springer cost estimate guide

166
APPENDIX 1 EQUIPMENT COST ESTIMATES The following section provides very rough cost estimates for a wide variety of process equipment. It must be remembered in using these charts that there is no such thing as an exact, definite, fixed price for any piece of equipment of a given size or capacity. As with buying merchandise, clothing or a car there are many styles, quality differences, optional features and designs to meet specific needs or services. Presumably charts could be made for each of these variations, but the nuinber would be large and confusing, and for many preliminary estimates the engineer would not know exactly what he wanted at that stage of the design, so only average, representative equipment should be more useful. Again, a range of prices could be shown, but usually a single line is more practical, keeping in mind that the price could quite normally vary considerably depending upon the exact design requirements and the company policy on quality, maintenance, and so on. With these generalities in mind, the following charts have been taken from a number of sources. Most are from cost estimating articles or books, although some are from recent vendor quotations. In case only a single source was available, that reference has been noted. However, often many sources were available and a somewhat biased consensus of opinion curve was selected. In this case the sources were not noted except for inclusion in the reference list at the end of the appendix. In case different variables were used as the sizing parameter, the most logical one in the author's opinion was selected. All costs were factored to an early 1987 basis, or a chemical engineering index number of 320. When equations were available for the cost relationship they were listed beneath the charts, and when straight line functions existed for the costs on log-log paper a sizing exponent was given: ( size 2)SiZe exponent cost size 2 = cost size 1 -.-- size 1 In a number of references various authors have estimated the fraction of the purchased equipment cost that it takes to install the equipment. This generally included freight and shipping costs, foundations, mounting, and simple electric and piping connections, such as switch gear, starters, flange connections, and so on. Unfortunately these numbers often varied widely, so the range and average are both listed when available: 255

Upload: davidtobin

Post on 30-Sep-2015

124 views

Category:

Documents


6 download

DESCRIPTION

A very useful guide for chemical engineers to price out the capital expenses required for any large chemical related project.

TRANSCRIPT

  • APPENDIX 1

    EQUIPMENT COST ESTIMATES

    The following section provides very rough cost estimates for a wide variety of process equipment. It must be remembered in using these charts that there is no such thing as an exact, definite, fixed price for any piece of equipment of a given size or capacity. As with buying merchandise, clothing or a car there are many styles, quality differences, optional features and designs to meet specific needs or services. Presumably charts could be made for each of these variations, but the nuinber would be large and confusing, and for many preliminary estimates the engineer would not know exactly what he wanted at that stage of the design, so only average, representative equipment should be more useful. Again, a range of prices could be shown, but usually a single line is more practical, keeping in mind that the price could quite normally vary considerably depending upon the exact design requirements and the company policy on quality, maintenance, and so on.

    With these generalities in mind, the following charts have been taken from a number of sources. Most are from cost estimating articles or books, although some are from recent vendor quotations. In case only a single source was available, that reference has been noted. However, often many sources were available and a somewhat biased consensus of opinion curve was selected. In this case the sources were not noted except for inclusion in the reference list at the end of the appendix. In case different variables were used as the sizing parameter, the most logical one in the author's opinion was selected.

    All costs were factored to an early 1987 basis, or a chemical engineering index number of 320. When equations were available for the cost relationship they were listed beneath the charts, and when straight line functions existed for the costs on log-log paper a sizing exponent was given:

    (size 2)SiZe exponent

    cost size 2 = cost size 1 -.--size 1

    In a number of references various authors have estimated the fraction of the purchased equipment cost that it takes to install the equipment. This generally included freight and shipping costs, foundations, mounting, and simple electric and piping connections, such as switch gear, starters, flange connections, and so on. Unfortunately these numbers often varied widely, so the range and average are both listed when available:

    255

  • 256 APPENDIX 1

    installed cost = purchase price x installation factor

    A similar number that also includes all of the adjacent minor equipment and connec-tions is sometimes listed in the literature (principally by Guthrie 1975 and Ulrich 1984) covering the cost of purchase and installation of the major equipment as well as all of the supporting equipment around each major unit. This is called the module factor, and when available is also listed under the charts as the range given by different authors and the average value.

    cost of the installed module = purchase price x module factor

    As a final item under the equipment cost graphs, often a simple factor can be used to estimate the cost of some other material, pressure, size, or other variable for the equip-ment, than is shown on the graph. For instance, the cost of a stainless steel agitated tank is 1.7 times the cost of a mild steel tank (which is shown on the chart). These factors have also been listed when available, and again, sometimes as a consensus of different authors' estimates .

