Benzo[b ]thiophene 65a was prepared in 84% yield by sulfanylation–acylation of active methylene in compound

1 with 2-(chlorosulfanyl)benzoyl chloride 64a in the presence of triethylamine (Scheme 19).47

SCl

O

Cl

i) Et3N / CH2Cl2 / 30 min, rt, 2 hii) HCl / H2O

S

O

CN

OPh

O

OEtCl

SCO2Et

PhNC

MeS

63, 56%

CS2 , CH3I

K2CO3, DMF,10 min, rt

65a, 84%

164a

Scheme 19.

693

KHIDRE and ABDELWAHAB/Turk J Chem

2.4. Selenophene derivatives

Selenation–acylation of 1 with 2-(chloroseleno)benzoyl chloride 64b afforded 2-benzoyl-3-oxo-2,3-dihydrobenzo[b ]

selenophene-2-carbonitrile 65b in 78% yield (Scheme 20).48

+ 1SeCl

O

ClEt3N / AcOEt

Se

O

CN

O

Ph

65b, 78%64b

Scheme 20.

3. Synthesis of 5-membered rings with 2 heteroatoms

3.1. Pyrazoles and their fused derivatives

3.1.1. Reaction with hydrazines

5-Phenyl-1H -pyrazol-3-amine 66 was synthesized by the reaction of 1 with hydrazine in ethanol at reflux

temperature.49−54 Moreover, compound 66 was prepared in excellent yield using several conditions such as

p -toluene sulfonic acid as catalyst in polyethylene glycol-400 as an efficient and recyclable reaction medium,55

using p -toluene sulfonic acid at 100 ◦C under microwave conditions,56 or using diimidazolyl ketone57,58 (Scheme

21).

O

CN

HN N

NH2

a: EtOH, 2 h, 85 oC; b: 4-MeC6H4SO3H, HOCH2CH2OH polymer;

c: 4-MeC6H4SO3H, MW; d: diimidazolyl ketone

66, 59-78%

X = H; 2-Br; 2-OMe; 4-Cl; 4-Br; 4-OMe; 3-Cl; 3-Br;3-OMe; 2,5-Cl2; 3-Br; 3-I; 3-OMe; 3-CO2Me, Pyridine

XX1

N2H4 . H2O

a-d

Scheme 21.

1-Substituted 5-aminopyrazole 67 was obtained in excellent yield by the reaction of 1 with substituted

hydrazine such as t -butyl hydrazine hydrochloride,59 2-hydrazinylethanol hydrochloride,60 and o-tolylhydrazine

hydrochloride61 either by the traditional method or using microwave irradiation (Scheme 22).

O

PhCN

NH

NH2 . HCl

R+

i) NaOH / EtOH, rt , 1 hii) EtOH, 12 h, reflux

orMW

N

N

NH2

Ph

R

R = t-Bu (80%); HOCH2CH2 (79%); 2-MeC6H4 (81%)

1 67

Scheme 22.

694

KHIDRE and ABDELWAHAB/Turk J Chem

Several aryl hydrazines8,62−66 or heterocycle hydrazines such as 1,4-dioxo-3-(phenylamino)-1,4-dihydro-

naphthalene-2-sulfonohydrazide,67 4-hydrazinyl-1-p-tolyl-2,5-dihydro-1H -pyrrole-3-carbonitrile,68 8-hydrazinyl-

1,3-dimethyl-1H -purine-2,6(3H ,7H)-dione,69 2-hydrazinyl-3-phenylquinoxaline,3 3-hydrazono-2,3-dihydroch-

romeno[2,3-c ]pyrazole, or 4-chloro-N -(2-(hydrazinylmethyl)-5-(trifluoromethyl)phenyl)benzenesulfonamide70

were reacted with 1 either by traditional methods or using microwave irradiation71,72 to give 5-aminopyrazole

in excellent yield (Scheme 23). The latter compound used as CCR2 chemokine receptor antagonists,70 and as

anti-HIV-1 and antimicrobial agent69 (Scheme 23).

Ph

O

CNN

N

NH2

Ph

AcOH, EtOH5 h, reflux

R

O

O

NH

S

O

OPh

R = Ph (78 %), 4-MeC6H4, 4-MeC6H4SO2CH2CH2 (50%), 4-NH2SO2C6H4 (56%)

,

RNHNH2

N

NC

4-tol

N

N

O

O

Me

MeHN

N, ,

N

N Ph

O

N

N

,Cl

S

O

O

NH

CF3

,

+

(77%) (44%) (64%)

(87%)

(53%)

ordioxane Et3N1 68

Scheme 23.

O

RCN

N

O

NC

NH

H2N

R1

EtOH/ HClreflux, 4 h

N

O

NC

N

N

R1

R

NH2

R = Ph, R1 = H, Me

S

N

NHNH2

R = Ph, 4-ClC6H4, 4-OMeC6H4R1 = 4-ClC6H4, 4-MeC6H4, 4-OMeC6H4

S

N

N

N

H2N

R

R1

R1

S

N

O2N

NH2

HN

R1 = H, Me; R= Ph, 4-MeC6H4, 4-MeOC6H4, 4-ClC6H4

R1

S

N

O2N N

R

NR1

H2N

1

70 (~ 71%)

6971

72

73

74

Scheme 24.

695

KHIDRE and ABDELWAHAB/Turk J Chem

Similarly, 5-hydrazino-4-oxazolecarbonitriles 69,73 2-hydrazinylbenzo[d ]thiazole 71,5 and 2-hydrazino-5-

nitrothiazoles 7174 were reacted with 1 to give 1-substituted-1H -pyrazol-5-amines 70, 72, and 74, respectively.

Some of the synthesized compounds show high antifungal activity74 (Scheme 24).

Synthesis of fluorinated pyrazoles, a class of compounds with potential in medicinal chemistry, was

described. The treatment of 2,2-difluoro-3-oxo-3-phenylpropanenitrile 75 with hydrazine hydrate yielded the

expected 3-amino-4-fluoropyrazole 76 in 99% yield, while the analogous reaction of compound 75 with hydrazine

hydrate in refluxing isopropanol surprisingly gave rise to 3-unsubstituted 4-fluoropyrazole 77 (Scheme 25).75

O

PhCN

2.2 equiv NaH

2.2 equiv Selectfluor®THF, 2 h, rt

O

Ph CNF

F NH2NH2 . H2O

N

HN

Ph

F

HN N

Ph

HO FF

NH2Me2CHOH1 h, reflux

NH2NH2 . H2OMe2CHOH2 h, reflux

75, 35%

77, 45%

76, 99%1

Scheme 25.

