ssf (1).ppt

Upload: vinod-baria

Post on 06-Jan-2016

253 views

Category:

Documents


0 download

TRANSCRIPT

  • The Slow Sand Filter Mystery Major Events in Slow Sand Filtration HistoryResearch at CornellParticle Removal MechanismsSearch for the Mystery CompoundSSF research by CEE 453

  • An old technology that is poorly understoodParticle removal improves with time!Until recently no one knew how particles were removed by slow sand filtersThe mystery is not yet solvedPotential for new useful knowledge

  • A.Valve for raw water inlet and regulation of filtration rateB.Valve for draining unfiltered waterC.Valve for back-filling the filter bed with clean waterD.Valve for draining filter bed and outlet chamberE.Valve for delivering treated water to wasteF.Valve for delivering treated water to the clear-water reservoirABCDEFFilter CakeSandGravelUnderdrains

  • 1790 - SSF used in Lancashire, England to provide clean water for textile industry1829 - SSF used to filter municipal water (London)1850: John Snow established the link between drinking water (from a contaminated well) and Cholera1885- SSF shown to remove bacteria1892 - Cholera outbreak in Hamburg, Altoona saved by slow sand filters1980s - Giardia shown to be removed by SSF1990s - Cryptosporidium not always removed by SSF

  • In 1885 Percy F. Frankland used the recently devised 'gelatin process' of Robert Koch to enumerate bacteria in raw and filtered waterFrankland showed that filtration reduced the average bacteria concentration from Thames water 97.9%It is most remarkable, perhaps, that these hygienically satisfactory results have been obtained without any knowledge on the part of those who construct these filters, as to the conditions necessary for the attainment of such results. (Percy F. Frankland)

  • Large outbreak of Cholera in Hamburg17,000 cases; 8,600 deathsVery few cases in neighborhoods served by Altoona's filtered water supplyHamburg's sewers were upstream from Altoona's intake!Hamburg'swater intakeAltoona'swater intakeand filter bedsHamburg's seweroutfallsHamburgAltoonaElbe River

  • Milwaukee (March 1 to April 10 1993): an estimated 370,000 city residents suffered from diarrhea, nausea, and stomach cramps caused by CryptosporidiosisEvidence suggests that a substantial proportion of non-outbreak-related diarrheal illness may be associated with consumption of water that meets all current water quality standardsSlow sand filters shown to remove less than 50% of Cryptosporidium oocysts at an operating plant in British Columbia

  • How do slow sand filters remove particles including bacteria, Giardia cysts, and Cryptosporidium oocysts from water?Why dont SSF always remove Cryptosporidium oocysts?Is it a biological or a physical/chemical mechanism?Would it be possible to improve the performance of slow sand filters if we understood the mechanism?

  • Sampling tubeLower to collect sampleManifold/valve blockPeristaltic pumpsManometer/surge tubeCayuga Lake water(99% or 99.5% of the flow)Auxiliary feeds(each 0.5% of the flow)1 liter E. coli feed1 liter sodium azideTo wasteFilter cell with 18 cm of mediumSampling Chamber

  • Continuously mixed Cayuga Lake water0.050.11012345Time (days)Fraction of influent E. coli remaining in the effluent

  • Fraction of influent E. coli remaining in the effluent

  • Effluent particle count (Dnumber/l/Dparticle diameter)

  • long flagellum used for locomotion and to provide feeding currentshort flagellumstalk used to attach to substrate (not actually seen in present study)1 m

  • Mechanisms

  • The biological activity of microorganisms being removed in the filter column was not significant The biological activity of the filter biopopulation was only significant for removal of particles smaller than 2 m.Biofilms were expected to increase removal of particles larger than 2 m as well by increasing the attachment efficiency. The lack of biologically enhanced removal of particles larger than 2 m suggested that sticky biofilms did not contribute significantly to particle removal.

  • The immediate and reversible response of slow sand filters to sodium azide was consistent with bacterivory and inconsistent with particle removal by biofilms. Biologically mediated mechanisms together with physical-chemical mechanisms accounted for removal of particles smaller than about 2 m in diameter. In this research bacterivory was the only significant biologically mediated particle removal mechanism.Mechanisms

  • Day 5

  • Day 5

  • Physical-chemical particle removal mechanisms are significant in slow sand filters. Physical-chemical particle removal efficiency was greatest when particles previously had been retained by the filter (within the bed or in the filter cake) and was considered to be caused by attachment of particles to retained particles. Further work is necessary to determine what types of particles are most effective for filter ripening.