    8 0 . ;;; Ii o u

    10 I

    Adsorb.rs. Activated Carbon

    Mild steel construction, including instruments and controls

    6 8 10 20

    Weight of carbon. 1,000 lb.

    Equations:

    , , , 40 60 80 100

    Cost = 15.200 + 1, 100WC O.4 81 for We > 250. < 10,000 lb. Cost ~ 76,200 + O.422Wc 1.2 for We > 1 0.000, < 200 ,000 lb . We == weight of activated carbon, Ib,

    200

  • 1000

    800

    600

    400

    200

    100

    80

    60

    0 40 a ;;; Ii 0 u 20

    10

    8

    Size exponent :

    Turbine : > 30 HP 0.68 4-30 HP 0.56

    < 4 HP 0.23

    Propeller: 3- 100 HP 0.51 1-3 HP 0.42

    EQUIPMENT COST ESTIMATES 257

    Agiwtors

    Dual [urbine blades; mild steel; 30- 45 rpm, motor, gear reduction, shaft Propeller; mi ld .teel, single blade

    6 8 10 20 40

    Size, HP

    Installation factor:

    Turbine Propel ler

    Range 1.20-40 1.12-32

    Module factor 2.0

    Average 1.32 1.22

    60 80 100 200 400 600 BOO 1000

    Factors for: ~ Average Turbine:

    Single blade 0.75-0.85 0.82 56-100 rpm 0.57-0.70 0.66 125-230 rpm 0.37-0.51 0.47 316 stainless 1.23- 1.87 1.47

    Propeller : Stainless steel 1.19 With seal Ifor closed tank) 1.32

  • 258 APPENDIX 1

    Agitated TankS'

    Jacketed , ogitated, m i ld steel

    lOOO~ ___ _ 800~

    20 40 60 80 tOO 200 400 600 tOOO 2000 4000 6000 10000 20000

    Size, gal

    Size exponent 0.53 Instal lation factor : Material factors : Module factor 2.5 Range Avg . Stain Ie .. steel

    Open tank 1.41 - 66 1.58 1.22.2, .",) . = 1.7 low pressure 1.30 57 1.44 GI ... l ined Autoclave 1.50 70 1.60 1.2 - 2.0, ."') . 1.6

    See Reactors

  • 1000

    800

    600

    400

    200

    ~ iii 100

    B 80 0

    60

    40

    20

    10 1

    EQUIPMENT COST ESTIMATES 259

    1-- ' - 1-I-

    I ~-- 1--

    1-'-'-;"

    1=-:-

    ::------c---._-' ,

    ,--

    1- ./

    Air Conditioning

    Compressor, motor, controls, condenser. refrigerant

    -8 10

    Size exponent 0.73

    Installalion. Module factor 1.38- 53 avg. 1.46

    20 40

    Refr igeration, tons

    60 80 100 200

    'One ton = 12,000 Btu

    1---

    I:

    .. - .

    -I-

    1-

    400 600 800 1000

  • o 8, iii

    260 APPENDIX 1

    20 40 60 60100

    Size exponent.s: Ribbon, double arm, sigma, twin shell 0.60 Double cone 0.42

    Material factor:

    304 stain Ie" steel 1.6

    Blenders

    Mi ld steel construction

    200 400 600 BOO 1000

    Capacity, ftl (Approximately HP X 0.125)

    Installation factor 1.30

    Modu Ie factor:

    H,DDon 2.0 Sigma 2.B Double arm, cone,

    twin shell 2.2

    2000

  • 0

    8~ in

    is u

    1000

    800

    600

    400

    200

    100

    SO

    60

    40

    20

    10

    8

    6

    1 100 200

    Si2e exponent :

    30 psi 0,52 10 psi 0,79

  • 262 APPENDIX 1

    ---100

    80 ..

    ~

    40 0" :: ..

