stripping ratio

13
9. Open pit mining 9.1 Introduction 9.1.1 Basic description of open pit mining Open pit mining is applied to the extraction of near-surface deposits. Overburden removal (stripping) and mining are carried out systematically from a series of benches (steps) as the pit is progressively deepened. The bench layout is designed to produce an overall slope angle that is compatible with slope stability so that an open pit resembles an inverted cone. As the base of the pit is deepened, the upper benches are pushed out so as to maintain the required slope angle. Overburden is stripped from benches to uncover the deposit and transported to a dump at some point remote from the operation itself. As the depth increases the ratio of overburden to volume of ore extracted steadily increases and, at a certain point, the cost of overburden removal makes the operation uneconomic. The remainder of the deposit might then be worked by underground mining. Advantages of surface mining compared with underground mining. Higher Productivity - due to: greater degree of mechanisation, larger equipment can be used - economies of scale, fewer personnel required Lower operating costs per tonne - due to: higher productivity, concentration of production, less constraint on production level (easier materials handling) Lower grade deposits can be mined Reduced development time (generally). Therefore more favourable cash flow and quicker repayment of capital investment. Greater geological certainty. Safer operations Disadvantages of surface mines: Large proportion of waste to ore. High level of environmental impact. Affected by climatic conditions. Depth limit Fig. 9.1: Palabora open pit copper mine, South Africa 59530725.doc 8 8/3/2011

Upload: mirko-cuaquira

Post on 03-Oct-2015

184 views

Category:

Documents


21 download

DESCRIPTION

s

TRANSCRIPT

  • 9. Open pit mining

    9.1 Introduction

    9.1.1 Basicdescriptionofopenpitmining

    Openpitminingisappliedtotheextractionofnearsurfacedeposits.Overburdenremoval(stripping)andminingarecarriedoutsystematicallyfromaseriesofbenches(steps)asthepitisprogressivelydeepened.Thebenchlayoutisdesignedtoproduceanoverallslopeanglethatiscompatiblewithslopestabilitysothatanopenpitresemblesaninvertedcone.Asthebaseofthepitisdeepened,theupperbenchesarepushedoutsoastomaintaintherequiredslopeangle.Overburdenisstrippedfrombenchestouncoverthedepositandtransportedtoadumpatsomepointremotefromtheoperationitself.Asthedepthincreasestheratioofoverburdentovolumeoforeextractedsteadilyincreasesand,atacertainpoint,thecostofoverburdenremovalmakestheoperationuneconomic.Theremainderofthedepositmightthenbeworkedbyundergroundmining.

    Advantagesofsurfaceminingcomparedwithundergroundmining. HigherProductivitydueto:greaterdegreeofmechanisation,largerequipmentcanbeused

    economiesofscale,fewerpersonnelrequired Loweroperatingcostspertonnedueto:higherproductivity,concentrationofproduction,

    lessconstraintonproductionlevel(easiermaterialshandling) Lowergradedepositscanbemined Reduceddevelopmenttime(generally).Thereforemorefavourablecashflowandquicker

    repaymentofcapitalinvestment. Greatergeologicalcertainty. Saferoperations

    Disadvantagesofsurfacemines: Largeproportionofwastetoore. Highlevelofenvironmentalimpact. Affectedbyclimaticconditions. Depthlimit

    Fig.9.1:Palaboraopenpitcoppermine,SouthAfrica

    59530725.doc 8 8/3/2011

  • 9.1.2 PitLimits

    Thepitlimitsaretheverticalandlateralextenttowhichtheopenpitminingmaybeeconomicallyconducted.Establishmentofthepitlimitsisthefirststageinmineplanning(Laurich1990).Theydeterminethe: amountofeconomicallyrecoverableore, metalcontent, volumeofwastetobeexcavatedandmoved, locationofwastedumps,tailingslagoons,processingplant,accessroadsandallothersurface

    facilities.

    9.2 Stripping ratio

    9.2.1 Definitions

    Thepitlimitsandsequenceofminingaredeterminedultimatelybyeconomics.Theconceptofstrippingratio(SR)isthemethodofanalysisused.Itisameasureoftheamountofwastethatmustberemovedinordertomineoneunitofore.