(3S ,10S ,13S)-10,13-Dimethyl-17-oxohexadecahydro-1H -cyclopenta[a ]phenanthren-3-yl acetate 78 was

reacted readily with 1 in refluxing ethanol to afford the Knoevenagel condensed product 17-(2 ′ -benzoylacetonitrile-2 ′ -ylideno)androstane 79. Compound 79 was reacted with hydrazine in refluxing ethanol/piperidine solution

to afford the corresponding 17-(5 ′-aminopyrazol-4 ′-ylideno)-androstane derivatives 80 (Scheme 26).76

EtOH, pip., ref lux

AcO

Me

Me

NN R

NH2

Ph

RNHNH2

80, R = Ph, H

O

AcO

Me

Me

AcO

Me

Me

NC

Ph

O

EtOH, reflux, 3 h

79, 76%78

+ 1

Scheme 26.

Compound 1 was reacted in basic medium (LiOH/H2O) with iodoacetic acid or ethyl iodoacetate to

give the corresponding acid 81a and ester 81b, respectively. 1,4-Dicarbonyl compounds 81a,b were reacted

in ethanol at reflux with hydrazine hydrate, in the presence of acetic acid, to give the corresponding 3-amino

pyrazoles 82a,b in good yield and purity. The condensation of the latter compounds with 2,4-pentanedione

was carried out, which led to the closure of the pyrimidine ring, resulting in the intermediate 83a and the final

compound 83b. Subsequently, the acid 83a was converted into a mixed anhydride with ethyl chloroformate,

696

KHIDRE and ABDELWAHAB/Turk J Chem

and this intermediate reacted with a large number of amines affording the corresponding amides 84 in good

yields and in a short time (Scheme 27).77

Ph

O

CNICH2CO2R1

Ph

O

CN

OR1

O

N

HN

Ph

H2N

OR1

OLiOH/H2O/EtOH

orthallium ethylate/tol

N2H4 . H2O

EtOH/AcOH

2,4-pentanedioneEtOH

N N

Ph

OR1

O

NMe

Me

NEt3 / ClCO2Et / THF

N N

Ph

N

O

NMe

Me

R3R2

81a,b, 32% 82a,b (41 -38%)

83a,b (83 -25%)84a,b (22 -54%

%

%% )

1

R2R3NH

R1 = H, Et; R2 =R3 = Me, n-Pr, i-Pr, n-But., n-Pentyl, n-hexyl, n-octyl, Bz, Et, Ph

Scheme 27.

The heterocyclization of 1 with α -hydrazino acids 85 was reported to give 5-aminopyrazoles 86, which

underwent intramolecular cyclodehydration to give the corresponding imidazo[1,2-b ]pyrazol-2-ones 87 (Scheme

28).78

HO2C NHNHBoc

R1

i) TFA, CH2Cl2, 1 h, rt

ii) MeOH, 18 h, rt

NN

CO2HR1

NH2

Ph

NN

Ph

NH

OR1

R1 = i-Bu, Et, H

87 (55 -84%% )

+ 1

8586

Scheme 28.

The 1-pot synthesis of 2-phenylpyrazolo[1,5-a ]quinazolin-5(4H)-one 89 in good yield was reported

by condensation of 1 with 2-hydrazino-benzoic acid 88 in acetic acid using microwave irradiation (Scheme

29).10,11,79 The synthesized compound is used as inhibitor of the enzyme poly (ADP-ribose)polymerase

(PARP).10,11

697

KHIDRE and ABDELWAHAB/Turk J Chem

+AcOH, H2O

5 min, 150 oCCO2H

NHNH2

NN

NH

O

Ph

Ph

O

CN

188 89

MW

Scheme 29.

The pyrazolyl ketone, which exhibits good oral bioavailability and high selectivity for p38 MAPK, i.e.

RK protein phosphorylating kinase over other kinases, is a key pharmacophore that could find application in

the treatment of Werner syndrome. Microwave irradiation promoted the Knoevenagel condensation of 1 and

N ,N ′ -diphenylformimidamide 90, to give β -aminovinyl ketones 91, and their subsequent cyclocondensation

with hydrazines provided pyrazolyl ketones 92 (Scheme 30).80

+Ph

HN

NPh

O

PhCN

NHPh

N NR

NH2

COPh

RNHNH2Xylene

30 min, 180°C

1

Et3N, EtOH, 1 h, 140°C

R = Ph, 4-FC6H4; 4-BrC6H4; 2,6-Cl2C6H3; 2,4-F2C6H3; 4-ClC6H4; C6F5; 2-FC6H4; 2,5-Cl2C6H3; 4-IC6H4

9091 92

Scheme 30.

3.1.2. Reaction with hydrazides

Condensation of compound 1 with hydrazides such as 2-(1-oxo-4-phenylphthalazin-2(1H)-yl)acetohydrazide

93a,811-(4-methoxybenzyl)-1H -indole-3-carbohydrazide 93b,82 1,4-diphenyl-1H -pyrrole-3-carbohydrazide 93c,6

and N -phenylhydrazinecarboxamide 93d83 in either acetic acid or ethanol at reflux temperature gave 1-aroyl-

3-amino-5-phenyl-1H -pyrazoles 94. The latter compounds were tested in vitro for tumor cell-growth inhibition

(Scheme 31).

+

R

O R

N

O N NH2

Ph

N

N

Ph

O

N

OMe

NH

NH2

R =N

Ph

Ph

EtOH, 5 h, reflux

, , , PhNH (90%)(75 %)

1

(70 %)

94

(74 %)

93a-d

Scheme 31.

Resin-bound Boc protected α -hydrazino esters 95 were deprotected under standard conditions (50% TFA

in dichloromethane) and were treated with 1 in ethanol in the presence of 10% acetic acid at 70 ◦C to provide

698

KHIDRE and ABDELWAHAB/Turk J Chem

the requisite amino pyrazoles 96 on solid support. Treatment of the resin with 25% acetic acid solution in

toluene at 110 ◦C provided the desired cyclized product 97 in good yield (Scheme 32).84

AcOH (25%), toluene

110 o C, 24–48 h

97, 70%

+HN NH

Boc

Ph

N N

NH

O

Ph

Ph

O

O

N N

NH2

Ph

Ph

O

Oi) 50% TFA–CH2Cl2, rt, 1 h

ii) 10% AcOH–EtOH,

70 oC, 15 h

1

95 96

Scheme 32.

3.1.3. Reaction with hydrazonoyl halides

Hydrazonoyl halides, such as ethyl 4-(2-bromo-2-(2-(4-chlorophenyl)hydrazono)acetyl)-5-methyl-1-p-tolyl-1H -

pyrazole-3-carboxylate,85 N ’-aryl-2-(4-methyl-2-phenylthiazol-5-yl)-2-oxoacetohydrazonoyl bromide,86 2-oxo-

N ′ -m-tolylpropanehydrazonoyl chloride,87 2-oxo-N ’-phenyl-2-(thiophen-2-yl)acetohydrazonoyl bromide, 2-oxo-

N ’-aryl-2-(phenylamino)acetohydrazonoyl bromide, ethyl 2-(2-(2-bromophenyl)hydrazono)-2-chloroacetate,88

2-(benzofuran-2-yl)-2-oxo-N ’-phenylacetohydrazonoyl bromide,89 N ′ -(aryl)-2-oxopropanehydrazonoyl bromi-

de,90 1-bromo-2-(5-chlorobenzofuranyl)ethanedione-1-phenylhydrazone,91,92 2-oxo-N ′ -phenyl-2-(phenylamino)

acetohydrazonoyl chloride,93 and ethyl 2-(2-(2-bromophenyl)hydrazono)-2-chloroacetate,94 were reacted with

1 in either ethanolic sodium ethoxide or EtN(Pr-i)2 in acetonitrile at reflux to give substituted pyrazole-4-

carbonitriles 99 (Scheme 33).