    20

    g I :

    1--

  • 1000

    800

    600

    400

    200

    0

    8. ;;; 100

    S 80

    60

    40

    20

    20

    EQUIPMENT COST ESTIMATES 263

    Boilers, Waste Heat

    40 60 80 100 200

    Flue gas flow rate, 1,000 sclm

    Size exponent 0.75

    I nstallation factor:

    1.40-82 a.g . 1.67

    Modu le factor 1.81

    Factors:

    High- temperature operation 1.2

    Finned tubes 1.5 Alloy-clad tube. 3.0 M@chanical ash

    removal 1.8 Radiation section 2.0

  • 8 0. ;;; B u

    264 APPENDIX 1

    1000

    800

    600

    400

    200

    100

    80

    60

    40

    20

    10

    6

    100 200

    Build ing'

    Office type with air cond itioning. restrooms. plaster Or equivalent walls, insulation, modest architectural features

    400 600 800 1000 2000 4000 6000 10000 40000 60000 100000

    Floor space, ftl lincl. all floors)

    Size exponent O.S Factors:

    Warehouse 0.25 Laboratory 1.5 Manufacturing bldg. 0.5

  • 400

    200

    100

    o o 10 15 20

    Installation factor:

    Range 1.20-2.02

    EQUIPMENT COST ESTIMATES 265

    Centrifuges

    Solid- bowl, screen-bowl, pusher types, 316 stainless steel

    25 30 35 40 45

    Capacity, t/hr

    50 55

    Material factors:

    allY . 1.54 Carbon steel Monel Nickel

    60 65

    0.68 1.35 1.7

    Module factor: 2.0 Hastalloy C 2.6

  • 266 APPENDIX 1

    Chimneys, Stacks

    Carbon steel, lined, insulated, with foundations Itall); No lining Ishon)

    7.0

    6.5

    6.0

    5.5

    5.0

    4.5

    ~ 4.0

    8 0 , 3.5 iii

    3' 3.0 2.5

    2.0

    1.5

    1.0

    .5

    300

    20 40

    Size exponent, Tall 1.63

    Installation factor : 1.20-28 aV\j. 1.24

    400 500 (T . 11) 600 Height, tt

    60 60 (Soon) 100

    Factors for: Brick lined 2.3 Concrete 3.8 O iameter(~'p.55

    I shon) 54 i nJ

    700

    120

    28

    26

    24

    2.2

    20

    18

    16

    14

    12

    10

    8

    6

    o IlOO

    140

    Material factor, Shon

    Acid resistant. Fiberglass 1.3

    ~ 0 :

    , '" tf 0

    U

  • 10000

    8000 1:-:-: .-

    6000 1- ' -

    f- :-'" 4000

    ";:- :'.-'-"C

    2000 :~ ~~

    ~:--= '-- _.

    =~ . . ~ 1000

    800 , .... .. , .. 600

    8 c=.. 0 . 400

    ;;; _ .. -:;;' 0 :..; U

    200

    !=;::::-:::.

    I==: 100

    80 1--

    60 r--~

    40 I~':

    20 F-.;.c

    ~ :::-:-1--- r-

    10 ,-- I-I

    , ... r-

    ,

    ,.:: .... '-- 1-:-

    8 10

    Size exponent 1.32

    EQUIPMENT COST ESTIMATES 267

    Classifier, Rake or Spiral

    Mild steel construction

    I ,

    ' .. '

    I ~

    . . :;' f. " ... ~.. 1-' "- 1'"

    I:-=:::j-.... _+ . . : ~ _:" I ~ 1- 1--

    20 40 60 80100 200 400 600 800 1000

    Solids handling capacity, t/h r

    Installation factor

    1.63-2.61 avg.2. 12

    Module faclor 2.3

  • 268 APPENDIX 1

    .c .8

    "" ~ .6 c: E " '8 .4 '0

    0 0 D . .2

    Vl

    is u

    Size exponent

    10' - 1as Ib 0.78

    Instal lation cost:

    1.29- 2.03 avg. 1.72

    Modu le factor

    Vertical 4.16 Horizontal 3.05

    Columns, Dls1i llation. Absorption Towers, etc. Mild steel construction , 0- 50 psi , vert ical

    10 o iam eter r ft 10' 10'

    Weight,lb

    Material factors

    Carbon steel 1.0 Stainless 304 1.7 Stainle" 316 2.1 Monel 400 3.6 Titanium 7.7 Carpenter 20 CB- 3 3.2 Nic~el 200 5.4 Inconel600 3.6 Incolcy 825 3.7