    Grade Thecontentofvaluablemetal(%,g/torkg/t)inamineral.Cutoffgrade Thegradeatwhichthevalueofthemetalequalsthecostofminingand

    processingthemineral.Ore MineralthatisabovethecutoffgradeWaste Mineralthatisbelowthecutoffgrade

    TheSRatanylevelofthepitisdefinedas:

    SR is alsosometimes expressedas tonnes/tonne (tonnageof ore removedper tonneof ore).However,thefirstdefinitionismoreconvenientasthecostsofwasteremovalaredirectlyrelatedtoitsvolumeandtherevenuefromtheoreisdirectlyrelatedtoitsmass.

    ThePitLimitisdefinedbytheeconomicstrippingratioSRecon.Thisvalueisthestrippingratioatwhichthecostsofminingandprocessingtheoreandstrippingthewasteareequaltotherevenuefromtheore.

    9.2.2 Simplestrippingratiocalculation

    Todeterminethepitlimitforasimpleorebody(Figure9.2) CalculatetheeconomicSR: Multiplybyoredensitytoconverttom3/m3(multiplyingtoplineofSRequationtoobtainnet

    valueoforein$/Bm3

    59530725.doc 9 8/3/2011

    =

    tm

    recovered ore of tonnesremoved wasteof volume SR

    3

    )($/Bmcost stripping waste($/t)cost processing ore - ($/t)cost mining ore - ($/t)ore from revenue /t)(Bm SR 3

    3econ =

  • EstimateontheorebodysectionwherethepitlimitmaylieanddrawinlineABCattherequiredslopeangle

    TheSRatthispoint=AB/BCm3/m3

    ComparewitheconomicSR;iflower,movelinedownto,sayA1B1C1;ifhigher,movebackuptoA2B2C2

    ContinueuntilSRrepresentedbylineonsectionequalseconomicSR

    Inpractice,theprocedureismuchmorecomplicated;forexample,theoregradewillusuallyvarythroughouttheorebody.AsimplesolutionistoexpresstheeconomicSRasafunctionofgradethendrawastraight line graphof economic SRvsgrade. For anygradevalue intheorebody,thecorrespondingeconomicSRcanbereadoffthegraph.

    Fig.9.2:Simplepitlimitestimation

    9.3 Overburden stripping strategies

    Describedbelowarethefourbasictypesofstrippingschedule.Thefirsttwoareextremecasesandwouldnotbeappliedinpractice.(BucyrusErie1979,Fourie&Dohm,1992)

    9.3.1 DecliningStrippingRatioMethod(Figure9.3)

    Aseachbenchoforeismined,allthewasteonthatbenchisremovedtothepitlimit.

    Advantages: goodoperatingspace goodaccessibilitytooreonnextbench, allequipmentworkingonsamelevel, nocontaminationfromwasteblastingabovetheore, equipmentrequirementsaminimumtowardsthedepletionoftheorebody. operatingcoststendtobeconstantinlateryearsastheincreasedminingcostwithdepthis

    offsetbythedecreasedstrippingratio.

    Disadvantage:overalloperatingcostsaremaximumduringtheinitialyearswhenmaximumprofitsarerequiredtohandleinterestchargesandrepaytheprojectcapitalinvestment.

    59530725.doc 10 8/3/2011

  • Fig.9.3:Reducingstrippingratiomethod

    9.3.2 IncreasingStrippingRatioMethod(Figure9.4)

    Onlysufficientstrippingrequiredtouncovertheoreiscarriedout.Thismethodallowsformaximumprofitintheinitialyearsofoperationandgreatlyreducestheinvestmentriskinwasteremovalfororetobeminedatalaterdate.Itmaybeappliedwheretheeconomicsoftheoperationandcutoffstrippingratioisliabletochangeonveryshortnotice.Themaindisadvantageistheimpracticabilityofoperatingalargenumberofstackednarrowbenchessimultaneouslytomeetregularproductionrequirements.

    Fig.9.4:Increasingstrippingratiomethod

    9.3.3 ConstantStrippingRatioMethod(Figure9.5)

    Wasteisremovedatarateapproximatelyequaltotheoverallstrippingratio.Themethodisacompromisethatremovestheextremeconditionsoftheformertwomethodsdescribed.Equipmentfleetsizeandlabourrequirementsarerelativelyconstant.