    Mechanisms

  • Chart2

    0.00521739130.00292682930.00426299050.00090354610.00001611770.00073826330.00001316930.00050686730.00000904160.00214209970.00037096810.0000066174

    0.00235418880.00392364790.00347826090.00040769760.00000727260.00060236410.00001074510.0006794960.0000121210.00235418880.00040769760.0000072726

    0.00150583240.00205726410.00209968190.00026077960.00000465190.00036362220.00000648640.00035627630.00000635530.00267232240.00046279190.0000082554

    0.00201484620.01946977730.01790031810.00034893040.00000622430.00309997110.00005529810.00337176950.00006014650.04262990460.00738263260.0001316933

    0.0103499470.03902439020.04475079530.00179240030.00003197330.00774992770.00013824520.00675823080.00012055510.2547189820.04411214790.0007868838

    0.01215270410.0466595970.04750795330.00210460120.00003754240.00822741140.00014676270.00808049340.00014414190.34570519620.059869110.0010679605

    0.01136797450.05047720040.04856839870.0019687020.00003511820.0084110590.00015003860.00874162460.00015593530.39236479320.06794960330.0012121025

    0.0107953340.05090137860.05132555670.00186953230.00003334920.00888854270.00015855610.00881508370.00015724570.38812301170.0672150130.0011989987

    0.01041357370.05005302230.04835630970.00180341920.00003216990.00837432950.00014938340.00866816560.0001546250.41569459170.071989850.0012841734

    0.00948038180.0494167550.04899257690.00164180930.0000292870.0084845180.0001513490.00855797710.00015265940.4135737010.07162255490.0012776215

    0.00909862140.04793213150.04856839870.00157569620.00002810770.0084110590.00015003860.00830087050.00014807310.43054082710.07456091610.0013300368

    0.0089713680.04559915160.04814422060.00155365850.00002771460.00833760.00014872820.00789684580.0001408660.42841993640.07419362090.0013234848

    Completely Mixed

    2 cm layer

    Top Layer

    Control

    Time (min)

    fraction remaining

    Sheet1

    in turb47.15NTU

    in turb 238.2NTU

    Control ColumnCompletely Mixed2 cm DepthTop Layer

    ErrorErrorErrorError

    Time (min)raw dataFraction Remainingpositivenegativeraw dataFraction Remainingpositivenegativeraw dataFraction Remainingpositivenegativeraw dataFraction Remainingpositivenegative

    00.1010.002140.000370.000010.2460.005220.000900.000020.1380.002930.000510.000010.2010.004260.000740.00001

    50.1110.002350.000410.000010.1110.002350.000410.000010.1850.003920.000680.000010.1640.003480.000600.00001

    100.1260.002670.000460.000010.0710.001510.000260.000000.0970.002060.000360.000010.0990.002100.000360.00001

    152.0100.042630.007380.000130.0950.002010.000350.000010.9180.019470.003370.000060.8440.017900.003100.00006

    2012.0100.254720.044110.000790.4880.010350.001790.000031.8400.039020.006760.000122.1100.044750.007750.00014

    2516.3000.345710.059870.001070.5730.012150.002100.000042.2000.046660.008080.000142.2400.047510.008230.00015

    3018.5000.392360.067950.001210.5360.011370.001970.000042.3800.050480.008740.000162.2900.048570.008410.00015

    3518.3000.388120.067220.001200.5090.010800.001870.000032.4000.050900.008820.000162.4200.051330.008890.00016

    4019.6000.415690.071990.001280.4910.010410.001800.000032.3600.050050.008670.000152.2800.048360.008370.00015

    4519.5000.413570.071620.001280.4470.009480.001640.000032.3300.049420.008560.000152.3100.048990.008480.00015

    5020.3000.430540.074560.001330.4290.009100.001580.000032.2600.047930.008300.000152.2900.048570.008410.00015

    5520.2000.428420.074190.001320.4230.008970.001550.000032.1500.045600.007900.000142.2700.048140.008340.00015

    Averages18.9570.402060.069630.001240.4870.010330.001790.000032.2970.048720.008440.000152.3000.048780.008450.00015