    Ot h er factors Horizontal vessel 0.6

    p 0.44 Pressu re 50 or see chart

    10' 20

    10

    Pr.ssure factors (vertical)

    psi psi 50 1.00 800 3.80

    100 1.25 900 4.00 200 1.55 1,000 4.20 300 2.00 1,500 5.40 400 2.40 2,000 6.50 500 2.80 3,000 8.75 600 3.00 4,000 11.25 700 3.25 5,000 13.75

  • 100

    80

    60

    40

    20

    8 '" ~ 10 t

    8 Co

    B 6 u

    Instaliation factor 1.20 Number factor:

    25 1 20 1.05 15 1.25 10 1.50 5 2.30

    3.0

    EQUIPMENT COST ESTIMATES 269

    Column Trays

    Mild steel

    8 10

    Column diameter, ft

    rray type factor;

    20 40

    Turbo grid I,tamped) 0,8 Grid, plate, ",ive 1 ,0 Trough, valve 1 ,2

    Material factor:

    Ijrass 1.2 304 ,tainless 1.5 316 stainless 1.9 347 stainless 2.1 Incone l 3.3 Monel 7.7

  • '" .I:' U.

    ~ u

    270 APPENDIX 1

    90

    80

    70

    60

    50

    40

    30

    Material Factors; size exponents

    Material

    Berl saddles Porcelain

    Pall ring 55 Polypropylene

    Size exponent

    - 1.16 - 0.64 - 0.95

    Column Packing

    Ratio for other material

    1.24 Stoneware

    0.30 Carbon steel

    Size, in.

    Material Size exponent

    I nterlox $Odd Ie. Porcelain - 0.4 Polypropylene ...{J.95

    Rasch ig rings Porcelain - 0.5

    Ratio for other material

    0.94 Stoneware

    6.11 Stainless steel 2.35 Carbon 1.5B Mild steel 0.78 Stoneware

  • 800

    600

    400

    EQUIPMENT COST ESTIMATES 271

    Compressors, Medlum ~ Low Pressure

    20 40 60 80 100

    Size exponents:

    Straight lobe SI id i ng van. Helical screw Reciprocating (air)

    0.51 0.79 0.87 0.34

    200 400 600 800 1000

    Capacity. ",11m in

    Installation factor:

    1.3C>-87 ; OV9. 1.49

    Modu le factor :

    2.2- 3.1 ; avg. 2.6

    2000 4000 6000 10000

    Factors:

    Straight lobe:

    Pressure (fo ) 0'.

  • ~ (fl

    B u

    272 APPENDIX 1

    10000

    8000 I c- -6000

    f- -_ .... ,

    F ';

    4000 r~

    1= i== . .. F==~

    2000

    " 1000 "'

    ,

    800 1'-'

    600

    400

    200

    r----1===1-b I

    100 "

    80 " ..

    60

    40

    20

    1-'- I- . , 1--

    Compressors, High-Capacity and/or Pressure

    1,000 psi; electric mOt.or dri~e. gear reducer, steel

    : , I " I I I I

    " , ,

    " ,

    ~~~ ~ .

    , I

    , ,

    " . .- -- [._ . .. . I -:

    . . . :. b:~

    I--::: .~

    :.:

    ~ . 1:-:"

    ~= t' I

    "

    , ,

    1-

    ... ::.:: 1'::' 10

    10 20 ~o 60 80 100 200 400 600 800 1000 2000 4000 6000 10000

    Size exponent 0,80

    Equation: (I sothermal compression)

    HP ~ O.0044P,Q, In P,/P, P, ;; inlet pressure, psi P2 ..,.. outlet pressure, psi 0 1 inlet flow rate, cfm

    HOrSepower

    Installation factor :

    1.30-87; avg, 1.49

    Module factor :

    2,15-3.1; avg. 2,6

    Factors:

    Turbin. drive 1.13 Gas engine 1.41

    p ( P ) 0.1' ressure 1000

    Stainless steel 2.5 Nick le alloy 5, 0

  • 1000

    800

    600

    400

    200

    100

    80

    60

    8 40 0 .

    iii

    0 '-'

    20

    10

    6 8 10

    Sile exponent :

    Screw conveyor Belt conveyor Bucket elevator. rol l Pneumat ic conveyor Vibrating

    Installation factor :

    0.7B 0.76 0.5 0.37 1.0

    Range 1.40-2.15 avg . 1.72

    Modu Ie factors:

    Screw. pneumat ic. ro ll 2.2 Belt, bucket, vibrat ing 2.4

    EQUIPMENT COST ESTIMATES 273

    Conveyors Mild steel construction

    20 40

    Length, ft 60 80 100 200

    Size faclors:

    (dian:eter) 1.2 Screw conveyor 9 10 .