R

O

CN +R1

O

N

X

HNR2

R = Ph, R1 = Me, R2 = 3-MeC6H4, X = Cl (70%); R1 = 2-thienyl, R2 = Ph, X = Br (78%)R = Ph, R1 = 2-benzofuryl, R2 = Ph,4-ClC6H4,4-MelC6H4, X = BrR = Ph, R1 = 5-chloro-2-benzofuryl, R2 = Ph, X = Br (67%)R = Ph, R1 = PhNH, R2 = Ph, 4-MeC6H4, 4-ClC6H4, 4-BrC6H4, X = Cl (~ 70%)

NN

Me

EtO2C

Me

EtONa / EtOH

R1

O

NN R2

RNC

S

N MePh

, R2 = Ph,4-ClC6H4,4-MeC6H4, X = Br (~ 70%)R = Ph, R1 =

R = Ph, R1 = ,R 2 = 4-ClC6H4, X = Br (76%)

R = Ph, 4-OMeC6H4, R1 = OEt, R2 = 2-BrC6H4, X = Cl; a: EtN(Pr-i)2, MeCN, 16 h,reflux (12%)

or a1 98 99

Scheme 33.

The reaction between compound 1 with either N ’-arylthiophene-2-carbohydrazonoyl chloride 10095,96 or

4-fluoro-N’-(4-nitrophenyl)benzohydrazonoyl bromide 10297 in sodium ethoxide gave pyrazole-4-carbonitriles

101 and 103, respectively (Scheme 34).

699

KHIDRE and ABDELWAHAB/Turk J Chem

NaOEt / EtOH, rt

NN

PhNC

R

Br

N

HNRF

1

EtONa, EtOH

SCl

N

HN R

R = Ph, 4-NO2C6H4

SN

N

PhNC

R

F

R = 4-NO2C6H4

103, 48%

100

101

102

Scheme 34.

3.1.4. Miscellaneous methods

Compound 1 was reacted with either 3-nitro-1,5-diphenylformazan 104 or 2-nitro-1-phenyl-2-(2-phenylhydrazono)

ethanone 106 in ethanol in the presence of sodium ethoxide to yield 1,5-diphenyl-3-(phenyldiazenyl)-1H -

pyrazole-4-carbonitrile 10598 and 3-benzoyl-1,5-diphenyl-4,5-dihydro-1H -pyrazole-4-carbonitrile 107,99 re-

spectively (Scheme 35).

EtOH, EtONa

Ph

O

N

NO2

NH

Ph

NN

COPh

CNPh

Ph

EtONa, EtOH

NO2

N NNPh

HN

PhNN

Ph

Ph

CNNN

Ph

1104

105

106

107

Scheme 35.

3-Phenyl-4,5-diaminopyrazole 110 was prepared by nitrosation of 1 followed by condensation of the result-

ing N -hydroxy-2-oxo-2-phenylacetimidoyl cyanide 108 with methyl hydrazine to form 5-amino-4-nitrosopyrazole

109 followed by catalytic hydrogenation (Scheme 36).100

108, 57%

Ph

O

CNNaNO2

AcOH, H2OPh

O

CN

NOH

Ph

N

NO

MeNHNH2

N

H2N

Me

Ph

N

NH2

N

H2N

Me1

109 110

Scheme 36.

2-Amino-4-phenyl-6-(trichloromethyl)nicotinonitrile 111 was reacted with 1 in pyridine to give 2-amino-6-

(1-cyano-2-oxo-2-phenylethyl)-4-phenylnicotinonitrile 112, which was cyclized with hydrazine to afford aminopy-

razolylpyridine 113. The latter compound was cyclocondensed with acetylacetone to give 2-amino-6-(5,7-

dimethyl-2-phenylpyrazolo[1,5-a ]pyrimidin-3-yl)-4-phenylnicotinonitrile 114 (Scheme 37).101

700

KHIDRE and ABDELWAHAB/Turk J Chem

+ 1

112, 80%

N CCl3

Ph

NC

H2N

C5H5N

N

Ph

NC

H2N

Ph

N

NHH2N

N

Ph

NC

H2N

Ph

O

CN

NH2NH2 N

Ph

NC

H2N

Ph

N

NN

Me

Me

Me Me

O O

111 113 114

Scheme 37.

3-Methyl-7-phenylpyrazolo[5,1-d ][1,2,3,5]tetrazin-4(3H)-one 118 was formed by cycloaddition of com-

pound 1 with N -methylhydrazinecarboxamide 115 to afford 5-amino-N -methyl-3-phenyl-1H -pyrazole-1-carbo-

xamide 116 followed by diazotization of the latter compound and subsequent intramolecular coupling (Scheme

38).102

+ 1

116, 90%

O

NH

NH

NH2Me

EtOH

NN

NH2

ONH

Me

Ph

NaNO2 / HCl NN

N2

ONH

Me

Ph

Cl N N

Ph

N

N

N

O Me

115 117 118

Scheme 38.

The synthesis of pyrazoles linked to pyrazolo[3,4-d ]pyrimidine 120 incorporating benzenesulfonamide

moiety as antimicrobial reagent was reported. 4-(4-Hydrazono-4,5-dihydro-1H -pyrazolo[3,4-d ]pyrimidin-1-

yl)benzenesulfonamide 119 was reacted with 1 to give the target molecule (Scheme 39).103

+ 1HN

N

N

N

SO

O

NH2

NH2N

AcOH / EtOH

120, 63%

N N

N

N

S

O

O

NH2

N

N

Ph

H2N

119

Scheme 39.