    Fig.9.5:Constantstrippingratiomethod59530725.doc 11 8/3/2011

  • 9.3.4 PhasedMiningSequence(Figure9.6)

    Inpractice,theoptimumstrippingsequenceforalargedepositwouldfeaturealowstrippingratiointheinitialandfinalyearsofoperation.Thisplanhasthefollowingadvantages.

    Ahighlevelofprofitcanbegeneratedattheoutsettoimprovethecashflow. Thelabourandequipmentfleetcanbebuiltuptomaximumsizeoveraperiodoftime.This

    approachisalsoadvantageousfromacashflowpointofview. Labourandequipmentrequirementsdecreasegraduallytowardstheendoftheminelife. Distinctminingandstrippingareascanbeoperatedsimultaneously,allowingforflexibilityin

    planning. Thenumberofminingandstrippingfacesrequiredisnottoohigh. Inalargeorebody,theminingandstrippingareasaresufficientlywidetocreategood

    operationalconditions.

    Fig.9.6:Phasedminingsequence

    9.4 Bench design

    9.4.1 Benchheight

    Benchheightisthemostimportantparameterasitlargelydeterminestheotherdimensions.Valuesrangefromabout2.5mforsmallgoldminesto20mforlargeopenpits.Thefinalbenchheightmaybesubdividedforextractionpurposesintoanumberofsubbenchesorflitches.Benchheightisinfluencedby:

    1. excavatingequipmentdimensions(reach,operatingheight)2. sizeandgeometryoforebodysmallbenchesusedfornarrowlodesorlensesinorderto

    minimisedilutionandfacilitategoodgradecontrol.

    Benchheightisnolongerlimitedbydrillingdepth.Theprimedeterminingparameteristhemaximumdiggingheightdimensionofashovel.Table9.1givessomeadvantagesanddisadvantagesofmaximizingthebenchheight.

    Table9.1:FeaturesofhighwidebenchesAdvantages DisadvantagesHighproductivityandefficiencyCanuselargescaleequipmentLargerblastsFewerequipmentmovesandsetupsFacilitatesmoreeffectivesupervision

    LessselectivityMoredilutionFewerworkingplaces,thereforelessflexibilityFlatterworkingslopes(largershovels)

    59530725.doc 12 8/3/2011

  • Generally,itismoreadvantageous,intermsofdrillingandshovelefficiency,todesignbenchesashighaspossible.

    a) DrillingEfficiency

    Agreaterbenchheightreducessetuptimepermeterdrilled.Also,foragivenblastdesign,thesubgradedrillingrequiredisindependentofthebenchheight.Thismeansthatthegreaterthebenchheight,thegreaterthetonnageyieldpermeterdrilledorperkgofexplosiveused.Considerbenchheightsof10mand12m,eachtobedrilledona5mx5mpatternwitha1msubgrade.Therespectivedrillingyieldsare:

    Drilling Y ield = Burden x S pacing x B ench Heigh t x Densit yHole Depth

    Assumingrockdensity=2.5tonnes/m3,fora10mbench:

    Drilling Y ield = 5 x 5 x 10 x 2.510 + 1

    tonnes / m= 56 8.

    Fora12mbench:

    Drilling Y ield = 5 x 5 x 12 x 2.512 + 1

    tonnes / m= 57 7.

    Theyieldforthe12mbenchrepresentsanincreaseindrillingyieldofsome1.6%.Althoughseeminglysmall,for10,000mofdrilling,itwouldresultinanextra9000tonnesproduction.Similarly,drillingcostspertonnearereducedasbenchheightisincreased

    b) ShovelEfficiency

    Increasedbenchheightalsoimprovesoverallproductivityofshovels,FELs,orexcavators.Thenumberofrowsinablastingpatternisgenerallygovernedbytheholediameterandexplosivetype.Iftheseparametersarefixedforagivenoperation,thetotalvolumeofbenchthatcanbeblastedatoncedependsonthebenchheight.Thegreaterthevolumeofbrokenground,thelowerthenumberoftimesashovelhastobemovedinorderforblastingoperationstobecarriedout.