    Error

    depth of column (cm)steady state removalpositivenegative

    00.0490.0080.000

    20.0490.0080.000

    200.0100.0020.000

    Control ColumnCompletely Mixed2 cm DepthTop Layer

    ErrorErrorErrorError

    Time (min)raw dataFraction Remainingpositivenegativeraw dataFraction Remainingpositivenegativeraw dataFraction Remainingpositivenegativeraw dataFraction Remainingpositivenegative

    00.1030.002700.000470.000010.0610.001600.000280.000010.0720.001880.000330.000010.0790.002070.000360.00001

    50.2310.006050.001050.000020.0690.001810.000310.000010.0560.001470.000250.000010.0880.002300.000400.00001

    100.2000.005240.000910.000020.0510.001340.000230.000010.0500.001310.000230.000000.0540.001410.000240.00001

    150.3270.008560.001480.000030.0690.001810.000310.000010.1130.002960.000510.000010.1690.004420.000770.00002

    204.2600.111520.019310.000430.1810.004740.000820.000020.1120.002930.000510.000010.4710.012330.002140.00005

    2515.1000.395290.068460.001510.1700.004450.000770.000020.1350.003530.000610.000010.7180.018800.003260.00007

    3017.6000.460730.079790.001760.2790.007300.001260.000030.1400.003660.000630.000010.8130.021280.003690.00008

    3516.1000.421470.072990.001610.1730.004530.000780.000020.1360.003560.000620.000010.8700.022770.003940.00009

    4017.2000.450260.077980.001720.1700.004450.000770.000020.1300.003400.000590.000010.9380.024550.004250.00009

    6016.7000.437170.075710.001670.1910.005000.000870.000020.1500.003930.000680.000011.1300.029580.005120.00011

    8016.7000.437170.075710.001670.2240.005860.001020.000020.1420.003720.000640.000011.3100.034290.005940.00013

    10017.0000.445030.077070.001700.1770.004630.000800.000020.1800.004710.000820.000021.3300.034820.006030.00013

    Averages16.6290.435300.075390.001660.1980.005180.000900.000020.1450.003790.000660.000011.0160.026590.004600.00010

    Error

    depth of column (cm)steady state removalpositivenegative

    00.0270.0050.00010

    20.0040.0010.00001

    200.0050.0010.00002

    Turbidity Readings

    Trial #Distilled WaterHigh Clay ConcentrationLow Clay Concentration

    10.06424.20.846

    20.05725.50.945

    30.05924.90.81

    40.0625.20.88

    50.05625.80.77

    60.05627.10.855

    70.05728.50.903

    80.05722.40.854

    90.06124.70.893

    100.056210.757

    110.06822.70.992

    120.0550.833

    130.0620.781

    140.0580.814

    150.0590.851

    160.0580.915

    170.0560.82

    180.0630.823

    190.060.885

    200.0560.945

    Std Dev0.0033424.727270.85860

    Average0.058902.134520.06174

    % error0.056690.086320.07191

    depth of column20cm

    Determination of k

    BPP Concentration (mg/cm^3)CinCoutdk

    Control047.1518.95714200.04556

    Long_Term038.2016.62857200.04159

    Comp Mixed0.3578747.150.48686200.22866

    Long-Term0.3578738.200.19771200.26319

    2 cm3.5786547.155.2158621.10081

    Long-Term3.5786538.200.3059122.41364

    Top Layer71.5730347.155.694530.210.56914

    Long-Term71.5730338.202.323340.213.99915

    Weight of 50 mL of BPP50.377g

    Weight of Organics0.437g

    Weight of Inorganics0.519g

    Total Weight of Dry Solids0.956g

    Weight of Dry Solids in 30 mL0.573g

    Sheet1

    0.00090354610.00001611770.00073826330.00001316930.00050686730.00000904160.00037096810.0000066174

    0.00040769760.00000727260.00060236410.00001074510.0006794960.0000121210.00040769760.0000072726

    0.00026077960.00000465190.00036362220.00000648640.00035627630.00000635530.00046279190.0000082554

    0.00034893040.00000622430.00309997110.00005529810.00337176950.00006014650.00738263260.0001316933

    0.00179240030.00003197330.00774992770.00013824520.00675823080.00012055510.04411214790.0007868838

    0.00210460120.00003754240.00822741140.00014676270.00808049340.00014414190.059869110.0010679605