Pyrazolopyrimidine 122 was prepared, as orally bioavailable inhibitors of herpes simplex viruses, by 4-

component reaction of 1, ethyl 3-oxopropanoate, cyclopentanamine, and 2-fluoropyridin-4-ylboronic acid 121

(Scheme 40).104

(R)-tert-Butyl 1-hydrazinylpropan-2-ylcarbamate 123 was reacted with (1R ,5R)-2-isopropyl-5-methyl-

cyclohexanecarbonyl chloride 124 and 1 in the presence of triflouroacetic acid to afford (1R ,5R)-N-(1-((R)-

2-aminopropyl)-3-phenyl-1H -pyrazol-5-yl)-2-isopropyl-5-methylcyclohexanecarboxamide 12 5, which acts as

modulator of Trp-p8 (transient receptor potential-p8) activity (Scheme 41).105

701

KHIDRE and ABDELWAHAB/Turk J Chem

+

O

EtOCHO

NH2 N

FB

OH

HO

a: i) NH2NH2 . H2O / EtOH / reflux; ii) Na / EtOH / rt ; iii) POCl3 / 100°Civ) N-bromosuccinimide / CH2Cl2; v) Na2CO3 / PdCl2(PPh3)2

N

N

N

Ph

N

HN

HN

122

+ 1

+

121

a

Scheme 40.

HN

H2N Me

HN

O

O

Me

O

Cl

S

RR

R+

CF3CO2H+ NN

NH2

Me

Ph

NH

O

Me

RRS

CF3CO2H

+1

a

123 124 125

Scheme 41.

Condensation of compound 1 with ethyl 3-ethoxy-3-iminopropanoate 126 gave ethyl (E)-ethyl 3-amino-

4-cyano-5-oxo-5-phenylpent-3-enoate 127. Then the latter compound was coupled with aryldiazonium chloride

to give hydrazones 128, which on treatment with N2H4 gave hydrazides 129. Compounds 129 were converted

to pyrazolo[3,4-b ]pyridines 130 by refluxing with AcOH-HCl (Scheme 42).106

+ 1

EtO2C OEt

NH HCl

Ph

O

NC NH2

CO2Et

R N2 ClPh

O

CN

NH2

CO2Et

NHN R

N2H4

NN

H2NCONHNH2

NNHR

Ph NH2

NN

H2N

NNHR

Ph NH

O

R = Ph, 4-MeC6H4, 4-ClC6H4

Et3N / CHCl3

127, 85%126 128129

130

Scheme 42.

3.2. Imidazoles and their fused derivatives

2-phenylimidazo[1,2-a ]pyridine-3-carbonitrile 132 was prepared directly from the reaction of 1 with 2-aminopyri-

dine 131 using bis(acetyloxy)(phenyl)-λ3 -iodane as an oxidant and boron trifluoride etherate as a catalyst

(Scheme 43).107

3.3. Isoxazoles and their fused derivatives

Either 2-thenoylcarbohydroximoyl chloride 133a108 or benzofuroylhydroxamoly chloride 133b109 was reacted

with 1 in ethanol in the presence of sodium ethoxide at reflux temperature to afford 5-phenylisoxazole-4-

carbonitriles 134a,b, respectively (Scheme 44).

702

KHIDRE and ABDELWAHAB/Turk J Chem

N NH2 N N

PhNC

PhI(OAc)2, BF3-Et2O,THF, overnight, 7°C

132, 25%

+ 1

131

Scheme 43.

+R

Cl

N

OH

O

R

OON

NCPh

EtONa, EtOH

1

133 134a, R = 2-thienyl (77%)134b, R = 2-benzofuryl (68%)

Scheme 44.

Base-promoted cyclocondensation of ortho-disubstituted benzonitrile oxide 135 with 1 afforded highly

functionalized isoxazole 136 (Scheme 45).110

NO

O

O

O

MeO

Me2CHOH / rtO

O

OMeO

N

O

Ph

NC

136, 84%

+ 1

135

Scheme 45.

Regioselective reaction of 1 with hydroxylamine followed by treatment of the resulting 3-oxopentaneamido-

xime 137 with either phenyl carbonochloridate or hydrochloride acid gave 5-phenylisoxazol-3-amine 138 and

139, respectively, in poor yields (38%) (Scheme 46).111

Cl

O

OPh

C5H5N, THF2 h, 0°CNH2OH . H2SO4, NaOH

EtOH, rt; 22 h, rt Ph

O NOH

NH2

N

O

HN

Ph

CO2Ph

NO

NH2

Ph

139, 38%

HCl

1

137

138

Scheme 46.

703

KHIDRE and ABDELWAHAB/Turk J Chem

3.4. Thiazoles and their fused derivatives

Stereoselective base-catalyzed reaction of 1 with either ethyl 2-mercaptoacetate112 or diethyl 2-mercaptosuccina-

te113−117 in either ethanol containing potassium carbonate at reflux temperature or under solvent-free condi-

tions and without solid support118 afforded exclusively (Z)-2-(2-oxo-2-phenylethylidene)thiazolidin-4-ones 140.

Synthesis of benzothiazole 141 in excellent yield was achieved via microwave irradiation of a 1:1 mixture of

compound 1 and o-aminothiophenol (Scheme 47).119

NH2

SH

MW / 10 min / 200°C

N

S

PhS

HN

OPh

O

RK2CO3, EtOH, ref lux

R

CO2Et

HS1

140a,b 141

R = H (58%). CH2CO2Et (68%)

Scheme 47.

2-Amino-4-phenylthiazole-5-carbonitrile 142 was prepared in 62% yield from compound 1 by chlorination

with sulfuryl dichloride followed by treatment with thiourea in refluxing ethanol (Scheme 48).120

thiourea, EtOH

reflux

SO2Cl2, CH3Cl

5 oC-refluxPh

O

CN

Cl

N

S

NH2

Ph

NC

142, 62%

1

Scheme 48.

2-Alkylidene-3-phenylthiazoles were prepared as organic intermediates, useful in the synthesis of biological

active substances. Compound 1 was treated with phenylisothiocyanate in DMF containing NaH to give 143.

The latter was reacted with either 3-bromoprop-1-yne 24121 or (Z)-1,4-dichlorobut-2-ene122,123 in acetonitrile

containing K2CO3 at reflux temperature to afford 144 and 145, respectively (Scheme 49).

1

145, 36%

CH2ClClH2C

S

N

Ph CN

O

Ph

S

N

Ph CN

O

PhMe

144, 63%PhNCS

RCN

O

PhHN SNa

R = Ph, 4-OMeC6H4

DMF, NaH

K2CO3 / MeCN

Br

143

Scheme 49.

704

KHIDRE and ABDELWAHAB/Turk J Chem

3.5. Selenazoles and dithiolanes and their fused derivatives

Phenylisoselenocyanate was reacted with 1 and 3-chloroprop-1-yne in DMF in the presence of triethyl amine to

give (Z)-2-(4-methyl-3-phenyl-1,3-selenazol-2(3H)-ylidene)-3-oxo-3-phenylpropanenitrile 146 (Scheme 50).124

Cl+ N C SePh +

Et3N/DMF, rtN

Se

MePh

CN

O Ph

146 (50%)

1

Scheme 50.