    9.4.2 Benchwidth

    Figure9.7ashowsthecommonterminologyforopenpitslopes.Abenchisahorizontalledgefromwhichdrilling,blasting,excavationandloadingoforeorwasteiscarriedout.AWorkingbenchisonethatisintheprocessofbeingmined.Thewidthextractedfromtheworkingbenchiscalledthecut.Theworkingbenchwidthisdeterminedbythedimensionsoftrucksandtherequiredreachofexcavatingequipment.Figure9.7billustratesaslopeprofilecuttingacrossanoperatingbench.Itshowsanarrowbenchwidthofonlysome3m,notsufficientlywidetoaccommodateequipment.However,eachbenchissystematicallyminedfromoneend,givingadequateroomfordrillingrigs,shovelsandtrucks.

    Afterthecuthasbeenremovedabenchofwidthtypically2.53.0mislefttocatchandcollectmaterial,whichslidesdownfromupperbenches.Normally,thebenchslopeangleis7580oandabermeverysecondorthirdbenchissufficient.

    59530725.doc 13 8/3/2011

  • 9.4.3 Benchangle

    Benchfacesarenormallyminedassteeplyaspossible.Thesteeperthebenchangle,thesmallerthestrippingratio.Safeanglesaredeterminedby:

    geotechnicalconsiderations,takingintoaccountthecohesiveandfrictionalpropertiesoftherockandthecharacter,spacingandorientationofjointsandbeddingplanes.

    thedipoftheorebody.

    Therearetwoangleswhichdefineabenchdesign:

    Overallslopeangle Theangleconsistentwithslopestabilityoverthefullheight/depthofthemine.Usuallyliesbetween45oand60o.Theoverallangleisafunctionofthebenchfaceangleandthebenchwidth.Notethatahaulroadonapitslopewillflattentheoverallslopeangle.

    Benchfaceangle Themaximumangleconsistentwithstabilityofasinglebench(say,5to10minheight).Typicalvaluesliebetween60oand80o.

    Theoverallslopeangleislessthanthebenchfaceanglebecausethelargertheslope,themoreplanesofweaknessithas.

    Fig.9.7a:Pitslopecrosssection,withtypicaldimensions Fig.9.7bGeometryofworkingbench(Atkinson1992)

    9.5 Method of working benches

    Operationsoneachbenchareconductedincycles;typically:

    1. Gradecontrolmarkoutorezoneswithtapeorsurveystaffs2. Drillblastholes3. Chargeholes4. Fireholes5. Excavateblastedmaterialandloadintotrucksforhaulageoutofpit6. Cleanbenchandpreparefordrilling

    59530725.doc 14 8/3/2011

  • 9.5.1 Miningdirection

    Orebodylensesmaybeexcavatedineitheratransverseorlongtudinaldirection.Atransverseminingdirection(digginginadirectionnormaltotheorevein)ismoresuitableforthinlenses.Itallowsbettergradecontrolandlessdilution.Withathickerlens,itmaybepossiblewithlongitudinalextractiontoblastandloadtheore,leavingthewastetemporarilyinsitu.Thenumberofworkingfacesisdeterminedbytherequiredproductionrateandequipmentcapacities.Figure9.8illustrateshowexcavationcantakeplacesimultaneouslyandonmultiplelevels.

    Fig.9.8:Miningonmultiplebenches(Hustrulid&Kuchta1995)

    9.5.2 Selectionofexcavatingequipment

    Inamine,certainproductionrequirementshavetobesatisfiedandinacivilconstructionprojecttheoperationwillhavetocomplywiththeprojectschedule.Asequipmentisveryexpensiveintermsofcapitalorcontractandoperatingcosts,itsutilisationshouldbemaximisedinordertominimisetheunitcostsofearthmoving.