    0.0019687020.00003511820.0084110590.00015003860.00874162460.00015593530.06794960330.0012121025

    0.00186953230.00003334920.00888854270.00015855610.00881508370.00015724570.0672150130.0011989987

    0.00180341920.00003216990.00837432950.00014938340.00866816560.0001546250.071989850.0012841734

    0.00164180930.0000292870.0084845180.0001513490.00855797710.00015265940.07162255490.0012776215

    0.00157569620.00002810770.0084110590.00015003860.00830087050.00014807310.07456091610.0013300368

    0.00155365850.00002771460.00833760.00014872820.00789684580.0001408660.07419362090.0013234848

    &A

    Page &P

    Completely Mixed

    2 cm layer

    Top Layer

    Control

    Time (min)

    fraction remaining

    Sheet2

    0000.00035814640.00000788550.00027654340.00000608880.00032641190.000007186800.00046695040.0000102811

    0000.00039894790.00000878390.00031281140.00000688740.00025387590.000005589700.00104723830.0000230577

    0000.0002448090.00000539010.00023120850.00000509070.0002266750.000004990800.00090669980.0000199634

    0000.00076616130.00001686910.00031281140.00000688740.00051228540.000011279300.00148245420.0000326401

    0000.00213527810.00004701380.00082056330.00001806690.00050775190.000011179500.01931270610.0004252202

    0000.00325505230.00007166860.00077069480.00001696890.00061202240.000013475300.06845583610.0015072359

    0000.00368573470.00008115120.00126484620.00002784890.00063468990.000013974400.07978958370.0017567782

    0000.00394414420.00008684070.00078429530.00001726830.00061655590.000013575100.07298933510.0016070528

    0000.00425242210.00009362830.00077069480.00001696890.00058935490.000012976200.07797618410.0017168515

    0000.0051228540.00011279310.00086589830.0000190650.00068002490.000014972500.07570943460.001666943

    0000.00593888380.00013076020.00101550380.0000223590.00064375690.00001417400.07570943460.001666943

    0000.00602955380.00013275650.00080242930.00001766760.00081602980.000017967100.07706948430.0016968881

    &A

    Page &P

    Completely Mixed

    2 cm layer

    Top Layer

    Control

    Time (min)

    fraction remaining

    Sheet3

    00.00844778850.0001506938

    00.00843729440.0001505066

    00.00178820270.0000318984

    &A

    Page &P

    depth of column (cm)

    fraction remaining

    Sheet4

    00.00460409210.0001013712

    00.00065606210.0000144449

    00.00089633750.0000197352

    &A

    Page &P

    depth of column (cm)

    fraction remaining

    Sheet5

    0.00844778850.00015069380.00460409210.0001013712

    Scaling Measurements

    Alison Humphries, Michael Steiger, David KeyserSlow Sand Filtration Research Project for Cee 453

    &A

    Page &P

    Control

    Control Long-Term

    fraction remaining

    0.0696286669

    0.001242054

    0.0753856132

    0.0016598132

    &A

    Page &P

    Top Layer

    Top Layer Long-Term

    fraction remaining

    Sheet6

    0.00178820270.00003189840.00089633750.0000197352

    &A

    Page &P

    Completely Mixed

    Completely Mixed Long-Term

    fraction remaining

    Sheet7

    00.00843729440.000150506600.00065606210.0000144449

    &A

    Page &P

    2 cm

    2 cm Long-Term

    fraction remaining

    Sheet8

    0

    0

    0

    0

    0

    0

    &A

    Page &P

    Concentration of BPP (mg/cm3)

    k (1/cm)

    Sheet9

    &A

    Page &P

    Sheet10

    &A

    Page &P

    Sheet11

    &A

    Page &P

    Sheet12

    &A

    Page &P

    Sheet13

    &A

    Page &P

    Sheet14

    &A

    Page &P

    Sheet15

    &A

    Page &P

    Sheet16

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

  • C/CoTime (minutes)?