(3-Oxo-3-phenyl-2-(4-vinyl-1,3-dithiolan-2-ylidene)propanenitrile 148 in 61% yield was prepared by treat-

ing 1 with CS2 in stirring Me2SO containing NaH. Then the resulting 147 was cyclocondensed with 1,4-

dichlorobut-2-ene (Scheme 51).125,126

1

CH2ClClH2C

S

SCN

O

PhCS2R

CN

O

HS SNa

DMSO, NaH

147 148 (60%)

Scheme 51.

4. Others 5-membered rings with 3 or 4 heteroatoms

1,3-Dipolar cycloaddition of compound 1 with ethyl 2-(4-(chloro(hydroxyimino)methyl)phenoxy)acetate 149

gave 3,5-disubstituted 1,2,4-oxadiazole 150 (Scheme 52).127

PhMe, 2 h, rt

Cl

NOH

OEtO2C

OEtO2C

NO

N

Ph

O+ 1

149150

Scheme 52.

Bis-1,3,4-thiadiazolidine 152 was synthesized via cycloaddition of compound 143, which was prepared

from the reaction of 1 with phenylisothiocyanate with bis-hydrazonoyl chloride 151 in DMF containing potas-

sium hydroxide (Scheme 53).128,129

705

KHIDRE and ABDELWAHAB/Turk J Chem

+

152 (74%)

Cl

NCl

N

NHPhPhHN

i) KOH, DMF, 3 h, rtii) PhNCS, 5 h, reflux

N

S

N

S

NNPh Ph

NC

PhOC COPh

CN

1

RCN

O

PhHN SNa

151143

Scheme 53.

2-Azidobenzaldehyde 153 undergoes base-catalyzed condensation with 1 to yield tetrazolo[1,5-a ]quinoline

154 (Scheme 54).130

+

piperidine, EtOH

N3

CHON N

NN

O Ph

154 (71%)

1

153

Scheme 54.

1,4,5-Trisubstituted-1,2,3-triazoles 155 were regioselectively prepared via organocatalytic enamide-azide

cycloaddition reaction of compound 1 with azide (Scheme 55).131

+N NN

CNPh

RO

PhCN

Et2NH (5 mol%)

DMSO, 70 oC

N3R

R = Ph (92%); 4-ClC6H4 (96%), 3-ClC6H4 (94%); 3-CF3C6H4 (91%); 4-CF3C6H4 (99%);4-O2NC6H4 (91%); 3-Me,4-ClC6H3 (94%); 4-OMeC6H4 (87%); 4-OHC6H4(98%); 3,5-Me2C6H3 (91%);4-iPrC6H4 (95%); PhCH2(80%)

155

Scheme 55.

5. Conclusion

Benzoylacetonitriles are versatile and convenient intermediates for preparation of heterocyclic compounds due

to the presence of 3 active moieties: nitrile, carbonyl, and active methylene functions. This survey attempted to

summarize the synthetic potential of benzoylacetonitriles, as starting precursor, in the synthesis of 5-membered

heterocycles since 1985. The synthetic methods and utility of benzoylacetonitriles in the synthesis of 6-membered

heterocycles were covered in separate review articles.17f,g

706

KHIDRE and ABDELWAHAB/Turk J Chem

References

1. a) Tverdokhlebov, A. V.; Andrushko, A. P., Tolmachev, A. A.; Shishkina, S. V.; Shishkin, O. V. Synthesis 2008,

2701–2706.b) Ploypradith, P.; Kagan, R. K.; Ruchirawat, S. J. Org. Chem. 2005, 70, 5119–5125.

2. Logoglu, E.; Yilmaz, M.; Katircioglu, H.; Yakut, M.; Mercan, S. Med. Chem. Res. 2010, 19, 490–497.

3. El-Hawash, S. A.; Habib, N. S.; Fanaki, N. H. Pharmazie 1999, 54, 808–813.

4. Cao, P.; Weinstock, J.; Kingsbury, W. D.; Leach, C. A.; Kizhakkethil-George, S. K.; Nicholson, B. WO 2010114881,

2010; http://worldwide.espacenet.com/numberSearch?locale=en EP

5. Kalwania, G. S.; Gorsi, B. L.; Sharma, Savita; Sharma, M. Pharmazie 1994, 49, 452–453.

6. Farghaly, A.-R.; El-Kashef, H. ARKIVOC 2006, (xi), 76–90.

7. Bardiot, D.; Chaltin, P.; Christ, F.; Debyser, Z.; De Maeyer, M.; Marchand, A.; Marchand, D.; Voet, A. WO

2010130842, 2010; http://worldwide.espacenet.com/numberSearch?locale=en EP

8. Sharma, P. K.; Singh, K.; Kumar, S.; Kumar, P.; Dhawan, S. N.; Lal, S.; Ulbrich, H.; Dannhardt, G. Med. Chem.

Res. 2011, 20, 239–244.

9. Ross, J. R.; Sowell, J. W. J. Heterocycl. Chem. 1987, 24, 757–65.

10. Penning, T. D.; Thomas, S. A.; Hajduk, P. J.; Sauer, D. R.; Sarris, K.; Giranda, V. L. WO 2007149907, 2007;

http://worldwide.espacenet.com/numberSearch?locale=en EP

11. Jones, P.; Muraglia, E; Ontoria Ontoria, J. M. WO 2007144669, 2007;

http://worldwide.espacenet.com/numberSearch?locale=en EP

12. Malherbe, P.; Masciadri, R.; Norcross, R. D.; Ratni, H.; Thomas, A. W. WO 2006063732, 2006;

http://worldwide.espacenet.com/numberSearch?locale=en EP

13. Scammells, P. J.; Aurelio, L.; Christopoulos, A.; Sexton, P. M.; Valant, C.; Flynn, B. L.; Linden, J. M. WO

2009049362, 2009; http://worldwide.espacenet.com/numberSearch?locale=en EP

14. Romagnoli, R.; Baraldi, P. G.; Moorman, A. R.; Iaconinoto, M. A.; Carrion, M. D.; Cara, C. L.; Tabrizi, M. A.;

Preti, D.; Fruttarolo, F.; Baker, S. P.; Varani, K.; Borea, P. A. Bioorg. Med. Chem. Lett. 2006, 16, 5530–5533.

15. Tranberg, C. E.; Zickgraf, A.; Giunta, B. N.; Luetjens, H.; Figler, H.; Murphree, L. J.; Falke, R.; Fleischer, H.;

Linden, J.; Scammells, P. J.; Olsson, R. A. J. Med. Chem. 2002, 45, 382–389.

16. Aurelio, L.; Valant, C.; Flynn, B. L.; Sexton, P. M.; Christopoulos, A.; Scammells, P. J. J. Med. Chem. 2009, 52,

4543–4547.

