study guide for light, color, and optics

20
Study Guide for the Reflections Event Thursday, January 23, 2014 This study guide provides material to assist coaches in teaching concepts of light, color and optics to 4 th and 5 th graders. Some background material on atomic properties of matter is also included, but kids will not be responsible for understanding it. This study guide draws heavily from Paul G. Hewitt’s Conceptual Physics, an excellent introduction to many physical concepts. What is light? Light consists of electromagnetic waves. Electricity can be static, like what holds a balloon to the wall or makes your hair stand on end. Magnetism can also be static like a refrigerator magnet. But when electricity and magnetism change or move together, they make waves electromagnetic waves. Shake the end of a stick back and forth in still water, and you will produce waves on the water surface. Shake an electrically charged rod back and forth in empty space, and you will produce electromagnetic waves. Waves can be described in terms of their wavelength, frequency, and energy. The source of all waves water, sound, and light waves is something that is vibrating. The frequency of the vibrating source is the same as the frequency of the resulting wave. How quickly something vibrates is its frequency (the number of vibrations per second). When something vibrates more frequently we say it has a high frequency. A lower frequency means fewer vibrations per second. Wavelength is the distance from wave crest to wave crest (think of the distance between successive water wave peaks). Something that vibrates more frequently (with higher frequency) typically has greater energy. Wavelength, frequency, and energy are all related to each other. Shorter wavelengths result from a source that is vibrating more frequently (higher frequency), with greater energy. Longer wavelengths result from a source that is vibrating less frequently (lower frequency) with lower energy. The wavelengths of the light we can see range from 400 to 700 nanometers (or billionths of a meter). The frequency is the number of waves that pass a point in space during any time interval, usually one second. We measure it in units of vibrations (waves) per second, or Hertz. The frequency of visible light determines its color, and ranges from about 430 trillion hertz, seen as red, to about 750 trillion hertz, seen as violet. Electromagnetic waves in this frequency range activate the “electrical antennae” in the retina of the eye.

Upload: c5h4rpd

Post on 22-Jul-2016

225 views

Category:

Documents


2 download

DESCRIPTION

The Electromagnetic SpectrumTransparent MaterialsSelective ReflectionSummary of color addition and subtractionRefractionThe Principle of Least TimePrismsReview Questions

TRANSCRIPT

Page 1: Study Guide for Light, Color, And Optics

Study  Guide  for  the  Reflections  Event  Thursday,  January  23,  2014  

 This  study  guide  provides  material  to  assist  coaches  in  teaching  concepts  of  light,  color  and  optics  to  4th-­  and  5th-­graders.  Some  background  material  on  atomic  properties  of  matter  is  also  included,  but  kids  will  not  be  responsible  for  understanding  it.  This  study  guide  draws  heavily  from  Paul  G.  Hewitt’s  Conceptual  Physics,  an  excellent  introduction  to  many  physical  concepts.    What  is  light?  Light  consists  of  electromagnetic  waves.  Electricity  can  be  static,  like  what  holds  a  balloon  to  the  wall  or  makes  your  hair  stand  on  end.  Magnetism  can  also  be  static  like  a  refrigerator  magnet.  But  when  electricity  and  magnetism  change  or  move  together,  they  make  waves  -­‐  electromagnetic  waves.  Shake  the  end  of  a  stick  back  and  forth  in  still  water,  and  you  will  produce  waves  on  the  water  surface.  Shake  an  electrically  charged  rod  back  and  forth  in  empty  space,  and  you  will  produce  electromagnetic  waves.    Waves  can  be  described  in  terms  of  their  wavelength,  frequency,  and  energy.      The  source  of  all  waves-­‐  water,  sound,  and  light  waves-­‐  is  something  that  is  vibrating.  The  frequency  of  the  vibrating  source  is  the  same  as  the  frequency  of  the  resulting  wave.  How  quickly  something  vibrates  is  its  frequency  (the  number  of  vibrations  per  second).  When  something  vibrates  more  frequently  we  say  it  has  a  high  frequency.  A  lower  frequency  means  fewer  vibrations  per  second.      Wavelength  is  the  distance  from  wave  crest  to  wave  crest  (think  of  the  distance  between  successive  water  wave  peaks).      Something  that  vibrates  more  frequently  (with  higher  frequency)  typically  has  greater  energy.      Wavelength,  frequency,  and  energy  are  all  related  to  each  other.    Shorter  wavelengths  result  from  a  source  that  is  vibrating  more  frequently  (higher  frequency),  with  greater  energy.  Longer  wavelengths  result  from  a  source  that  is  vibrating  less  frequently  (lower  frequency)  with  lower  energy.      The  wavelengths  of  the  light  we  can  see  range  from  400  to  700  nanometers  (or  billionths  of  a  meter).  The  frequency  is  the  number  of  waves  that  pass  a  point  in  space  during  any  time  interval,  usually  one  second.  We  measure  it  in  units  of  vibrations  (waves)  per  second,  or  Hertz.  The  frequency  of  visible  light  determines  its  color,  and  ranges  from  about  430  trillion  hertz,  seen  as  red,  to  about  750  trillion  hertz,  seen  as  violet.    Electromagnetic  waves  in  this  frequency  range  activate  the  “electrical  antennae”  in  the  retina  of  the  eye.    

