strahlentherapie / radio-onkologie · oxygen consumption diffusion. perfusion‐po2 model heat...

63
Strahlentherapie / Radio-Onkologie Stephan Scheidegger [email protected]

Upload: others

Post on 11-Sep-2019

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Strahlentherapie / Radio-Onkologie

Stephan [email protected]

Page 2: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Ziele

• grundlegende (bio)-physikalische und technische Prinzipien beschreiben können

• Anwendungsgebiete kennen

• Fachbegriffe erklären können

Page 3: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Inhalt

• Einführung Radio-Onkologie

• Arten der Strahlentherapie- Perkutan- Brachytherapie

RO

ENTG

ENTE

CH

NIK

STR

AHLE

NBI

OLO

GIE

GR

UN

DLA

GEN

RA

DIO

LOG

IE

STR

AH

LEN

PHYS

IK

Page 4: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Krebs ist eine der häufigsten Todesursachen

Zunahme an Krebsleiden durch veränderte Altersstruktur der Bevölkerung

Eine einheitliche Erkrankung Krebs gibt es nicht: Es sind über 100 bösartige Tumore mit sehr unterschiedlichem Verhalten und Ansprechen auf Therapie bekannt.

Mortalität dank verbesserter Therapie in den letzten Jahrzehnten gesenkt

Page 5: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Krebs entsteht, wenn die Wachstumskontrolle bei Zellen verloren geht und aggressives Wachstum eintritt. Gründe dafür sind Mutationen des Genoms durch:

• Gifte, chemische Karzinogene oder Asbestfasern• Strahlung• chronische Entzündungen• Viren (HPV: zervix-Karzinom, Epstein-Barr-Virus:

Burkitt-Lymphom)• spontane Mutationen

Page 6: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Tumore werden unterteilt in• gutartige (benigne) Tumore: keine

Tendenz zu Metastasen• Bösartige (maligne) Tumore: Invasives

Wachstum und starke Tendenz zur Metastasierung

Es gibt dazwischen alle möglichen Abstufungen (z.B Spinaliom = semimaligner Tumor)

Page 7: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Tumore werden unterteilt in• Karzinome (bösartige Tumore des Epithels, also

von Haut und Schleimhäuten ausgehend)• Sarkome (bösartige Tumore des

mesenchymalen Gewebe, also von Binde- und Stützgewebe sowie von peripheren Nerven ausgehden)

• Lymphome und Leukämien (bösartige Erkrankung des lymphatischen Systems und der Blutzellen nicht-solide Tumore)

Page 8: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Die häufigsten Tumore sind• Prostatakarzinom• Brustkrebs / Mammakarzinom• Kolorektale Karzinome• Gebärmutterkarzinom• maligne Lymphome• Karzinome der oberen Schluckstrasse• Schilddrüsenkarzinome

Page 9: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Heusser R et al. (2016): Schweiz. Krebsbulletin, 36, 02

Page 10: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Heusser R et al. (2016): Schweiz. Krebsbulletin, 36, 02

Page 11: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Typische Entwicklung von Tumorleiden• Tumor-Induktion• Tumorprogression• Avaskuläre Wachstumsphase• vaskuläre Phase, invasives Wachstum• Metastasierung (hämatogen, lymphogen)

Page 12: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Wachstumsphasen

N(t)

Tumorwachstum

Page 13: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Klinische Stadieneinteilung bösartiger Tumore (TNM-Klassifikation)

• T: Grösse und Nachbarschaftsbeziehung des Primärtumors (T0: Primärtumor unauffindbar, T1: kleiner Tumor (< 2 cm), T4: Tumor bricht in Nachbarorgane ein)

• N: Ausmass der regionären Lymphknotenmetastasierung (N0: keine, N3 sehr ausgedehnte Lymphknotenmetastasierung)

• M: Fernmetastasierung (M0: keine, M1: Fernmetastasen bekannt)

Page 14: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Arten der Krebstherapie• Chirurgie• Chemotherapie (CT)• Strahlentherapie (RT)• Antikörper, Immuntherapie• Hormontherapie• Hyperthermie (beglitend zu CT und oder

RT)• …

Page 15: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Therapieziele

• Kurativ: Tumorkontrolle bis zur totalen Tumor-Remission

• Palliativ: Bekämpfung der klinischen Symptome (Schmerzen!) steht im Vordergrund

Page 16: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Wirkungsweise der Strahlentherapie

• Indirekt: Ionisation führt zu freien Radikalen und Peroxidbildung in der Zelle

• Direkt: Schäden auf der DNA (abhängig vom LET)