    Table9.2:GuidelinesforselectionofexcavatingequipmentTypeofmachine ApplicationElectricropeshovelHydraulicexcavator(frontendloader)

    Largebenches

    Backhoesitsontopofbench,diggingdown Smallbenchesonly(

  • otherwisestated.Figure9.9showsthetwoalternativemethodsofexcavatingabenchandofspottingtrucks.

    a)Parallelcut b)Frontcut

    Fig.9.9:Methodsofexcavatingbenches(Hustrulid&Kuchta1995)

    9.6 Haul road layout

    Theformofhaulroadsmaybespiralorswitchback(zigzag).Theymayalsobeeithertemporaryorpermanent,dependingontheconfigurationoftheorebody.Wherebenchesarebeingsystematicallyworkedallroundthepitasitisdeepened,haulroadswillbeminedthroughandnewonesformedasthepitdevelops.Often,however,itispossibletoconstructpermanenthaulroadsatonesideofthepit.Thiswouldbethecaseforadippingorebody,wherethepermanenthaulroadcouldbelocatedatthefootwallandextendedasthepitdeepened(figure9.10).Notethattheinclusionofahaulroadinapitwallwilllowertheoverallslopeangleandhenceincreasethestrippingratio.Wheretheorebodydipsatashalloweranglethanthestablepitslope,constructingthehaulroadasaswitchbackonthefootwallwilltaketheoverallpitslopeclosetotheorebodydip.Thehangingwallslope,formedwithoutahaulroad,canbemadeassteepaspossible,consistentwithslopestability.

    Fig.9.10:Illustrationofhowpermanenthaulroadscanbeestablishedinafootwall

    Factorsdeterminingselectionoflayoutincludethefollowing.(Atkinson1992)1. Theswitchbacklayoutallowsapermanenthaulroadtobelocatedatonesideofthepit.2. Inlargepits,aspirallayoutcanresultinahaulagedistancethatistoogreat.3. Areaswherepotentialslopestabilityhazardsexistshouldbeavoided,possiblyeliminatingthe

    spiraloption.

    59530725.doc 16 8/3/2011

  • 4. Thepitwallsmaybetoosteeptoallowsuitablebendstobeformedforaswitchbacklayoutwithoutgreatlyincreasingthestrippingratio.

    5. Tightbendsassociatedwithaswitchbackmaybedetrimentaltotruckandtyrelife.9.7 Haul road Construction

    9.7.1 Roadbase

    Goodhaulroaddesignandconstructionpromoteslowerhaulagecostsandimprovedsafety.Roadsareconstructedwiththreeorfourlayers(figure9.10):

    1. Subgrade2. Subbase(optional)3. Base4. Wearingsurface

    Thesubgradeisthefoundationlayer,usuallycomprisingcompactedrockorsoil.Itmustbestrongenoughtobeartheloadsassociatedwithvehicles,whicharetransmittedfromtheroadsurface.

    Asubbasemayormaynotbepresent,dependingonlocalconditions.Itisusedwherethereisveryweaksubgradematerialorinareassubjecttoseverefrost.Itisgenerallyconstructedfromaclean,granularmaterial.

    Fig.9.11:Haulroadconstruction(Hustrulid&Kuchta1995)

    Thebaseisalayerofveryhighstabilityanddensity.Itsmainpurposeistodistributetheloadfromvehicletyres.Italsoservestoinsulatethesubgradefromfrostpenetrationandprotecttheupperwearingsurfacefromanyswellingorsofteningofthesubgrade.

    Thetoproadlayeristhewearingsurface,whichshouldprovidetraction,reducerollingresistance,andresistabrasion,ravelingandshear.Itisformedusuallyofcrushedrock.

    9.7.2 Straightsections

    Thecrosssectionofanopenpithaulroadfeaturesaoneortwowaytravellane,asafetybermandadrainageditch(figure9.11).Fordeterminationoflanewidth,anumberofrulesofthumbcanbeapplied,inwhichthewidestvehiclesdeterminetheroadwidth.Threeoftheserulesare:

    Theclearanceoneachsideofatruckshouldbeequaltoabouthalfthetruckwidth. For2waytraffic,thelanewidthshouldbegraterthanorequalto4xthetruckwidth.

    59530725.doc 17 8/3/2011

  • Forastraight,evengrade,onelanehaulroad,theminimumroadwidthis2timestruckwidth;fortwolanes,3.5timestruckwidth.Theroadcrosssectionshouldalsoberaisedorcrownedslightly,tofacilitatewaterrunoff.Theheightofthecrownisexpressedinmmpermeterofroadwidth.Afigureof45mm/mistypical.