Page 2: Study Guide for Light, Color, And Optics

       The  Electromagnetic  Spectrum    In  a  vacuum  (a  space  devoid  of  matter)  all  electromagnetic  waves  move  at  the  same  speed  (“c”  for  constant  speed).  The  waves  differ  from  one  another  in  their  frequency.  The  classification  of  EM  waves  according  to  their  frequency  (wavelength  and  energy)  is  the  EM  spectrum.  Electromagnetic  waves  are  everywhere.  Our  universe  is  a  dense  sea  of  radiation.    

   

     

Page 3: Study Guide for Light, Color, And Optics

 Transparent  Materials    Just  as  a  sound  wave  can  force  objects  into  vibration,  a  light  wave  can  force  electrons  of  materials  into  vibration.      Materials  such  as  glass  and  water  allow  light  to  pass  through  in  straight  lines-­‐  these  materials  are  transparent  to  light.      Atomic  Model  (background  information)    To  understand  how  light  gets  through  a  transparent  material  we  must  first  be  able  to  imagine  what  an  atom  looks  like.  For  this,  a  useful  model  to  describe  an  atom  is  a  solar  system  model  of  the  atom.  An  atom  is  made  up  of  a  dense  nucleus  and  orbiting  electrons,  much  like  our  solar  system  has  planets  orbiting  the  sun.      Now  visualize  the  electrons  in  an  atom  to  be  connected  by  springs  to  the  atomic  nucleus.  When  light  shines  on  them,  they  vibrate.  Materials  that  are  springy  (elastic)  respond  more  to  vibrations  at  some  frequencies  than  others.  (Everything  has  a  natural  frequency  at  which  it  tends  to  vibrate.  Using  another  sound  analogy,  just  as  bells  ring  at  particular  frequencies,  with  high  or  low  pitch,  and  tuning  forks  vibrate  at  a  given  frequency,  so  do  electrons  have  natural  frequencies  that  depend  on  how  strongly  they  are  attached  to  their  atoms  or  molecules.)      

   Electrons  in  glass  have  a  natural  frequency  in  the  ultraviolet  range.  When  UV  light  shines  on  glass,  resonance  occurs  and  vibrations  build  (like  pushing  someone  on  a  swing  and  having  your  pushes  match  the  natural  back  and  forth  of  the  swing  causing  it  to  go  higher  and  higher).  Resonating  atoms  in  glass  can  hold  onto  the  energy  of  UV  light  for  quite  a  long  time.  During  this  time  the  atom  vibrates  and  collides  with  neighboring  atoms  and  gives  up  its  energy  as  heat.  Thus,  glass  is  NOT  transparent  to  UV  light;  the  energy  of  the  UV  light  is  not  re-­‐emitted.    At  lower  frequencies,  like  visible  light,  electrons  in  glass  vibrate  just  a  little  so  they  hold  onto  the  energy  for  less  time,  with  fewer  chances  for  collisions  with  neighboring  atoms  and  molecules,  and  less  energy  transformed  to  heat.  The  energy  of  the  vibrating  electrons  is  re-­‐emitted  as  visible  light.      