    ( width) D.6 Belt conveyor "i6Tr1."""

    400 600 800 1000

    ( bucket wd . X hI. ) 0.37 Bucket elevator 6 X 4 24 in.2

    . (diameter) 0 .55 Pneumatic conveyor --nn.-

    Rol l (2~:~) 0 .55; 4 in. spacing X 0.B4

    . . (width )0.51 Vibrating 36Tii":

  • (; c-

    'iii c

    ~ ~

    ~ .J:J E

    .:'1 " ~ 9; 0; '5 ~ ~ a 8, ;;; 1i 0

    0

    i "0 8 '" '0 j in

    ,3

    274 APPENDIX 1

    1000

    800

    600

    400

    200

    100

    80

    60

    40

    20

    10

    6

    1 1

    Coolers, Quenchers

    Mild steel construction; Cascade cooler . 2 in. diameter pipe

    - ,--7"''- : ~~~~'

    '=---'t:,= ;'; ~ ~~,

    ,,=-- ~:::c: , -

    ==--~ _. ,

    c--- 1--

    II I " ,

    , -

    ~

    ~.:....,- '-' --

    I nstallation factor:

    1.40-1,85; o.g. 1.62

    Module Factor:

    - ~: ' F~ , ' I =.. ,~ ':: i -e I , ;

    " ~

    I I I I I

    )faY cham_ber

    I

    :::Q~" .. I

    ':~

    I

    ~~ I 1'-,

    ~-;;;':co;;;;= II

    II I" 1:= "c. I- - = I~~.: ,:"-- 1-= f=

    8 10 20 40 60 80 100 200 400 600 800 1000

    Heat transfer surface, h ' Icascade cooler) In,et flow rate, 1,000 elm (quencher, spray chamber)

    Duct diameter, in, (dilution air port)

    Equations:

    Spray chamber: 5(358 X M scI + 65,000) Quencher 51 335 X M scI + 12,200)

    Factors:

    Cascade cooler

    (pipe d i~meter)O.6 2 In,

    Spray chamber, quencher 2.7

  • EQUIPMENT COST ESTIMATES 275

    Cooling Tower

    15"F range, 10" F approach, 82" F weI bulb

    1000

    800

    600

    400

    200

    ~ V> 100

    1; 80 0

    60

    40

    20

    10 ., .2 .6 .8 1 4 6 8 10 20 40 60 80 100 Capacity, 1,000 gpm

    Size exponent 0.79 Wet bulb temperature Ins-tallation factor 1.20 "F Factor Approach , .e.," F Factor Module lac tor 1.70 68 0.65 6 1.60 Factors; 70 0 .68 8 1.20

    e "F t 57 72 0.72 10 1.00 Range: """'i"5""' 74 0.77 12 0.85 76 0.82 16 0.65 78 0 .87 20 0.50 80 0 .93 24 0.40 82 1.00

  • 276 APPENDIX 1

    800

    600

    8 400 0.

    Vi 1i 0 u 200

    100

    80

    60

    40

    20

    10 1 8 10

    Size exponent:

    Cooling, evaporative 0.68 Growth, forced

    circulation, OTB 0.63 Vapor recompression 0.75

    Courtesv of Swenson,

    Crystallizers

    Mild steel construction

    20 40 60

    Capacity, tons per hour

    Installation factor:

    1.30-2.03, avg. 1.80

    Modu le factor:

    2.4- 2.9, avg. 2.6

    80100

    Material factors:

    Stain less steel 2.1 Copper alloy 1.3 Nickel alloy 2.6 Titanium 6.0

  • 1000

    800

    600

    400

    200

    100

    80

    60

    8 40 0 . y;

    5 u

    20

    10

    8

    6

    EQUIPMENT COST ESTIMATES 277

    Dryers

    Mild steel construction

    200 400 600 800 1000 2000 4000 6000 10000

    Size exponents:

    Rotary dryer Fluid bed Spray dryer

    Peripheral area, ft2 (rotary dryer) Volume, ft3 Wuid bed, spray dryer) + 10

    0.45 0.48 0.29

    Installat ion factor:

    1.25-96; avg. 1.64

    Module factor:

    Rotary 2.3 Fluid, spray 2.7

    20000 40000 60000 100000

    Factors:

    Rotary to: Roto- Louvre 1.25 Vacuum shelf 0.35

    Ishelf area)

    Materials:: Nickle alloy 3.7 8rick -lined.

    stainless ;teel 2.2

  • 0 0 C( ;; .; 0

    U

    278 APPENDIX 1

    1000

    800 i--== -= 600

    r:= ~~'

    400

    10::-

    ~ 200

    100

    80 r-;c

    60

    40

    20

    1=

    1-----. 10

    6 ~

    1.::.=::1--

    Ducts

    Wall thickness 1/8 in.