    Chart3

    0.10.03278688520.02014423080.020952381

    0.03485714290.00928961750.031250.0256709957

    0.01714285710.00928961750.07163461540.0761904762

    0.01485714290.01147540980.07884615380.0883116883

    0.020.00765027320.09567307690.0956709957

    0.02171428570.00874316940.10384615380.1004329004

    0.02228571430.00983606560.16298076920.1064935065

    0.02114285710.01803278690.43221153850.1173160173

    0.0240.02295081970.56250.1995670996

    0.02914285710.03661202190.71634615380.4588744589

    0.03714285710.0497267760.70673076920.70995671

    0.05314285710.09453551910.70192307690.7186147186

    0.07942857140.22404371580.77403846150.8311688312

    slurry

    Alum

    distilled control

    tap water control

    David, Edwin

    Edwin HuhCEE 453

    David SausenLab 11

    Slow Sand Filter 1

    1 g alum in 100 mL distilled water titrated to pH = 7.50

    This ripening agent was added to the filter and thoroughly mixed prior to starting the pump.

    Slow Sand Filter 2

    50 mL sludge

    This ripening agent was added to the filter and thoroughly mixed prior to starting the pump.

    AlumSludge

    Influent Turbidity (NTU)3139

    Effluent Turbidity (NTU)

    Time (min)

    03.444.6

    51.351.59

    100.461.07

    150.230.42

    200.160.37

    250.580.16

    300.170.25

    350.40.21

    400.480.09

    450.110.15

    500.070.13

    550.380.07

    average NTU after 20min:0.293750.17875

    Fractional Removal:0.99052419350.9954166667

    % Removal:99.052%99.542%

    Steve, Kevin

    Steven Kundrot and Kevin Lapus

    Thursday Lab Section

    Overview: We used the bolton point sludge water to for to rippening agents. The first

    rippening agent was to be the alum from the sludge and the second was to be the sludge

    itself without the alum. The alum was extracted using .1N HCl acid. Then both agents

    were neutralized to pH 7. The alum solution was added to column #1 and the sludge slurry

    was added to column #2.

    Initial Turbidity:12.8Initial Turbidity:14.4

    Sand Column #1Sand Column #2

    Alum SupernatantSludge w/o Alum

    Time (min)TurbidityFraction RemainingTime (min)TurbidityFraction Remaining

    52.270.18513.70.95

    101.70.13108.220.57

    151.840.14158.880.62

    200.8490.07204.970.35

    250.3690.03252.70.19

    300.2580.02302.230.15

    350.310.02352.060.14

    400.1760.01402.130.15

    450.1490.01452.080.14

    500.2590.02502.090.15

    550.1970.02552.470.17

    600.180.01603.530.25

    Avg. Frac. Removed:0.056Avg. Frac. Removed:0.319

    Amy, Yin

    Slow Sand Filtration Lab DataThursday Lab - Anne & Yin

    This is similar to David and Edwin's experiment (with distilled water instead of tap water and bacteria instead of clay)

    SlurryAlum Floc

    InfluentTimeTurbidityInfluentTimeTurbidity

    014.8014.5

    7017.57018.3

    Time (min)Distilled water turbidity (NTU)Tap water turbidity (NTU)

    EffluentTimeTurbidityFraction RemainingEffluentTimeTurbidityFraction RemainingInfluent20.823.1

    51.7510.00%50.63.28%50.4190.484

    100.613.49%100.170.93%100.650.593

    150.31.71%150.170.93%151.491.76

    200.261.49%200.211.15%201.642.04

    250.352.00%250.140.77%251.992.21

    300.382.17%300.160.87%302.162.32

    350.392.23%350.180.98%353.392.46

    400.372.11%400.331.80%408.992.71

    450.422.40%450.422.30%4511.74.61

    500.512.91%500.673.66%5014.910.6

    550.653.71%550.914.97%5514.716.4

    600.935.31%601.739.45%6014.616.6

    651.397.94%654.122.40%6516.119.2

    distilleddistilled

    influent17.518.320.823.1

    TimeslurryAlumdistilled controltap water control

    50.10.03278688520.02014423080.020952381

    100.03485714290.00928961750.031250.0256709957

    150.01714285710.00928961750.07163461540.0761904762

    200.01485714290.01147540980.07884615380.0883116883

    250.020.00765027320.09567307690.0956709957

    300.02171428570.00874316940.10384615380.1004329004

    350.02228571430.00983606560.16298076920.1064935065

    400.02114285710.01803278690.43221153850.1173160173

    450.0240.02295081970.56250.1995670996

    500.02914285710.03661202190.71634615380.4588744589

    550.03714285710.0497267760.70673076920.70995671

    600.05314285710.09453551910.70192307690.7186147186

    650.07942857140.22404371580.77403846150.8311688312

    Amy, Yin

    slurry

    Alum

    distilled control

    tap water control

    Todd, Mark

    Todd and Mark's DataThey extracted polymer from sludge that had been treated with acid to remove the alum.