Page 4: Study Guide for Light, Color, And Optics

Clear  glass  is  transparent  to  all  frequencies  of  visible  light.  The  frequency  of  the  re-­‐emitted  light  that  is  passed,  in  a  chain  of  absorptions  and  re-­‐emissions,  from  molecule  to  molecule  through  the  glass,  is  the  same  as  the  frequency  of  light  that  shined  on  it.  The  principal  difference  is  a  slight  time  delay  between  absorption  (“gulp”)  and  re-­‐emission  (“burp”).      This  time  delay  results  in  a  lower  average  speed  of  light  through  a  transparent  material.    In  a  vacuum,  light  travels  at  300,000  kilometers  per  second  (186,000  miles  per  second);  this  is  a  constant,  “c”.  Although  light  travels  extremely  fast,  its  speed  is  still  finite,  and  in  vacuum  that  speed  is  independent  of  frequency,  wavelength,  and  energy.  For  example,  it  takes  sunlight  about  eight  minutes  to  travel  from  the  Sun  to  the  Earth.  Light  travels  a  bit  slower  than  this  in  the  atmosphere  (but  it  is  still  usually  rounded  to  “c”).  In  water  it  travels  75%  of  c  (.75  x  c);  in  glass  approximately  67%  of  c;  and  in  diamond  41%  of  c.      Infrared  waves,  with  frequencies  lower  than  visible  light,  vibrate  not  just  the  tiny  springy  electrons,  but  entire  molecules  of  the  glass.  This  vibration  increases  the  internal  energy  and  temperature  of  the  glass-­‐  which  is  why  IR  waves  are  often  called  heat  waves.      Glass  is  transparent  to  visible  light,  but  not  to  ultraviolet  and  most  infrared  light.      Opaque  Materials    Opaque  materials  absorb  light  without  re-­emission.  The  vibrations  caused  by  light  turn  into  random  kinetic  energy  (energy  of  motion)-­‐  internal  energy-­‐  and  they  become  slightly  warmer.      The  Earth’s  atmosphere  is  transparent  to  visible  light  and  some  IR  ,  but,  fortunately,  it  is  quite  opaque  to  high  frequency  UV  waves.  Small  amounts  of  UV  getting  through  can  cause  sunburns.      Color  Perception  (background)    Strictly  speaking,  the  colors  of  objects  are  not  in  the  substances  of  the  objects,  or  even  in  the  light  they  emit  or  reflect.  Color  is  in  the  eye  of  the  beholder.  Color  vision  is  possible  because  of  the  cones  in  the  retina  of  the  eye.    The  retina  is  the  back  part  of  the  eye  that  has  cells  that  respond  to  light.  Cones  resonate  to  the  incoming  light  like  little  antennae.  The  color  we  see  depends  on  the  frequency  of  light  we  see.  Different  frequencies  are  seen  as  different  colors,  from  low-­‐frequency  red  light  to  high-­‐  frequency  violet  light,  with  an  infinite  number  of  hues  in  between.  We  group  them  into  seven  colors  –  red,  orange,  yellow,  green,  blue,  indigo,  and  violet.  Together  these  colors  appear  white.    

Page 5: Study Guide for Light, Color, And Optics

   Selective  Reflection    Most  objects  reflect  light,  rather  than  emit  light,  and  they  reflect  only  some  of  the  light  that  shines  on  them.  This  reflected  portion  of  the  light  gives  the  objects  their  color.  Colors  of  things  depend  on  the  colors  of  light  that  illuminate  them.    A  red  apple  reflects  red  light.  If  sunlight  is  passed  through  a  prism  to  separate  the  colors  (frequencies),  the  apple  will  appear  brown  or  black  in  all  parts  except  when  it  is  illuminated  by  the  red  part  of  the  rainbow.    This  shows  that  the  red  apple  has  the  ability  to  reflect  red  light,  but  not  other  kinds  of  light.  (Green  leaves  reflect  green  and  absorb,  to  varying  degrees,  other  light.  Some  of  the  energy  of  the  absorbed  light  is  used  to  drive  the  chemical  reactions  involved  in  photosynthesis.)    Atomic  View  (background):  Atoms  and  molecules  have  their  own  natural  frequencies.  Electrons  of  one  type  of  atom  (those  in  the  skin  of  the  apple)  can  be  set  into  vibration  at  frequencies  that  are  different  from  the  frequencies  of  other  atoms  (those  in  the  leaves).  At  the  resonant  frequencies  (where  the  electrons  natural  vibrations  are  magnified),  light  is  absorbed.  At  frequencies  above  and  below  the  resonant  frequency,  light  is  re-­‐emitted.  Reflected  light  travels  back  into  the  medium  from  which  it  came.    A  white  sheet  of  paper  reflects  all  visible  frequencies  and  will  appear  the  same  color  as  the  light  that  shines  on  it.  A  black  piece  of  paper  absorbs  all  frequencies,  and  reflects  none.  (It  absorbs  the  light  because  the  frequency  of  vibration  of  the  light  waves  matches  the  natural  frequency  of  vibration  of  the  atoms  in  the  object,  so  the  electrons  get  really  “bouncy”.  As  a  result,  atoms  collide  with  one  another  and  the  object  gets  warmer.)  Black  objects  get  warmer  when  light  shines  on  them.    The  reflected  colors  of  most  objects  are  not  pure  single  frequency  colors,  but  a  spread  of  frequencies.      Color  Depends  on  the  Light  Source    Objects  can  only  reflect  frequencies  present  in  the  illuminating  light  source.  Candle  light  does  not  have  much  blue  in  it;  it  is  yellowish.  Incandescent  light  bulbs  give  light  that  is  richer  in  the  lower  frequencies,  enhancing  the  reds.  Fluorescent  lights  give  more  of  the  high  frequencies,  so  blues  are  enhanced  under  them.      It  is  sometimes  difficult  to  tell  the  true  color  of  objects.  Colors  appear  different  in  sunlight  from  when  illuminated  by  various  lamps.    