• Schäden führen zu eingeschränkter Zellfunktion

• verminderte Reparaturfähigkeit von Tumorzellen Zelltod

Page 17: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

LQ-Modell

2log ( )S D D

log S D

Page 18: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

MHR Model

Scheidegger S, Fuchs HU, Zaugg K, Bodis S, Füchslin RM (2013): Computational and Mathematical Methods in Medicine, 2013, http://dx.doi.org/10.1155/2013/587543

Page 19: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

MHR Model

Interphasen-Tod (frühes Apoptose-Programm)

Cell Cycle Arrest, Mitosetod

Page 20: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-Onkologie

Biologisch zu beacten: R’s

• Repair (Zellreparatur)• Reoxygenierung• Re-Distribution• Repopulation

Page 21: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Einführung Radio-OnkologieBeeinflussung durch Fraktionierung

• Repair (Zellreparatur): Zeit zwischen den Fraktionen (kurz unvollständige Repair)

• Reoxygenierung: Folgefraktionen mehr Wirkung

• Re-Distribution: Änderung des Therapie-Ansprechens durch andere Verteilung von Zellen in unterschiedlichen Zellzyklusphasen

• Repopulation: weniger Tumorwachstum, wenn Abstände zw. Fraktionen kurz

Page 22: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Biologischer Schaden: Reparatur und Dosisäquivalent

0 0.02 0.04 0.06 0.08 0.10

/ G

y

Time t / days

0

4

8

12 a

b

cd

Page 23: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

0

-4

-8

-12

-16

0 5 10 15 20 25

logS

Dose D / Gy

a

b cd

Page 24: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Time t (days)

1 2 3 4 50lo

gS

0

-5

-10

-15

-20

-25

-30

1.00 1.05

-4

-8

-12

-16a

b

0 20 40 60 80 100

Dose D (Gy)

logS

0

-5

-10

-15

-20

-25

-30

ab

Page 25: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Tumor Control Probability TCP

Page 26: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

TCP und NTCP: therapeutisches Fenster

Page 27: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Oxygenation and TCP

Dose D / Gy

log(

S)

6020 400

0

-4

-8

-12

Dose D / Gy

TCP

6020 400

1.0

0.8

0.6

0.4

0.2

0

50 60

1.0

0.8

0.6

0.4

0.2

0

Dose D / Gy

log(

S)

6020 400

0

-4

-8

-12

Dose D / Gy

TCP

6020 400

1.0

0.8

0.6

0.4

0.2

0

50 60

1.0

0.8

0.6

0.4

0.2

0

Page 28: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Oxygenation

Time t / days

V T /

V E

1.103

2.103

3.103

30201000

E = (0.1, 0.16, 0.25, 0.40, 0.63, 1.00) Gy-1 kEres = (0.2, 0.8, 1.4, 2.0) day-1

Time t / days

pO2 /

mm

Hg

30201005

30

20

10

15

25

Time t / days

V T /

V E

1.103

2.103

3.103

30201000

Time t / days

pO2 /

mm

Hg

30201000

80

40

20

60

E = 0.75 Gy-1kEres = 2.0 day-1

Page 29: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Arten der Strahlentherapie

Perkutane Strahlentherapie: Von Aussen, Erzeugung eines Strahlenfeldes mit einem Teilchenbeschleuniger (z.B. LINAC), einer Röntgenröhre oder einer 60Co-Quelle

Brachytherapie: geschlossene radioaktive Strahlenquelle im Patient (Jod-Seeds bei Prostata /LDR- oder 192Ir / HDR-Brachy)

Metabolische Therapie (Nuklearmedizin, e.g. 131I für Schilddrüsenkarzinome)

Page 30: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

192Ir-Quelle für HDR-Brachytherapie

Page 31: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Linearbeschleuniger

Page 32: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Arten der Strahlentherapie

Perkutane Strahlentherapie – Strahlenarten:

• Photonen (typische Energie 6 -23 MeV)• Elektronen (typische Energien 6-23 MeV)• Protonen (z.B. Spotscanning-Methode am

PSI)• Schwerionen

Page 33: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Arten der Strahlentherapie

Perkutane Strahlentherapie – ein paar Begriffe:

• konformale Bestrahlung• Intensitätsmodlulierte RT (IMRT)• Image-Guided RT (IGRT)• stereotaktische RT• intra-Operative Bestrahlung

Page 34: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Arten der Strahlentherapie

Kombinierte Therapien:

• Chemoradiotherapie (CTRT)• Hyperthermie-RT• multimodale Therapien

Page 35: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Hyperthermie: Oberflächenhyperthermie

Page 36: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Hyperthermie: Tiefenhyperthermie