    6 8 10 20 40 60 80 100

    Duct Diameter. In.

    :~: - ...

    I :': 1-'--1 :

    1-1--

    -- f- f--I -. ~~

    200 400 600 800 t 000

    Size exponent : 1.08

    Installat ion factor: 1.45

    Equations: Si ft Factors: Mild 'S1eel (- 2.22 + 1.66D) Mild steel: Stainless (- 6.43 + 5.84D ) (wall thickness/ 1/8 in.)o . Water cooled (79 + 6.78D) Stai nless:

    (wall thick ness/1 /8 in.) 1.0

  • 1000

    800

    600

    400

    200

    100

    80

    60

    8 40 0_

    v; --(; u

    20

    10

    8

    --1- I- I-1---

    .~'" ,.' ~ ~

    I~-~

    .,-,.

    I==-

    1.,.-7'" I-

    1=-:

    1=-= f"---

    F:':: I-

    i=: ~ ---I--~-. ~--

    F== ~. p;. I-

    ~

    1= V-

    ~.: 1--:-... I-1-

    I nstallation factor:

    1.76- 2.00; ""9. 1.90

    ,

    EQUIPMENT COST ESTIMATES 279

    Oust Collectors Mild steel const f'" ' jC iOFl

    - j--j-

    - ;~ ~,~ I

    ~~::-1 ~ m

    ~o"~ ';" -(j~

    8 10 20 40 60 80100

    Ga, Flow Rate, 1,000 clm

    Module factors;

    Electrost.atic precipitators 2.3 Bag f ilters 2,2 Venturi scrubber 2.5 Cyclone. mul t iclone 3.0

    1-- 1- >"

    f. ::- Ic.:

    ! .~

    I ~

    0'..,. 1::"::

    ,"'---,.

    :"~ ,~ . .::

    --" -"- ----.c.C . . _

    _ ... -200 400 600 800 1000

    Material factors for venturi , cyclone scrubbers:

    High temperature with membrane. bric~ lining 1.6

    304 Stainless 1,8 316L Stainle.. 2,1 316L Slainiess, clad 1.9 Monel 3.0 Monel clad 2.7 Titanium 3.2

  • 280 APPENDIX 1

    40 60 60 100

    Si~e exponents:

    Forced circu lation 0.7 Falling film, long, s~on tube 0.53

    Also, see Cyrstall izers

    Evaporalors '

    Single effect; sta in less steel

    200 400 600 800 1000

    Heat exchange area, ft2

    Installation factor:

    1.5-2.50; avg. 2.09

    Module factor :

    Forced circulation 2.9 Falling Film 2.3

    2000

    Material factors:

    Mild steel Copper alloy Nickle alloy Titanium

    0.44 0.57 1.22 2.93

  • 1000

    800 1----1 1-

    600 1==

    400

    1'--

    -:.:: . 200

    1-

    100

    60 1---

    60

    8 1=',' 0:'" . 40 ;;; ,-.-: t;;' 0 u

    20

    1---

    10

    ~

    =,

    -1

    1

    EQUIPMENT COST ESTIMATES 281

    :._ ...

    " - 1-

    Fans Mi ld steel; motor, starter; 311 in. H, Oap

    8 10

    III

    --

    20 40 60 60 100

    Flow Rate, 1,000 elm 200

    Installation factor ; Factors:

    Range : 1.30-2.05; a.g. 1.61

    Module lactor: 2.2

    ( t.P) 0 .3 Pressu re: 3.5 Fiberglass: 1.8 Stainless steel : 2.5

    400 800 800 1000

  • 8. V>

    o u

    282 APPENDIX 1

    1000

    6

    8 10

    Size exponents:

    Rotary vacuum drum, leaf Vacuum table. tilt ing pan, belt Pressure leaf, plate Be frame