Page 6: Study Guide for Light, Color, And Optics

Mixing  Colored  Light    When  sunlight  is  passed  through  a  prism,  or  a  glass  of  water  to  land  on  a  wall,  the  resulting  rainbow  colored  spectrum  demonstrates  that  white  light  from  the  sun  contains  all  the  visible  frequencies.  Solar  frequencies  are  most  intense  in  the  yellow-­‐green  part  of  the  spectrum  and  our  eyes  have  evolved  to  have  maximum  sensitivity  in  this  range.  (We  see  a  yellow-­‐green  fire  engine  better  than  a  red  one.)    The  perception  of  white  light  also  results  from  the  combination  of  only  red,  green  and  blue  light  because  we  have  cones  in  our  eyes  that  are  sensitive  to  the  low  (red),  middle  (green)  and  high  (blue)  frequency  range  of  the  visible  spectrum.      If  we  project  these  three  colors,  independently,  on  a  screen,  overlapping  each  other,  the  colors  add  to  produce  white.      When  beams  of  light  reflect  off  a  white  screen,  the  light  is  seen  as  an  additive  mixture  because  the  beams  are  added  together  before  we  see  them.      By  adding  red,  green,  and  blue,  in  various  amounts,  we  can  produce  any  color  in  the  spectrum.    Red,  Green,  and  Blue  are  called  additive  primary  colors                                      Red                                +                                  Green                                    +                                    Blue                      =                    White    A  television  creates  various  colors  by  mixing  together  bright  red,  green  and  blue  light  in  different  proportions.  This  is  also  how  computer  monitors  (RGB  monitors)  generate  colors.    Cyan  (turquoise),  magenta  (light  purple),  and  yellow  are  the  complementary  colors  of  red,  green,  and  blue.      

   

Page 7: Study Guide for Light, Color, And Optics

Try  this:  Using  the  color  paddles  in  your  kit,  experiment  to  determine  what  combination  of  primary  colors  gives  each  of  the  complementary  colors.      Directions:  Hold  a  red  color  paddle  in  front  of  one  flashlight,  and  a  green  color  paddle  in  front  of  another  flashlight  (or  rubber  band  1-­‐2  sheets  of  red  cellophane  over  one  flashlight,  and  green  cellophane  over  another  flashlight).  Go  into  a  darkened  room,  turn  the  flashlights  on  and  shine  them  against  a  white  wall  so  that  the  beams  overlap.  Record  below  the  color  combinations  you  discover:    Red  +  Green  =  _________             Red  +  Blue  =  ___________   Green  +  Blue  =  _____________    Key:    R  +  G  =  Yellow                                  R  +  B  =  Magenta     G  +  B  =  Cyan    Complementary  colors  are  any  two  colors  that  can  be  added  together  to  produce  white.    Red  +  Cyan  =  White     Green  +  Magenta  =  White                Blue  +  Yellow  =  White    Now,  since  R  +  G  +  B  =  White,  can  you  see  why  red  and  cyan  are  complementary  colors?        Answer:  Red  +  Cyan  =  R  +  (G  +  B)  =  White    Mixing  Colored  Pigments    Mixing  colored  paints  (inks,  dyes,  crayons)  is  an  entirely  different  process  from  mixing  colored  lights.  When  colored  lights  are  mixed,  we  are  adding  frequencies  of  light  (colors).    When  paints  are  mixed,  we  are  subtracting  frequencies.    Another  way  to  make  colors  is  to  subtract  (absorb)  some  of  the  frequencies  of  light,  and  thereby  remove  them  from  the  white  light  combination.  The  absorbed  colors  are  the  ones  you  don't  see  -­‐-­‐  you  see  only  the  colors  that  come  bouncing  back  to  your  eye.  This  is  known  as  subtractive  color,  and  it's  what  happens  with  paints  and  dyes.  The  paint  or  dye  molecules  absorb  specific  frequencies  and  bounce  back,  or  reflect,  other  frequencies  to  your  eye.  The  reflected  frequency  (or  frequencies)  are  what  you  see  as  the  color  of  the  object.  Recall  the  example  of  the  red  apple  and  the  green  leaves.  The  green  leaves  contain  a  pigment  called  chlorophyll,  which  absorbs  the  blue  and  red  colors  of  the  spectrum  and  reflects  the  green.    

 

Page 8: Study Guide for Light, Color, And Optics

 Atomic  View  (background):  You  can  explain  absorption  in  terms  of  atomic  structure.  When  the  frequency  of  the  incoming  light  wave  is  at  or  near  the  natural  vibration  frequency  of  the  electrons  in  the  material,  the  electrons  resonate  and  hold  onto  the  energy  longer.  As  a  result,  the  amplitude  of  the  electron  oscillations  increases  and  atoms  collide,  giving  up  this  energy  as  heat.      Let’s  consider  color  in  terms  of  the  three  primary  colors  red,  green  and  blue.  Red  pigment  absorbs  green  and  blue  light  and  allows  red  to  get  through.  This  is  selective  transmission.        