Page 37: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Hyperthermie: Tiefenhyperthermie

Page 38: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Brustwandrezidiv-Mammakarzinom

Page 39: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Brustwandrezidiv Mamma-Ca 12Mt nach RT+HT

Page 40: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Modelling the synergistic effect of HT-RT:MHR-Approach

Page 41: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Proteins: Reaction kinematics(deactivation and repair)

Microscopic (proteins): molecular dynamics

Mesoscopic: repair radiationinduced damages / cell death

Local macroscopic (tissue): Tumor – host interaction

Systemic: Immune system interaction

pH    immune cell activity

Perfusion   acidic metabolites pH    host tissue restistance

DNA repair cell death

Protein misconvolution DNA repair

T    protein misconvolution

Page 42: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Perfusion‐pO2 Model

Heat contentof tissue

RF power

PerfusionConvectionRadiation

Temperature

Page 43: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Perfusion‐pO2 Model

Heat contentof tissue

RF power

PerfusionConvectionRadiation

Temperature

Perfusioncontrol

Page 44: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Perfusion‐pO2 Model

Heat contentof tissue

RF power

PerfusionConvectionRadiation

Temperature

Perfusioncontrol

OxygenationpO2

Oxygen consumptionDiffusion

Page 45: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Perfusion‐pO2 Model

Heat contentof tissue

RF power

PerfusionConvectionRadiation

Temperature

Perfusioncontrol

OxygenationpO2

Oxygen consumptionDiffusion

Perfusioncontrol parameter

Decay

Page 46: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Perfusion‐pO2 Model: Perfusion Enhancement

Temperature

Perfusioncontrol parameter

Decay 2.0

1.6

1.2

0.8

0.4

0.030 60 900

time t / min

Song CW, Chelstrom LM, Haumschmild DJ (1990) : Int J Radiat Oncol Biol Phys 18, 903‐907

Page 47: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Validation: Using IR Cam System

Heat contentof tissue

RF power

PerfusionConvectionRadiation

Temperature

Perfusioncontrol

0

0.5

1

1.5

2

2.5

‐30 20 70 120 170 220

1 2( )refd T Tdt

11

2

0.2 Keq

refT T

Page 48: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Oxygenation

OxygenationpO2

Oxygen consumptionDiffusion

Perfusioncontrol parameter

Considered points:‐ Perfusion dependent‐ Diffusion of oxygendepending on tissueand vascularisation(diffusion distance)

2

21 2O

O

dpp

dt 21

2

3...50O

eq

p

Page 49: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control
Page 50: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Result & Meaning

• Parameter estimation based on measurements of perfused and non‐perfused case

• Good agreement with literature data method o.k.

• Difficult and interesting: tissue inhomogeneity in pathological cases

27.-28. Aug 2014 SSBE 2014 – Annual Society Meeting

non‐perfused

perfused with re‐heating

Page 51: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Perfusion‐pO2 Model: Oxygen Enhancement

OxygenationpO2

Oxygen consumptionDiffusion(pO2); (pO2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Datenreihen1

Datenreihen2

‐factor‐factor

Page 52: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Results

Heat contentof tissue

RF power

Temperature

OxygenationpO2

Oxygen consumptionDiffusion

Page 53: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Results

Comparison of applying RT (2 Gy fraction) immediately after HT and applying RT 60 minutes after HT for adenocarcinoma (/ = 6), Tmax < 42 °C (!)

poorly oxygenated tumours: difference for logS = 9.1% 

intermediate oxygenated tumours difference is 2.1%, 

well oxygenated tumoursdifference < 0.4%.

Page 54: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

perkutane Strahlentherapie

Ablauf perkutane Strahlentherapie:

• Planungs-CT• Planung: PTV und Felder• Verifikation• Bestrahlung• Nachsorge

Page 55: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control
Page 56: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control
Page 57: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Bildfusion: PET-MRI

Page 58: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control
Page 59: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control
Page 60: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Technischer / physikalischer Bestrahlungsplan

Page 61: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

Bestrahlung am LINAC

Page 62: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

What is needed to improve RT

Experimentsin vitro

Trialsin vivo

Clinical trialsin patient

Dosimetry

Devices

ModellingData Analysis

Experimentsin silico

P P

Page 63: Strahlentherapie / Radio-Onkologie · Oxygen consumption Diffusion. Perfusion‐pO2 Model Heat content of tissue RF power Perfusion Convection Radiation Temperature Perfusion control

What is needed to improve RT

Experimentsin vitro

Trialsin vivo

Clinical trialsin patient

Dosimetry

Devices

ModellingData Analysis

Experimentsin silico

P P