    0.39 0.5 0.61

    20

    Filters

    Stainless steel

    40 60 80 100

    Fi lter area, ft '

    Installation factor :

    1.19-2.21 ; a"9. 1.69

    Modu Ie factor:

    200

    Rotary table, belt , tilt ing pan 1.4 - 2.8; a"9 . 2.4

    Others 2 .8

    400 600 1000 2000 4000 6000 10000

    Factors: Rotary drum; belt/ screw or string discharge 1.22

    General/paper pu lp 2.' 7 -3 .38 Mild steel/stainle .. steel 0 .69 Vacuum table mild steel/55 0.48 Vacuum filter auxilliaries (vac . pump .

    receivers. etc ." Often - 50% of filter cost

  • ;;; t: o u

    800

    EQUIPMENT COST ESTIMATES 283

    Flares Mi ld steel , High Btu , with accessories

    2000 4000 6000 10000

    Size exponents:

    Elevatoo 0.59 Ground 0.39

    I nstal lation factor 1.45

    'H igh = 1,000; low = 60 Btul ft'

    20000 40000 60000 100000 200000 400000 600000 1000000

    Waste gas flaw rate, Ib/h r

    Factors:

    Ground : Low/ High Btu, 0.3 Elevatoo : Low/ High ' Btu, O.S Corrosive 2.0 Guyoo ( 100 ft .). selt- support ing

    (xel .,tOO) 1.3- 1.B

  • 8 q ;;;

    8

    284 APPENDIX 1

    10000

    8000

    800

    200

    100

    80

    60

    40

    20

    10 1

    Size ex.ponents:

    Hershott Box Cylindrical

    6 8 10

    0.48 0.70 0.78

    Furnaces

    Mild Sleel tubes

    Type Bo)( Furnace Factor Pressure Factors

    500 1000 2000 1.04 1.12 1.26 1.06 1.15 1 .32 1.08 1.22 1.42

    --(psi I 100 1.0 1.0 1.09 1.0 1.34 1.0 1.24 1.34

    20 40 60 80 100 200 400 600 800 1000

    T-ansterred h.at, MM Btu/ hr

    In,,", ll.tion f.ctor: Material factors:

    1.30-71; a"9. 1.52 Cy, indric.', vertical tubes: Stainless Sleel 1.74

    Module factor: 2.1 Chrome/ moly 1.44 with Dowtherm 1.33

    Hershott diameter: 6-19 It 10/61 55 > 19 10/6165

  • 8000

    6000 ----

    h = I'

    4000 I-==--

    - 1--"-r- '

    800 ___ ..

    ---600

    ---1-, ---

    100

    80 1_,

    60 1--

    I-~ 40 F -'::- __ 1_

    20 1=:=--I...c.... _-:

    I-:r 10

    100 200 400 600 800 1000

    Size exponents:

    Diesel driye 0.71 Turbine driye 0.76

    EQUIPMENT COST ESTIMATES 285

    GeneratOr, Electric Power

    .. -

    ." :: . ...

    2000 4000 6000 10000 20000 40000 60000 100000

    Electric generat ing capacity. KW

    Instal lation factor:

    2.22- 2.39 ayg . 2.31

    Modu le factor 2.5

    Factors: Gas/diesel engine 1.81 Coal /oi l, gas (turbinel 1.29

  • 286 APPENDIX 1

    1000

    800 == F 600

    400

    = 200

    F r.:-

    ~ .; ,

    100 I

    80

    60

    g 40 0.

    Vi of 0

    0 20

    f::--p:: ',oel 10

    8 ,'A,,"

  • 8 0.

    ;;; 1);' 0 0

    100

    60 : : :-:c:c 60

    . ;:=. 40

    ["::

    20 r--

    1=-:.;-10

    C-----_ .. -

    -

    -:c: .

    .. --. 1 10

    EQUIPMENT COST ESTIMATES 287

    1-=

    I'

    I--

    I

    Heat Exchangers: Spiral. Plate and Frame

    304 stainless steel; no insu lation

    :: ... ' ,:"f~e: . :..'">. ' 0'

    I I

    20 40 60 60 100 200 400 6008001000

    Size exponent :

    Plate & frame 0.78

    Equations:

    Spira l plate : S 660Ao." Pla te & frame: S ~ l00AOJ8

    Heat transfer area, ft2

    Installation Factor:

    Plate & frame : Mild steel 1. 70 Sta i nle.. 1. 53

    :::'=1:"

    I

    I.::: .;::

    2000 4000 6000 10000

    Material Factor:

    Mild steel 316 stainless Nickel Titanium

    0.43 1.1 1.2 2.6

  • o 8. II>

    ~.