   Think  about  it:  What  light  would  be  reflected  by  a  mixture  of  red  and  green  pigments?  Recall  that  when  red  and  green  colored  lights  are  added,  the  complementary  color  yellow  is  seen.  Do  you  think  that  red  and  green  paints  would  mix  to  form  yellow  paint?  (Certainly  not!)  Now,  based  on  the  model  of  selective  transmission  (subtractive  color),  seen  above,  determine  what  light  would  be  reflected  by  a  mixture  of  red  and  green  paints.    Try  it:    Using  your  primary  color  paddles,  overlap  the  red  and  green  paddles  so  that  one  flashlight  (that  is  set  to  deliver  diffuse  light,  rather  than  a  sharp  concentrated  beam)  shines  through  both  paddles  onto  a  white  wall  about  3  ft.  away.  What  light  comes  through?    Answer:    None-­‐  the  mixture  absorbs  all  the  white  light  (RGB).  The  red  pigment  absorbs  the  green  and  blue  frequencies  of  white  light  and  the  green  pigment  absorbs  the  red  (and  blue)  frequencies  of  white  light.            

Page 9: Study Guide for Light, Color, And Optics

Ink  or  paint  colors  can  appear  quite  different  if  the  light  shining  on  them  is  itself  colored.  For  example,  red  paint  under  blue  light  may  appear  black  because  the  red  paint  subtracts  the  blue  light,  leaving  no  light  at  all!  Try  it!    The  mixture  of  absorbing  pigments  results  in  a  subtraction  of  colors;  the  observer  sees  the  light  left  over  after  absorption  takes  place.      Students  may  want  to  experiment  with  other  color  combinations.  It  is  good  scientific  practice  to  first  predict  what  will  happen,  then  test  your  hypothesis.    What  light  would  be  reflected  from  a  mixture  of  cyan  and  yellow  pigments?      Answer:  Green  is  reflected  (red  and  blue  are  absorbed)      What  light  would  be  reflected  from  a  mixture  of  magenta  and  yellow  pigments?    Answer:  Red  is  reflected  (green  and  blue  are  absorbed)      What  light  would  be  reflected  from  a  mixture  of  cyan  and  magenta?      Answer:    Blue  is  reflected  (red  and  green  are  absorbed)    Magenta,  yellow  and  cyan  are  the  subtractive  primary  colors.  In  painting  and  printing,  the  primaries  are  often  said  to  be  red,  yellow  and  blue.  More  precisely,  they  are  magenta,  yellow  and  cyan.  They  can  be  combined  to  produce  any  color  in  the  spectrum  in  painting  or  printing.      

Page 10: Study Guide for Light, Color, And Optics

Summary  of  color  addition  and  subtraction    The  basic  rules  of  color  addition  and  color  subtraction  can  be  deduced  from  the  figure  below  and  demonstrated  with  color  paddles  and  flashlights.        

     Additive  Primary  Colors      We  see  that  the  sum  of  blue  and  red  is  magenta;  the  sum  of  green  and  blue  is  cyan;  and  the  sum  of  red  and  green  is  yellow.      We  say  that  magenta  is  opposite  green;  cyan  is  opposite  red;  and  yellow  is  opposite  blue.      A  color  plus  its  opposite  appear  white.  Again,  any  two  colors  that  add  together  to  produce  white  are  complementary  colors.          Subtractive  Primary  Colors    When  white  light  passes  through  overlapping  sheets  of  the  subtractive  colors,  all  frequencies  are  absorbed  (subtracted)  and  we  have  black.      Where  only  yellow  and  magenta  overlap,  all  frequencies  are  subtracted  but  red;  where  cyan  and  magenta  overlap,  all  frequencies  are  subtracted  but  blue;  where  yellow  and  cyan  overlap,  all  frequencies  are  subtracted  but  green.      

Page 11: Study Guide for Light, Color, And Optics

Reflection  from  Mirrors    Most  things  do  not  emit  their  own  light;  they  are  visible  because  they  re-­‐emit  most  of  the  light  reaching  their  surface  from  a  source  –  the  sun  or  a  lamp,  or  the  illuminated  sky.    Light  that  shines  on  a  surface  is  usually  re-­‐emitted  at  the  same  frequency  or  absorbed  and  turned  into  heat.    When  re-­‐emitted  light  is  returned  to  the  medium  from  which  it  came,  it  is  reflected.      Atomic  View  (Background):  Recall  that  light  interacts  with  atoms  as  sound  interacts  with  tuning  forks.  When  light  strikes  a  surface  the  electrons  of  the  atoms  and  molecules  behave  like  optical  tuning  forks-­‐  they  are  set  into  vibration.  These  vibrating  electrons  send  out  electromagnetic  (light)  waves.      Let’s  look  at  the  case  where  the  reflection  is  from  a  very  smooth  surface  like  a  mirror.  Imagining  light  as  a  ray  makes  it  easy  to  describe  reflection,  refraction,  (and  scattering).      In  reflection,  a  light  ray  strikes  a  smooth  surface,  such  as  a  mirror,  and  bounces  off  in  one  directon.    A  reflected  ray  always  comes  off  the  surface  of  a  material  at  an  angle  equal  to  the  angle  at  which  the  incoming  ray  hit  the  surface.  This  is  the  law  of  reflection.    We  say  "the  angle  of  incidence  equals  the  angle  of  reflection."    