    #3 - polymer extraction from residual sludge w/ 100mL 0.1 NaOH

    Influent14.9NTU

    NTUNTU

    timeYellowBlue (sludge)

    547.511.1

    1039.87.37

    15175.06

    207.182.3

    25.53.771.51

    32.52.321.43

    382.111.44

    452.11.5

    501.921.52

    Danusha, Cynthia

    Tuesday's lab

    I think the sludge had been treated with base and then with acid in an attempt to extract both alum and polymer.

    The polymer was extracted with acid.

    timeturbidity fraction remaining of sludgeturbidity fraction remaining of polymer

    200.0820.053

    250.10.044

    300.0770.049

    350.0990.077

    400.0680.055

    450.0630.047

    500.0550.046

    Analysis #2: since steady state is hard to define. Simply compare the

    turbidity data for one time.

    Analysis #3:

    L (cm)=16

    filtercoefficient (1/cm)

    with sludge0.0249616289

    without sludge0.0088531573

    Erik, Nader

    We ran the controls using no ripening agents, just one control with tap water, and one with distilled water.

    Thursday Lab

    Time (min)Distilled water turbidity (NTU)Tap water turbidity (NTU)

    Influent20.823.1

    50.4190.484

    100.650.593

    151.491.76

    201.642.04

    251.992.21

    302.162.32

    353.392.46

    408.992.71

    4511.74.61

    5014.910.6

    5514.716.4

    6014.616.6

    6516.119.2

    Tuhina, Masako, Steven

    Tuhina Ghosh, Masako Iwata, Steven Kao

    April 13, 1998

    Description:

    Ripening Agent Preparation:

    Treatment A:

    Centifuge 200 mL of Cayuga Lake sludge solution.

    Pour off supernatant and add about 100 mL of 1 N NaOH.

    Mix thoroughly and centrifuge again.

    Remove and save alum-rich supernatant for treatment A.

    Treatment B:

    Take remaining sludge and add about 100 mL of NaOH again.

    Mix thoroughly and centrifuge again.

    Pour off supernatant and save remaining sludge for treatment B.

    Treatment A is alum extract using NaOH and neutralized to pH of 7.

    Treatment B is sludge without alum.

    Time (min)Treatment A turbidity (NTU)Treatment B turbidity (NTU)

    0129310

    55.71.9

    102.030.93

    151.30.05*

    200.180.05

    250.070.11

    300.070.06* = bad data?

    350.070.05

    400.060.06

    450.1*0.04

    500.25*0.06

    Influent turbidity23.929.8

    Joye, Travis

    Joye Thaller

    Travis Kluegel

    CEE 453

    Slow Sand Filtration Lab

    We received sludge which had already been washed with acid and centerfuged

    twice. We washed it a third time with acid and removed the supernatent.

    The sludge was then washed with a base and centerfuged. The supernatent

    is the polymer which we tested in the slow sand filter. After washing the sludge a

    second time with a base, we removed the supernatant and used the remaining

    sludge in the second slow sand filter.

    The stir bar was not initially in use during the first 35 min. of the experiment but

    was turned on before the 40 min. reading. Also, we did not shake the slow sand

    filters to mix the polymer and sludge until after 40 minutes had elapsed.

    TimePolymer (NTU)Sludge (NTU)

    Influent36.6031.00

    50.510.67

    103.751.32

    153.720.39

    200.450.49

    250.380.37

    300.390.37

    35*0.420.38

    400.423.77

    After Shaking

    5:003.503.65

    5:042.680.86

    5:091.760.68

    5:191.460.60

    5:301.440.50

    *Stir bar was added to tank

    Kathy, Amy

    Not yet received

  • Successfully extracted a coagulant from Cayuga Lake Seston using 1.0 N HClThe CLSE fed filters removed up to 99.9999% of the influent coliforms.Analysis of the CLSENonvolatile solids was 44% of the TSSVolatile solids was 56% of the TSSAluminum was dominant metal

  • Groups of 4Assemble filter apparatusMeasure head loss, flow rate, turbidityCoat filter with CLSEObserve _______________Challenge filter with kaolinObserve ________and _______Control?increased head lossturbidityhead loss