17. a) Abdel-Wahab, B. F.; Khidre, R. E.; Farahat, A. A. ARKIVOC 2011, i , 196–245.

b) Abdou, W. M.; Khidre, R. E. Curr. Org. Chem. 2012, 16 (7), 913–930.

c) Abdel-Wahab, B. F.; Khidre, R. E.; Farahat, A. A.; El-Ahl A.-A. S. ARKIVOC 2012, i , 211–276.

d) Khidre, R. E.; Mohamed, H. A.; Abdel-Wahab, B. F. Turk. J. Chem. 2013, 37, 1–35.

e) Abdel-Wahab, B. F.; Mohamed, H. A. Turk. J. Chem. 2012, 36, 805–826.

f) Khidre, R. E.; Abdel-Wahab, B. F. Curr. Org. Chem. 2013, 17(4), 430–445.

g) Abdel-Wahab, B. F.; El-Mansy, M. F.; Khidre, R. E. J. Iran. Chem. Soc. in press.

18. Magnus, N. A.; Staszak, M. A.; Udodong, Uko E.; Wepsiec, J. P. Org. Process Res. Develop. 2006, 10, 899–904.

19. Attanasi, O. A.; De Crescentini, L.; Santeusanio, S.; Serra-Zanetti, F.; McKillop, A.; Liao, Z. J. Chem. Soc., Perkin

Tran.1 : 1992, 8, 1009–1014.

20. Sherif, S. M.; Mohareb, R. M.; Elgemeie, G. E. H.; Singh, R. P. Heterocycles 1988, 27, 1579–1583.

21. Wang, H.-Y.; Mueller, D. S.; Sachwani, R. M.; Kapadia, R.; Londino, H. N.; Anderson, L. L. J. Org. Chem. 2011,

76, 3203–3221.

22. O’Callaghan, C. N.; McMurry, T. B. H. J. Chem. Res., Synop. 1999, 8, 458–459.

707

KHIDRE and ABDELWAHAB/Turk J Chem

23. Burgaz, E. V.; Yilmaz, M.; Pekel, A. T.; Oektemer, A. Tetrahedron 2007, 63, 7229–7239.

24. Yilmaz, E. V. B.; Yilmaz, M.; Oktemer, A. ARKIVOC 2011, (ii), 363–376.

25. Nguyen, V. H.; Nishino, H.; Kurosawa, K. Synthesis 1997, 899–908.

26. Yilmaz, M.; Uzunalioglu, N.; Tarik Pekel, A. Tetrahedron 2005, 61, 8860–8867.

27. Yilmaz, M. Helv. Chim. Acta. 2011, 94, 1335–1342.

28. Ballini, R.; Gabrielli, S.; Palmieri, A. Synlett 2010, 2468–2470.

29. Arcadi, A.; Cerichelli, G.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. Tetrahedron Lett. 2000, 41, 9195–9198.

30. Abd El-Latif, F. F.; Gohar, A. E.-K. M. N.; Fahmy, A. M.; Badr, M. Z. A. Bull. Chem. Soc. Jpn. 1986, 59,

1235–1238.

31. Hu, J.; Wei, Y.; Tong, X. Org. Lett. 2011, 13, 3068–3071.

32. Mansour, T. S. Tetrahedron Lett. 1988, 29, 3437–3440.

33. Aran, V. J.; Martin, N.; Seoane, C.; Soto, J. L.; Sanz-Aparicio, J.; Florencio, F. A J. Org. Chem. 1988, 53,

5341–5343.

34. Aziz, S. I.; Abd-Allah, S. O.; Ibrahim, N. S. Heterocycles 1984, 22, 2523–2527.

35. Lee, S.; Kim, T.; Lee, B. H.; Yoo, S.-e.; Lee, K.; Yi, Kyu Y. Bioorg. Med. Chem. Lett. 2007, 17, 1291–1295.

36. Puterova, Z.; Andicsova, A.; Vegh, D. Tetrahedron 2008, 64, 11262–11269.

37. Elnagdi, M. H.; Selim, M. A.; El Latif, F. M. Abd; Samia, S. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177,

1175–1182.

38. Fujita, M.; Seki, T.; Inada, H.; Ikeda, N.. Bioorg. Med. Chem. Lett. 2002, 12, 1607–1611.

39. Nelson, D. W.; Latshaw, S. P. WO 2008028094, 2008; http://worldwide.espacenet.com/numberSearch?locale=en EP

40. Hallas, G.; Towns, A. D. Dyes and Pigments 1996, 31, 273–289.

41. Aurelio, L.; Christopoulos, A.; Flynn, B. L.; Scammells, P. J.; Sexton, P. M.; Valant, C. Bioorg. Med. Chem. Lett.

2011, 21, 3704–3707.

42. Ayscough, A.; Owen, D. R.; Meo, P.; Pearson, D. J.; Walker, Y.; Boyce, R. J.; Zuccotto, F. WO 2007036730, 2007,

http://worldwide.espacenet.com/numberSearch?locale=en EP

43. Aurelio, L.; Valant, C.; Flynn, B. L.; Sexton, P. M.; White, Jonathan M.; Christopoulos, A.; Scammells, P. J. J.

Med. Chem. 2010, 53, 6550–6559.

44. Luetjens, H.; Zickgraf, A.; Figler, H.; Linden, J.; Olsson, R. A.; Scammells, P. J. J. Med. Chem. 2003, 46, 1870–

1877.

45. Sommen, G.; Comel, A.; Kirsch, G. Tetrahedron 2003, 59, 1557–1564.

46. Aurelio, L.; Flynn, B. L.; Scammells, P. J. Aust. J. Chem. 2009, 62, 402–406.

47. Mlochowski, J.; Potaczek, P. Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 1115–1123.

48. Lisiak, R.; Mlochowski, J. Synth. Commun. 2009, 39, 4271–4281.

49. Pennell, A. M. K.; Aggen, J. B.; Wright, J. J. Kim; Sen, S.; Mcmaster, B. E.; Dairaghi, D. J.; Chen, W.; Zhang,

P. WO 2005056015, 2005; http://worldwide.espacenet.com/numberSearch?locale=en EP

50. Singh, S. P.; Naithani, R.; Aggarwal, R.; Prakash, Om. Synth. Commu. 2004, 34, 4359–4367.

51. Reddy, G. J.; Latha, D.; Rao, K. S. Org. Prep. Proced. Int. 2004, 36, 494–498.

52. Reddy, P. S. N.; Reddy, P.; Reddy, G. J.; Rao, K. S. Heterocycl. Commu. 2004, 10, 163–166.

53. Nam, N. L.; Grandberg, I. I.; Sorokin, V. I. Chem. Heterocycl. Compd. 2002, 38, 1371–1374.

54. Kim, I.; Song, J. H.; Park, C. M.; Jeong, J. W.; Kim, H. R.; Ha, J. R.; No, Z.; Hyun, Y.-L.; Cho, Y. S.; Kang, N.

S; Jeon, D. Bioorg. Med. Chem. Lett. 2010, 20, 922–926.