     Of  course,  we  live  in  an  imperfect  world  and  not  all  surfaces  are  smooth.  When  light  strikes  a  rough  surface  (like  an  apple,  leaf,  paper,  or  painting),  incoming  light  rays  reflect  at  all  sorts  of  angles  because  the  surface  is  uneven.  This  scattering  occurs  in  many  of  the  objects  we  encounter  every  day.  The  surface  of  paper  is  a  good  example.  You  can  see  just  how  rough  it  is  if  you  peer  at  it  under  a  microscope.  When  light  hits  paper,  the  waves  are  reflected  in  all  directions.  This  is  what  makes  paper  so  incredibly  useful  -­‐-­‐  you  can  read  the  words  on  a  printed  page  regardless  of  the  angle  at  which  your  eyes  view  the  surface.  In  contrast,  when  light  rays  hit  a  smooth  surface  (such  as  a  mirror)  the  rays  all  reflect  off  the  surface  at  the  same  angle;  light  is  not  scattered.  

Page 12: Study Guide for Light, Color, And Optics

For  example,  when  practicing  for  the  reflection  competition  using  the  mirrors  to  direct  a  flashlight  beam  from  mirror  to  mirror  (and  to  the  target),  you  may  find  it  challenging,  sometimes,  to  be  sure  that  your  beam  is  hitting  the  next  mirror.  This  is  because  the  light  reflects  off  the  mirror  at  a  very  specific  angle:  the  angle  of  reflection.      Curved  Mirrors    

   A  convex    or  diverging  mirror,  which  bulge  outward,  reflects  at  a  wider  angle  near  its  edges  than  at  its  center,  creating  a  slightly  distorted  image  that's  smaller  than  actual  size.    

         Concave  or  converging  mirrors  curve  inward  like  a  spoon  (the  side  that  holds  soup).  This  gives  these  mirrors  the  ability  to  create  an  image  when  their  curvature  bounces  light  to  a  specific  area  in  front  of  them.      

     

Page 13: Study Guide for Light, Color, And Optics

 Refraction    Refraction  occurs  when  a  ray  of  light  passes  from  one  transparent  medium  (air,  let's  say)  to  a  second  transparent  medium  (water).  When  this  happens,  light  changes  speed  and  the  light  ray  bends,  either  toward  or  away  from  what  we  call  the  normal  line,  an  imaginary  straight  line  that  runs  at  a  right  angle  (perpendicular)  to  the  surface  of  the  object.  The  amount  of  bending,  or  angle  of  refraction,  of  the  light  wave  depends  on  how  much  the  material  slows  down  the  light.      

   The  cause  of  refraction  is  the  changing  of  the  average  speed  of  the  light  going  from  one  transparent  medium  to  another.  Consider  pulling  a  wagon  along  a  smooth  sidewalk  onto  a  grass  lawn  or  edge  of  sandy  soil.  If  the  wheels  meet  the  grass  lawn  at  an  angle  (that  is,  if  one  wheel  hits  the  soft  surface  before  the  other)  they  will  be  deflected  from  their  straight-­‐line  course.  The  wheel  that  hit  the  soft  surface  will  slow  down  causing  the  faster  moving  wheel  to  pivot  about  the  slower  wheel.  (It  travels  farther  in  the  same  time  the  other  wheel  travels  a  lesser  distance.)  This  bends  the  direction  of  the  rolling  wheels  toward  the  “normal.”    

     

Page 14: Study Guide for Light, Color, And Optics

The  Principle  of  Least  Time    Light  (rays)  travel  in  straight  lines  and  take  the  path  that  requires  the  least  time.  Light  bends  and  takes  a  longer  path  when  it  encounters  a  transparent  medium  (like  water  or  glass),  at  an  angle.  The  longer  path  is  still  the  path  that  requires  the  least    time.  It  is  like  the  path  taken  by  a  lifeguard  to  rescue  a  struggling  swimmer  in  the  diagram  below.  The  lifeguard  can  run  faster  on  hard  sand  than  he/she  can  move  through  the  water  swimming.  Taking  a  straight-­‐line  path  to  the  swimmer  takes  more  time  than  running  a  longer  path  on  sand  so  that  the  path  to  swim  is  made  shorter.    This  is  the  path  that  takes  the  least  time.  For  light,  the  angle  of  incidence  is  larger  than  the  angle  of  refraction  by  an  amount  that  depends  on  the  relative  speeds  of  light  in  air  and  water.      

     Illusions    The  refraction  of  light  is  responsible  for  many  illusions.  

Bend  a  pencil  using  light    

You  Will  Need:  Water,  a  pencil,  and  a  clear  water  glass  

What  to  Do:  

1. Fill  the  glass  with  water  so  it  is  about  2/3  full.  

2. Hold  the  pencil  straight  up  and  down  in  the  glass  so  that  it  is  touching  the  bottom.  

3. Take  a  look  from  the  side.  How  does  it  look?  (It  probably  still  looks  straight.)  

4. Now  let  the  pencil  lean  to  the  side  of  the  cup.  You  don't  need  to  hold  it  anymore.  The  top  part  of  the  pencil  should  still  be  sticking  out  of  the  water.  

