stop 3.2: pleistocene slip rate along the owens valley ... mountain_ovf... · eric kirby - oregon...

4
2017 FOP Stop 3.2 Stop 3.2: Pleistocene slip rate along the Owens Valley fault Eric Kirby - Oregon State University It has long been recognized that geode7c strain rates across the Owens Valley are rela7vely high (Savage and Lisowski, 1980; 1995), and models of elas7c strain accumula7on anywhere from ~4 – 7 mm/yr of shear at depth to explain these observa7ons (e.g., Gan et al., 2000). These results exceed paleoseismic es7mates of Late Pleistocene - Holocene slip along the Owens Valley fault zone of 1 – 3 mm/yr (Haddon et al., 2016; Bacon and Pezzopane, 2007; Beanland and Clark, 1994; Bierman et al., 1995; Lee et al., 2001; Lubetkin and Clark, 1988). Some workers argue that this discrepancy reflects elevated post-seismic surface deforma7on following the 1872 Owens Valley earthquake (Dixon et al., 2003; Malservisi et al., 2001), but such a protracted transient signal is rather unusual, even for a large event. At this stop, we will discuss the Late Pleistocene slip rate along the primary strand of the northern Owens Valley fault where displaced lava flows along the eastern flank of the Crater Mountain volcanic complex provide constraints on displacement over the past 60-80 ka (Kirby et al., 2008). Driving QuesBon: • What is the long-term slip rate of the Owens Valley fault? Figure 3.2a: Oblique arial perspective view of Crater Mountain and the Owens Valley fault. Generated in Google Earth. Stop 3.2 is located at the northeastern flank of the flow complex, where the Owens Valley fault intersects the flow margins.

Upload: lamxuyen

Post on 05-Nov-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

2017 FOP Stop 3.2

Stop3.2:PleistoceneslipratealongtheOwensValleyfaultEricKirby-OregonStateUniversity

Ithaslongbeenrecognizedthatgeode7cstrainratesacrosstheOwensValleyarerela7velyhigh(SavageandLisowski,1980;1995),andmodelsofelas7cstrainaccumula7onanywherefrom~4–7mm/yrofshearatdepthtoexplaintheseobserva7ons(e.g.,Ganetal.,2000).Theseresultsexceedpaleoseismices7matesofLatePleistocene-HoloceneslipalongtheOwensValleyfaultzoneof1–3mm/yr(Haddonetal.,2016;BaconandPezzopane,2007;BeanlandandClark,1994;Biermanetal.,1995;Leeetal.,2001;LubetkinandClark,1988).Someworkersarguethatthisdiscrepancyreflectselevatedpost-seismicsurfacedeforma7onfollowingthe1872OwensValleyearthquake(Dixonetal.,2003;Malservisietal.,2001),butsuchaprotractedtransientsignalisratherunusual,evenforalargeevent.

Atthisstop,wewilldiscusstheLatePleistoceneslipratealongtheprimarystrandofthenorthernOwensValleyfaultwheredisplacedlavaflowsalongtheeasternflankoftheCraterMountainvolcaniccomplexprovideconstraintsondisplacementoverthepast60-80ka(Kirbyetal.,2008).

DrivingQuesBon:• Whatisthelong-termsliprateoftheOwensValleyfault?

Figure 3.2a: Oblique arial perspective view of Crater Mountain and the Owens Valley fault. Generated in Google Earth. Stop 3.2 is located at the northeastern flank of the flow complex, where the Owens Valley fault intersects the flow margins.

2017 FOP Stop 3.2

DisplacementoftheCraterMountainflowcomplexAlongmostofitslength,thetraceofthe1872rupturealongtheOwensValleyfaultrunsnearorwithinthefloodplainoftheOwensRiver,andlong-termmarkersoffaultdisplacementarerela7velyrare(BeanlandandClark,1994;Haddonetal.,2016).SouthofthetownofBigPine(Figure3.2a),thefaultdisplacesbasal7clavaflowsalongtheeasternflankofCraterMountain.Althoughcorrela7onofindividualflowmarginsacrossthefaultisdifficult,apparentright-lateralsepara7onofthecontactbetweentheflowcomplexandalluvialfansisobservedatthenortheasterncornerofthecone(Figure3.2a).Thefaultgeometryatthissiteisconsistentwithasmallreleasingstep.

Dextralsepara7onoftheflowmarginobservedatthesurfaceisapproximately235±15m(Figure3.2b).Kirbyetal.(2008)usedground-penetra7ngradarsurveystotryanddeterminethesubsurfacegeometryofbasaltsurfaces.Keyobserva7onsareasfollows:• Westofthefault,theflowmarginisshallowlyburiedbeneatharela7velyyoungalluvialfandeposit.