55. Suryakiran, N.; Ramesh, D.; Venkateswarlu, Y. Green Chem. Lett. Rev. 2007, 1, 73–78.

708

KHIDRE and ABDELWAHAB/Turk J Chem

56. Rao, B. R.; Venkateshwarlu, G.; Sunitha, P.; Kumar, K. S. Org. Chem.: Indian J. 2008, 4, 235–239; Chem. Abstr.

2008, 151, 8365.

57. Gao, Y.; Lam, Y. J. Comb. Chem. 2010, 12, 69–74.

58. Suryakiran, N.; Reddy, T. S.; Latha, K. A.; Prabhakar, P.; Yadagiri, K.; Venkateswarlu, Y. J. Mol. Catal. A:

Chem. 2006, 258, 371–375.

59. Wager, T. T. WO 2005000303, 2005, http://worldwide.espacenet.com/numberSearch?locale=en EP

60. Moreno, O.; Natarajan, S.; Duncan, D. F. WO 2009067410, 2009;

http://worldwide.espacenet.com/numberSearch?locale=en EP

61. Thiele, D. J.; Neef, D. W.; Mendoza, J. S. US 20110112073A1, 2011;

http://worldwide.espacenet.com/numberSearch?locale=en EP

62. Nam, N. L.; Grandberg, I. I.; Sorokin, V. I. Chem. Heterocycl. Compd. 2003, 39, 937–942.

63. Dastrup, D. M.; Yap, A. H.; Weinreb, S. M.; Henry, J. R.; Lechleiter, A. J. Tetrahedron 2004, 60, 901–906.

64. Wang, P.; Xie, Z.; Hong, Z.; Tang, J.; Wong, O.; Lee, C.-S.; Wong, N.; Lee, S. J. Mater. Chem. 2003, 13, 1894–1899.

65. Su, W.-N.; Lin, T.-P.; Cheng, K.-M.; Sung, K.-C.; Lin, S.-K.; Wong, F. F. J. Heterocycl. Chem. 2010, 47, 831–837.

66. Furet, P.; Martiny-Baron, G.; McCarthy, C.; Rasetti, V.; Vaupel, A. WO 2006072589, 2006;

http://worldwide.espacenet.com/numberSearch?locale=en EP

67. Weinreb, S. M.; Bebbington, M. W. P. E-EROS Encyclopedia of Reagents for Organic Synthesis 2001; Chem.

Abstr. 2001, 149, 287794.

68. Abdalla, M. M.; Abdel-Wahab, B. F.; Amr, A.-G. E. Monatsh. Chem. 2009, 140, 129–137.

69. Rida, S. M.; Ashour, F. A.; El-Hawash, S. A. M.; El-Semary, M. M.; Badr, M. H. Arch. Pharm. 2007, 340, 185–194.

70. Brooks, C.; Cleary, P. A.; Goodman, K. B.; Peace, S.; Philp, J.; Sehon, C. A.; Smethurst, C.; Watson, S. P. WO

2007014054, 2007; http://worldwide.espacenet.com/numberSearch?locale=en EP

71. Bagley, M. C.; Davis, T.; Dix, M. C.; Widdowson, C. S.; Kipling, D. Org. Biomol. Chem. 2006, 4, 4158–4164.

72. Badiger, S.; Behnke, D.; Betschart, C.; Chaudhari, V.; Chebrolu, M.; Costesta, S.; Hintermann, S.; Pandit, C. WO

2011076744, 2011; http://worldwide.espacenet.com/numberSearch?locale=en EP

73. Shablykin, O. V.; Brovarets, V. S. Russ. J. Gen. Chem. 2007, 77, 1480–1481; Chem. Abstr. 2007, 149, 9961.

74. Sawhney, S. N.; Gupta, A.; Sharma, P. K.; Rashmi, N. Indian J. Chem., Sect B, 1991, 30B, 589–594.

75. Surmont, R.; Verniest, G.; De Kimpe, N. Org. Lett. 2010, 12, 4648–4651.

76. Elmegeed, G. A.; Ahmed, H. H.; Hussein, J. S. Eur. J. Med. Chem. 2005, 40, 1283–1294.

77. Selleri, S.; Gratteri, P.; Costagli, C.; Bonaccini, C.; Costanzo, A.; Melani, F.; Guerrini, G.; Ciciani, G.; Costa, B.;

Spinetti, F.; Martini, C.; Bruni, F. Bioorg. Med. Chem. 2005, 13, 4821–4834.

78. Blass, B. E.; Srivastava, A.; Coburn, K. R.; Faulkner, A. L.; Janusz, J. J.; Ridgeway, J. M.; Seibel, W. L. Tetrahedron

Lett. 2004, 45, 619–621.

79. Vasquez, T. E., Jr.; Nixey, T.; Chenera, B.; Gore, V.; Bartberger, M. D.; Sun, Y.; Hulme, C. Mol. Diversity 2003,

7, 161–164; Chem. Abstr. 2003, 141, 140384.

80. Bagley, M. C.; Davis, T.; Dix, M. C.; Murziani, P. G. S.; Rokicki, M. J.; Kipling, D. Future Med. Chem. 2010, 2,

203–213.

81. El-Gendy, Z.; Abdel-Rahman, R. M. Indian J. Chem., Sect B, 1989, 28B, 647–653.

82. Farghaly, A.-R. ARKIVOC 2010, (ix ), 177–187.

83. Ege, G.; Gilbert, K.; Maurer, K. Chem. Ber. 1987, 120, 1375–1395.

84. Blass, B. E.; Srivastava, A.; Coburn, K. R.; Faulkner, A. L.; Janusz, J. J.; Ridgeway, J. M.; Seibel, W. L. Tetrahedron

Lett. 2004, 45, 1275–1277.