    Fig.9.12:Typical2wayroadsection(Hustrulid&Kuchta1995)

    RoadGradeisdeterminedfromthetruckperformancechartswithrespecttospeedandbraking.Gradientsof4.5to6o(8to10%)areusuallyadopted,withreardumptrucksbeingthepreferredhaulageunit.A12%grademaybeusedfortrolleyassisttrucks.(Atkinson1992)

    9.7.3 Curves

    Forsharpcurves,additionalwidthmustbeincluded,bothonthecurveandthetangenttothecurve,tocoverthefrontandrearoverhangsofthevehicleandthedifficultyofnegotiatingthecurve.Arecommendedadditionalallowanceforareardumptruckona6mradiusis125%anda45mradius118%.(Atkinson1992.)Table9.3givesminimumturningradiiforarangeoftrucks,classifiedaccordingtogrossweight.Theseradiicanthenbeusedintable9.4tofindtherecommendeddesignwidthforsingleanddoublelanecurvesofaparticularminimumradius.

    Table9.3:Minimumtruckturningradius(adaptedfromHustrulid&Kuchta1995)Vehicleweightclass Grossvehicleweight(tonnes) Minimumturningradius(m)

    1 181 11.9

    Table9.4:Designwidthsforcurvesrigidbodytrucks(adaptedfromHustrulid&Kuchta1995)Radiusoninneredgeofroad(m)

    SinglelaneroadTruckcategory

    DoublelaneroadTruckcategory

    1 2 3 4 1 2 3 4Minimum 8.8 10.4 13.7 21.3 15.5 18.3 24.1 37.57.6 8.2 10.4 13.4 20.7 14.6 18.3 23.2 36.315.2 7.6 9.4 12.5 19.2 13.4 16.5 21.9 33.530.5 7.3 8.8 11.9 18.0 12.8 15.5 21.0 31.445.7 7.3 8.8 11.9 17.7 12.5 15.2 20.7 30.861.0 7.0 8.8 11.6 17.4 12.2 14.6 19.8 29.959530725.doc 18 8/3/2011

  • Tangent 7.0 8.5 11.3 17.1 12.2 14.6 19.8 29.9

    Dependingonvehiclespeedsandbendradius,acurvemayalsohavetobebanked(superelevation).Typicalsuperelevationsforminehaulroadsandtrucksarearound40mmpermeterofroadwidth(Hustrulid&Kuchta1995).Thedistancerequiredtomakethetransitionfromthenormalcrossslopesectiontothesuperelevatedsectionandbackagain(superelevationrunout)alsoneedstobeconsidered.

    9.8 Equipment

    ThefollowingdiagramsillustratesomemodernequipmentcurrentlyoperatinginAustralianmines.

    Fig.9.13:Hitachi20m3

    hydraulicshovelloadingintoKomatsu240tonnetruck

    Fig.9.14:TheKOMATSUDEMAGH655Sistheworldslargestprovenhydraulicshovelatover685tgrossweightand35m3bucket.

    Fig.9.15:TheKOMATSUHAULPAK930EisthelargesttruckinminingtodayandwasthefirsttouseACdrive.Over100930Esareoperatingworldwide,providingproductionupto320tpercycle.

    59530725.doc 19 8/3/2011

  • 9.9 References

    AtkinsonT.Designandlayoutofhaulroads.SMEMiningEngineeringHandbook,Vol2,Chapt13.4,pp13341342.SME(1992).

    BucyrusErieCompany.MinePlanning.SurfaceMiningSupervisoryTrainingProgramme,Chapt3.BucyrusErieCo.(1979).

    FourieGA,DohmGC.Openpitplanninganddesign.SMEMiningEngineeringHandbook,Vol2,Chapt13.1,pp12741297.SME(1992).

    HartmanHL.IntroductoryMiningEngineering.Wiley(1987).

    HustrulidW,KuchtaM,(1995),OpenPitMinePlanningandDesign,AABalkema,Rotterdam.

    LaurichR.Ultimatepitdefinition.SurfaceMining,2ndEdition,pp465469.SME(1990).

    59530725.doc 20 8/3/2011

    9.7.1Road base9.7.2 Straight sections9.7.3Curves