• Eastofthepull-apartbasin,themarginoftheflowdoesnotappeartobeburied,andthatthesurfaceexposureisinterpretedtoreflecttheformerterminusoftheflow.

• Surveysdonotrevealstrongreflectorswithinthatpull-apartbasinthatmightbeassociatedwithburiedflows.

Theseobserva7onsleadustoconcludethatthesurfaceexposuresoftheflowterminiprovideareasonablemarkerwithwhichtoevaluatefaultslip.

Theageoftheflowsurfacewases7matedusingtheconcentra7onsofcosmogenic36Clinsamplestakenfromwell-preservedremnantsoftheflowsurface.Sampleswereselectedtominimizethechanceofburialbyeolianoralluvialmaterialandwerecollectedfromoutcropsthatexhibitedglassysurfacesandropyflowtextureswhosepreserva7onsuggestsminimalsurfaceloweringsinceflowemplacement.Threesampleswerecollectedatthissite,westofthefault(Figure2),andthreeaddi7onalsampleswerecollectedfromflowsonthesouthwesternsideoftheventcomplex,neartheRedMountainfault.ForthisFOPtrip,wehaveupdatedtheagesusingthemostrecentcalibra7onsof36Clproduc7onincorporatedintotheCRONUSwebcalculator(Marreroetal.,2016a;2016b;Borchersetal.,2016;Phillipsetal.,2016).Thesixagesfrombothsamplelocali7esoverlapwithin2sigmauncertain7es,andindicatethattheflowis73±9ka,similartotheagedeterminedbyKirbyetal.(2008)of70±14ka.NotethattheseagesaresignificantlyyoungerthanaK/Arageof290±40kadeterminedbyTurrinandGillespie(1986),butaresimilartounpublished3HeexposureagesobtainedbyJ.StoneandA.Gillespieof35-115ka(A.Gillespie,personalcommunica7on2004).Notably,flowswestoftheFishSpringsHills,ontheSWflankofCraterMountain,buryLatePleistocenealluvialfansthataredatedto120-150ka(Zehfussetal.,2001),andmustthereforebeyoungerthanthesedeposits(seestop3.3).

TheseresultsimplythattheminimumslipratesontheOwensValleyfaultduringthis7meperiodhavebeen~2.7mm/yr.Ourdatapermitslipratesashighas~3.9mm/yr.Notably,eventhelowestslipratepermimedbyouragesishigherthanrecentes7matesofHolocene–LatePleistocenesliprates(Haddonetal.,2016;BaconandPezzopane,2007).Therateisconsistent,however,withthehighendofsomepreviouses7mates(BeanlandandClark,1994;Leeetal.,2001).Whetherthedifferencebetweenthewell-determinedHoloceneratesof0.6–1.6mm/yr(e.g,Haddonetal.,2016)andtheseratesrepresentaperiodofrapidslippriorto~20-25karemainsuncertain(Kirbyetal.,2008).

2017 FOP Stop 3.2

Figure 3.2b: A. Surficial geology of the northeastern flank of Crater Mountain. Note that basalt flows (Qb) overlie older alluvial fans (Qfo) west of the study area, and appear to be buried by younger alluvium (Qfy) west of the trace of the Owens Valley fault (red). Hachures represent the facing direction of the fault scarps. B. Close up of the offset flow margin. Background is a USGS digital orthophoto quadrangle (DOQ). Red lines represent GPR surveys conducted across the flow margin, and white circles represent sampling localities for cosmogenic isotope exposure ages. Ages shown are updated from Kirby et al. (2008) using the CRONUS web calculator. Yellow dashed line represents the inferred position of the buried flow margin west of the Owens Valley fault. C – E. GPR results from lines 11, 15, and 16 respectively. F. Reconstruction of slip along the Owens Valley fault restores inferred former positions of the flow margin. Dashed line represents inferred position of the buried flow margin. Figure modified after Kirby et al. (2008).

2017 FOP Stop 3.2

ReferencesBacon,S.N.andPezzopane,S.K.,2007,A25,000yearrecordofearthquakesontheOwensValleyfaultnearLone

Pine,California:Implica7onsforrecurrenceintervals,slipratesandsegmenta7onmodels:GeologicalSocietyofAmericaBulle4n,v.119,p.823-847.

Beanland,S.,andClark,M.M.,1994,TheOwensValleyfaultzone,easternCalifornia,andsurfaceruptureassociatedwiththe1872earthquake,U.S.GeologicSurveyBulle7n,p.29.

Bellier,O.,andZoback,M.L.,1995,RecentstateofstresschangeintheWalkerLanezone,westernBasinandRangeprovince,UnitedStates:Tectonics,v.14,no.3,p.564-593.