5. How  does  it  look  from  the  side  this  time?  (It's  bent?!  Whoa...  how  did  that  happen?)  

Page 15: Study Guide for Light, Color, And Optics

 When  light  enters  the  water,  it  can't  move  as  fast  and  it  has  to  slow  down  slightly.  It's  kind  of  like  how  if  you  are  walking,  you  can  walk  at  a  normal  speed  but  if  you  walk  in  water,  you  can't  walk  quite  as  fast.  

If  light  from  the  image  enters  the  water  straight,  then  the  image  looks  normal  -­‐  which  was  what  you  originally  did  when  the  pencil  was  straight  up  and  down.  If  the  light  enters  the  water  at  an  angle,  then  the  change  in  speed  between  the  open  air  and  water  causes  the  light  beam  to  bend  away  from  its  original  path.  When  the  pencil  was  at  an  angle,  the  image  was  at  a  bigger  angle  in  the  water  than  in  the  air  and  made  the  pencil  look  like  it  was  bent.  

For  a  pencil  partly  immersed  in  water,  the  submerged  part  seems  closer  to  the  surface  than  it  really  is.      

   A  fish  appears  nearer  to  the  surface  and  closer  than  it  really  is    

   Because  of  refraction,  submerged  objects  appear  to  be  magnified.  The  apparent  position  is  closer  and  thus  gives  the  illusion  of  being  bigger.    

Page 16: Study Guide for Light, Color, And Optics

Prisms    The  natural,  or  resonant,  frequency  of  most  transparent  material  is  in  the  UV  range  so  the  electrons  in  the  atoms  and  molecules  of  transparent  materials  absorb  UV  light.    The  high  frequencies  of  visible  light  (violet,  blue,  green)  have  a  lower  average  speed  through  transparent  material  than  the  lower  frequencies  (yellow,  orange,  red).  This  is  because  light  frequencies  near  the  natural  frequencies  of  the  atoms  and  molecules  of  the  transparent  material  interact  more  often  in  the  absorption/re-­‐emission  sequence  and,  therefore,  have  a  lower  average  speed.      Think  about  it:  When  walking  across  a  crowded  room,  if  there  are  a  lot  of  people  who  are  “on  your  wavelength,”  you  make  several  momentary  stops  to  greet  people  along  the  way.  Your  average  speed  across  the  room  is  less  because  of  the  time  delays  of  your  stops.    Similarly,  the  speed  of  light  is  less  because  of  the  time  delays  of  interactions  with  atoms  along  its  path.    Different  frequencies  of  light  travel  have  different  speeds  through  transparent  materials.  Because  they  travel  at  different  speeds  they  refract  differently  and  bend  by  different  amounts.  The  lower  the  average  speed  through  the  transparent  material,  the  more  the  light  is  refracted  (bent).  In  a  prism,  light  is  bent  twice  making  the  separation  of  colors  more  noticeable.      

   The  colors  of  rainbows  are  spread  (dispersed)  from  the  sunlight  by  thousands  of  tiny  water  drops  that  act  like  prisms.    

Page 17: Study Guide for Light, Color, And Optics

                                                                             Lenses      A  lens  is  a  curved,  transparent  material  (usually  of  glass)  that  refracts  (bends)  light  rays.  Various  types  of  lenses  have  different  functions.  The  lens  of  an  eye  or  camera  focuses  light  rays.  In  telescopes,  microscopes,  and  magnifying  glasses,  lenses  enlarge  the  apparent  size  of  objects.  A  lens  in  a  reducing  glass  reduces  apparent  size.  In  a  motion-­‐picture  or  slide  projector,  lenses  project  images  so  that  they  will  appear  on  a  screen.  Some  lenses  are  used  to  bend  light  rays  in  such  a  way  as  to  correct  distortions.  The  lenses  used  in  eyeglasses  correct  a  person's  vision  or  enhance  it  by  making  distant  objects  appear  closer  or  small  objects  appear  bigger.      Lenses  serve  to  refract  light  at  each  surface.  As  a  ray  of  light  enters  the  transparent  material,  it  is  refracted.  As  the  same  ray  exits,  it's  refracted  again.  The  overall  effect  of  the  refraction  at  these  two  boundaries  is  that  the  light  ray  has  changed  directions.        Think  of  a  lens  as  a  set  of  several  matched  prisms  of  glass  arranged  as  so    

   The  prisms  refract  incoming  parallel  light  rays  so  they  converge  to  (or  diverge  from)  a  point.      In  both  cases,  the  greatest  deflection  of  rays  occurs  at  the  outermost  prisms  (because  they  have  the  greatest  angle  between  the  two  refracting  surfaces.)  