709

KHIDRE and ABDELWAHAB/Turk J Chem

85. Abdelhamid, A. O.; Zohdi, H. F.; Sallam, M. M. M.; Ahmed, N. A. Molecules 2000, 5, 967–973.

86. Abdelhamid, A. O.; Abed, N. M.; Al-Fayez, F. M. Phosphorus, Sulfur Silicon Relat. Elem. 2000, 156, 35–52.

87. Abdehamid, A. O.; Parkanyi, C.; Shawali, A. S.; Abdalla, M. A. J. Heterocycl. Chem. 1984, 21, 1049–1054.

88. Abdelhamid, A. O.; El Shiaty, F. H. H. Phosphorus, Sulfur Silicon Relat. Elem. 1988, 39, 45–49.

89. Attaby, F. A.; Zaki, M. Y.; Abdelhamid, A. O.; Ramadan, N. A. Arch. Pharm. Res. 1990, 13, 314–318.

90. Dawood, K. M.; Ragab, E. A.; Farag, A. M. J. Chem. Res., Synop. 2003, 11, 685–686.

91. Abdelhamid, A. O.; El-Ghandour, A. H.; El-Reedy, A. A. M. J. Chin. Chem. Soc. 2008, 55, 406–413.

92. Nassar, E.; Abdel-Aziz, H. A.; Ibrahim, H. S.; Mansour, A. M. Sci. Pharm. 2011, 79, 507–524.

93. Hassaneen, H. M.; Fahmi, A. A.; Abbas, I. M.; Shawali, A. S. Org. Prep. Proced. Int. 1989, 21, 119–124.

94. Donohue, S. R.; Dannals, R. F.; Halldin, C.; Pike, V. W. J. Med. Chem. 2011, 54, 2961–2970.

95. Hassaneen, H. M.; Mousa, H. A. H.; Abed, N. M.; Shawali, A. S. Heterocycles 1988, 27, 695–706.

96. Hassaneen, H. M.; Mousa, H. A. H.; Shawali, A. S. J. Heterocycl. Chem. 1987, 24, 1665–1668.

97. Abunada, N. M.; Hassaneen, H. M.; Kandile, N. G.; Miqdad, O. A. Molecules 2008, 13, 1501–1517.

98. Abdelhamid, A. O.; Abbas, I. M.; Abdallah, M. A.; Fahmi, A. A.; Shawali, A. S. J. Heterocycl. Chem. 1985, 22,

813–816.

99. Abdelhamid, A. O.; Khalifa, F. A.; El-Shiaty, F. H. H. Egypt. J. Pharm. Sci. 1991, 32, 331–339.

100. Fray, M. J.; Bull, D. J.; Kinns, M. A. J. Chem. Res., Synop. 1992, 1, 10–11.

101. Ibrahim, N. S.; Mohamed, M. H.; Elnagdi, M. H. Arch. Pharm. 1987, 320, 487–491.

102. Ege, G.; Gilbert, K.; Maurer, K. Chem. Ber. 1987, 120, 1375.

103. Ashour, H. M. A.; Abdel Wahab, A. E. Arch. Pharm. 2009, 342, 238–252.

104. Gudmundsson, K. S.; Johns, B. A.; Weatherhead, J. Bioorg. Med. Chem. Lett. 2009, 19, 5689–5692.

105. Moreno, O.; Natarajan, S.; Duncan, D. F. WO 2007095340, 2007;

http://worldwide.espacenet.com/numberSearch?locale=en EP

106. Ibrahim, N. S.; Mohamed, M. H.; Mahfouz, Y.; Elnagdi, M. H. J. Prakt. Chem. 1989, 331, 375–379.

107. Wang, X.; Ma, L.; Yu, W. Synthesis 2011, 15, 2445–2453.

108. Zohdi, H. F.; Khalifa, F. A.; Abdelhamid, A. O.; El-Tourgman, A. A. J. Chem. Res., Synop. 1991, 11, 322–323.

109. Abdelhamid, A. O.; Negm, A. M.; Abdeen, T. M. S. Arch. Pharm. 1988, 321, 913–915.

110. Takikawa, H.; Hikita, K.; Suzuki, K. Synlett. 2007, 14, 2252–2256.

111. a)Takase, A.; Murabayashi, A.; Sumimoto, S.; Ueda, S.; Makisumi, Y. Heterocycles 1991, 32, 1153–1158.

b) Artman III, G. D.,; Elliott, J. M.; Ji, N.; Liu, D.; Ma, F.; Mainolfi, N.; Meredith, E.; Miranda, K.; Powers, J.

J.; Rao, C. WO 2010066684, 2010; http://worldwide.espacenet.com/numberSearch?locale=en EP

112. Markovic, R.; Vitnik, Z.; Baranac, M.; Juranic, I. J. Chem. Res., Synop. 2002, 10, 485–489.

113. Shejul, P. B.; Kadam, N. H.; Vyavahare, A. V.; Kasawar, G. B.; Panpaliya, P. Asian J. Chem. 2008, 20, 5427–5433.

114. Markovic, R.; Baranac, M.; Dzambaski, Z.; Stojanovic, M.; Steel, P. Tetrahedron 2003, 59, 7803–7810.

115. Markovic, R.; Dzambaski, Z.; Stojanovic, M.; Steel, P; Baranac, M. J. Serb. Chem. Soc. 2003, 68, 383–390; Chem.

Abstr. 2003, 139, 164398.

116. Markovic, R.; Baranac, M.; Dzambaski, Z. New and general rearrangement reactions of stereo-defined push-pull

4-oxothiazolidine derivatives, Slovenski Kemijski Dnevi, Maribor, Slovenia, Sept. 25–26, 2003, 774–780; Chem.

Abstr. 2004, 141, 314212.

117. Markovic, R.; Shirazi, A.; Dzambaski, Z.; Baranac, M.; Minic, D. J. Phys. Org. Chem. 2004, 17, 118–123.

118. Markovic, R.; Pergal, M. M.; Baranac, M.; Stanisavljev, D.; Stojanovic, M. ARKIVOC 2006, (ii), 83–90.

710

KHIDRE and ABDELWAHAB/Turk J Chem

119. Kamila, S.; Koh, B.; Biehl, E. R. J. Heterocycl. Chem. 2006, 43, 1609–1612.

120. Sams, A. G.; Mikkelsen, G. K.; Larsen, M.; Torup, L.; Brennum, L. T.; Schroder, T. J.; Bang-Andersen, B. Bioorg.

Med. Chem. Lett. 2010, 20, 5241–5244.

121. Rudorf, W. D.; Haase, C. DD 240544, 1985; http://worldwide.espacenet.com/numberSearch?locale=en EP

122. Rudorf, W. D.; Schwarz, R. DD 227705, 1985; http://worldwide.espacenet.com/numberSearch?locale=en EP

123. Rudorf, W. D.; Schwarz, R.; Augustin, M. Z. Chem. 1985, 25, 323–324; Chem. Abstr. 1986, 105, 152977.

124. Sommen, G. L.; Linden, A.; Heimgartner, H. HeIv. Chim. Acta. 2008, 91, 209–219.

125. Rudorf, W. D.; Schwarz, R.; Augustin, M. J. Prakt. Chem. 1986, 328, 215–221.

126. Rudorf, W. D.; Schwarz, R. DD 226889, 1985, http://worldwide.espacenet.com/numberSearch?locale=en EP

127. Cho, S. Y.; Ahn, J. H.; Ha, J. D.; Kang, S. K.; Baek, J. Y.; Han, S. S.; Shin, E. Y.; Kim, S. S.; Kim, K. R.; Cheon,

H. G.; Choi, J.-k. Bull. Korean Chem. Soc. 2003, 24, 1455–1464.

128. Dawood, K. M.; Elwan, N. M. J. Chem. Res. 2004, 4, 264–266.

129. Shawali, A. S.; Sayed, A. R.; Zayed, M. M. J. Sulfur Chem. 2011, 32, 311–314.

130. Porter, T. C.; Smalley, R. K.; Teguiche, M.; Purwono, B. Synthesis 1997, 7, 773–777.

131. Danence, L. J. T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Chem. Eur. J. 2011, 17, 3584–3587.

711