Bierman,P.R.,Gillespie,A.R.,andCaffee,M.W.,1995,Cosmogenicagesforearthquakerecurrenceintervalsanddebrisflowfandeposi7on,OwensValley,California:Science,v.270,p.447-449.

Borchers,B.,Marrero,S.,Balco,G.,Caffee,M.,Goehring,B.,Lioon,N.,Nishiizumi,K.,Phillips,F.,Schaefer,J.,andStone,J.,2016,Geologicalcalibra7onofspalla7onproduc7onratesintheCRONUS-Earthproject:QuaternaryGeochronology,v.31,p.188-198.

Dixon,T.H.,Miller,M.,Farina,F.,Wang,H.,andJohnson,D.,2000,Present-daymo7onoftheSierraNevadablockandsometectonicimplica7onsfortheBasinandRangeprovince,NorthAmericanCordillera:Tectonics,v.19,no.1,p.1-24.

Dixon,T.H.,Norabuena,E.,andHotaling,L.,2003,PaleoseismologyandGlobalPosi7oningSystem:Earthquake-cycleeffectsandgeode7cversusgeologicfaultslipratesintheEasternCaliforniashearzone:Geology,v.31,no.1,p.55-58.

Gan,W.,Svarc,J.L.,Savage,J.C.,andPrescom,W.H.,2000,Strainaccumula7onacrosstheEasternCaliforniaShearZoneatla7tude36°30'N:JournalofGeophysicalResearch,v.105,p.16,229-16,236.

Gillespie,A.R.,1991,QuaternarysubsidenceofOwensValley,California,inHall,C.A.,ed.,NaturalHistoryofeasternCaliforniaandhigh-al7tuderesearch:LosAngeles,WhiteMountainResearchSta7onProceedings,p.356-382.

Haddon,E.K.,Amos,C.B.,Zielke,O.,Jayko,A.S.,andBurgmann,R.,2016,SurfaceslipduringlargeOwensValleyearthquakes:Geochemistry,Geophysics,Geosystems,v.17,p.2239-2269.

Kirby,E.,Anadakrishnan,S.,Phillips,F.,Marrero,S.,2008,LatePleistoceneslipratealongtheOwensValleyfault,easternCalifornia:GeophysicalResearchLe>ers,v.35,L01304,doi:10.1029/2007GL031970.

Lee,J.,Spencer,J.,andOwen,L.,2001,HoloceneslipratesalongtheOwensValleyfault,California:Implica7onsfortherecentevolu7onoftheEasternCaliforniaShearZone:Geology,v.29,no.9,p.819-822.

Lubetkin,L.K.C.,andClark,M.M.,1988,LateQuaternaryac7vityalongtheLonePinefault,easternCalifornia:GeologicSocietyofAmericaBulle4n,v.100,p.755-766.

Malservisi,R.,Furlong,K.P.,andDixon,T.H.,2001,InfluenceoftheearthquakecycleandlithosphericrheologyonthedynamicsoftheEasternCaliforniashearzone:GeophysicalResearchLe>ers,v.28,p.2731-2734.

Marrero,S.M.,Phillips,F.M.,Borchers,B.,Lioon,N.,Aumer,R.,andBalco,G.,2016a,Cosmogenicnuclidesystema7csandtheCRONUScalcprogram:QuaternaryGeochronology,v.31,p.160-187.

Marrero,S.M.,Phillips,F.M.,Caffee,M.W.,andGosse,J.C.,CRONUS-Earthcosmogenic36Clcalibra7on:QuaternaryGeochronology,v.31,p.199-219.

Phillips,F.M.,Argento,D.C.,Balco,G.,Caffee,M.W.,Clem,J.,Dunai,T.J.,Finkel,R.,Goehring,B.,Gosse,J.C.,Hudson,A.M.,Jull,A.J.T.,Kelly,M.A.,Kurz,M.,Lal,D.,Lioon,N.,Marrero,S.M.,Nishiizumi,K.,Reedy,R.C.,Schaefer,J.,Sotne,J.O.H.,Swanson,T.,andZreda,M.G.,2016,TheCRONUS-EarthProject:ASynthesis:QuaternaryGeochronology,v.31,p.119-154.

Savage,J.C.,andLisowski,M.,1980,Deforma7oninOwensValley,California:Bulle4noftheSeismologicalSocietyofAmerica,v.70,no.4,p.1225-1232.

Savage,J.C.andLisowski,M.,1995,Strainaccumula7oninOwensValley,California,1974to1988:Bulle4noftheSeismologicalSocietyofAmerica,v.85,no.1,p.151-158.

Turrin,B.andGillespie,A.,1986,K/Aragesofbasal7cvolcanismoftheBigPineVolcanicField,California:Implica7onsforglacialstra7graphyandneotectonicsoftheSierraNevada:GeologicalSocietyofAmericaAbstractswithPrograms,v.18,p.414.