Page 18: Study Guide for Light, Color, And Optics

   Review  Questions    Light    Does  visible  light  make  up  a  relatively  large  part  or  a  relatively  small  part  of  the  electromagnetic  spectrum?    Electromagnetic  Spectrum    What  is  the  principal  difference  between  radio  waves  and  visible  light?    What  color  do  the  lowest  visible  frequencies  appear?    How  does  the  wavelength  of  light  relate  to  its  frequency?    Transparent  Materials    What  happens  to  the  energy  in  ultraviolet  light  when  it  shines  into  glass?    What  happens  to  the  energy  in  visible  light  when  it  shines  into  glass?      Why  are  the  answers  for  the  above  two  questions  different?    How  does  the  average  speed  of  light  in  glass  compare  to  its  speed  in  a  vacuum?    Opaque  Materials    Why  do  opaque  materials  become  warmer  when  light  shines  on  them?    Light  and  Color    What  is  the  relationship  between  the  frequency  of  light  and  its  color?    Selective  Reflection    What  happens  to  white  light  that  shines  on  white  paper  and  what  happens  to  white  light  that  shines  on  black  ink?    Does  the  color  of  an  object  appear  different  when  lit  by  candle  light  compared  to  the  light  from  a  fluorescent  lamp?  Why?    Selective  Transmission      What  is  a  pigment?    

Page 19: Study Guide for Light, Color, And Optics

What  color  light  is  transmitted  through  a  piece  of  red  glass?    Which  will  warm  quicker  in  sunlight,  a  clear  or  a  colored  piece  of  glass?  Why?    Mixing  Colored  Light    How  can  you  demonstrate  that  white  light  is  a  combination  of  all  the  colors  of  the  spectrum?    What  frequency  ranges  of  the  visible  light  spectrum  do  red,  green,  and  blue  light  occupy?    Why  are  red,  green,  and  blue  called  the  additive  primary  colors?    Mixing  Colored  Pigments    Why  does  a  mixture  of  red  and  green  pigments  appear  blackish?    Why  does  a  mixture  of  cyan  and  yellow  pigments  appear  green?    Why  are  magenta,  yellow,  and  cyan  called  the  subtractive  primary  colors?    If  you  look  with  a  magnifying  glass  at  the  pictures  printed  in  full  color  in  magazines,  you’ll  notice  three  colors  of  ink  plus  black.  What  are  these  colors?    Rules  for  Color  Mixing    What  color  do  you  see  when  equal  intensities  of  red,  blue,  and  green  light  are  combined?    What  color  do  you  see  when  equal  intensities  of  blue  light  and  green  light  are  combined?      What  color  do  you  see  when  equal  intensities  of  red  light  and  cyan  light  are  combined?    Why  are  red  and  cyan  called  complementary  colors?    Reflection  and  Refraction    Distinguish  between  reflection  and  refraction.    Law  of  Reflection    What  is  the  law  of  reflection?    

Page 20: Study Guide for Light, Color, And Optics

Mirrors    Is  the  law  of  reflection  the  same  for  flat  mirrors  and  curved  mirrors?    Which  side  of  a  spoon  has  the  shape  of  a  concave  mirror?  A  convex  mirror?    If  you  look  taller  and  thinner  in  a  funhouse  mirror,  does  that  mirror  have  a  convex  or  concave  surface?      If  you  look  shorter  and  wider  in  a  funhouse  mirror,  does  that  mirror  have  a  convex  or  concave  surface?    Refraction    If  you  look  at  a  drinking  straw  that  is  leaning  in  a  glass  of  water,  will  the  submerged  part  of  the  straw  appear  closer  or  farther  from  the  surface?    If  you  were  to  try  to  spear  a  fish  that  is  several  feet  in  front  of  you,  would  you  aim  your  spear  above,  or  below,  or  directly  at  the  fish  you  see  to  make  a  direct  hit?      Challenge!  If  you  instead  used  light  from  a  flashlight  as  your  “spear,”  would  you  aim  above,  below,  or  directly  at  the  fish  you  see?      Does  refraction  make  the  bottom  of  a  swimming  pool  look  deeper  or  shallower?    Which  travels  faster  through  glass,  red  light  or  blue  light?  Which  is  refracted  more?    Lenses    Is  a  converging  lens  thicker  at  its  center  or  at  its  edges?    Is  a  diverging  lens  thicker  at  its  center  or  at  its  edges?    Which  type  of  lens  can  be  used  to  bring  sunlight  together  at  a  point  to  start  a  fire?    Other  Resources:  The  Ann  Arbor  Hands-­‐On  Museum  has  Light  and  Optics  exhibits-­‐  including  color,  mirrors,  lenses,  optical  illusions,  just  to  name  a  few.    Bill  Nye  the  Science  Guy  Youth  DVD’s:  Light  optics,  Light  and  Color;  Magic  School  Bus  Makes  a  Rainbow:  a  Book  about  Color  both  available  at  the  Ann  Arbor  District  Library    Do  an  internet  search  using  combinations  of  keywords:  Light  and  Color  for  Kids    Much  of  the  material  and  some  figures  in  this  study  guide  are  drawn  from  Paul  G.  Hewitt’s  Conceptual  Physics.