    288 APPENDIX 1

    10000

    Size exponents: Rotary ki ln Hearth Catalyt ic Direct flame

    0.48 0.64 0.75 0.39

    8 10

    Incinerators Mild steel construction

    20 40 60 80 100 200 400 600 SOO 1000

    Heal input, 1()" Btu/hr

    Module factor 2.2 Factors:

    Corfosive material 1.5 Toxic waste 2.0 316 stainless 2.7 Monel 3.3 Nickel 3.5

  • 00

    BO 1-- . f--

    OIl

    40

    20

    f-'--101-----

    g 4 "

    1-,-1-

    .1 .2

    EQUIPMENT COST ESTIMATES 289

    Insulation

    2 in. th ickness for pipe

    ' ,

    , -teork iV~ls)

    ,

    .4 ,6 .8 1 8 10

    Pipe size. in.; InS(J lation th ickness. in. (ves.sels)

    Insulation thickness factors for pipe:

    3 in. 1.5 1% in. 0.7 1 in. 0.55 % in. 0.4

    1+

    I..:: 20 40 60 BO 100

  • 290 APPENDIX 1

    Ion Exchange'

    Mild steel construction; 465 ppm removed

    1000

    aoo

    aoo

    400

    200

    100

    80

    60

    8 40 0 .

    ;;; tf 0 u 20

    10

    8

    6

    10 20 40 60 80 100 200 400 600 800 1000 2000 4000 6000 10000

    Water treated, gpm

    Size exponent: 0.97 Installation factor; Factor

    Module factor 2.0 , .58-65, a.g. 1.62 , A) Ions removed (_ 0.5 1

    465

    (-35 ppm typical for boi ler makeup)

    .. See water treating. (-~20 ppm typical for cooling tower makeup)

  • 1000

    800 I-t-- 'r

    600

    ~-400

    1::-:: ..;:::--= ,- _.

    200

    [. 1---1--'

    100

    80

    -, 60

    .'c'. 8 40 0. 1:::::-: (I)

    :;f 0

    0 20

    17:-:--

    P= 10

    1---

    p =----

    ,"-

    ~::.-i, - -1--- - ' 1

    ,~- - l-I

    ,

    , ':

    EQUIPMENT COST ESTIMATES 291

    Mills ; Hammer, Jaw, Gyratory, Roll Crushers

    I

    "

    "

    ~ iii!

    r~ I~~-~~;

    , ,

    "-II: --

    ,-I--

    ,,,:1-' :7 ~

    r-

    1--

    1-

    ----1-" '--- I:::. 8 10 20 40 60 80 100 200 400 600 800 1000

    Mill capacity, t/hr

    Modu Ie factor: I nstallation factor :

    1.30-2.15, avg, 1.83 Hammer 2,8 0 1hers 2,1

  • 292 APPENDIX 1

    Mil ls: Ball, Rod, Pebble (Wet), Jet, Rubbish

    Reduct ion ratio 34 (i.e., - 1/ 2 in. - 65 mesh; 3/4 in. - 45 mesh)

    Size exponent

    Shredder Mills; installed

    purchased

    0.53 0.62 0.70

    Grinding capacity, t/ hr

    Installation factor:

    1.30 - 2.15; avg. 1.83

    Modu lar factor:

    1.8 - 2.B; avg. 2.3

    Factors:

    Ball, etc. mill, Size reduction

    ( R ed~~t ion ) 1.3

    Dry/ wet = 1.25

  • 100

    80

    60

    40

    20

    10

    0 E

    "lii

    ! 8 0 ,

    u;

    1l u

    0.8

    0.6

    0.'

    0 .2

    0.1

    EQUIPMENT COST ESTIMATES 293

    Motors Drives

    Electric : totally enclosed, fan cooled ITE FC)

    c-'-f-

    ~

    t::-:-:-:--

    f---'-

    f-.-

    _\;;~ ;:;~~ ..

    ~-:0~ :\e' " .

    =--=

    ...;..~~

    - _.

    == :=

    / - -7" ---

    --

    _._ ! :'. I::~ ll'

    :A" h fPc I- :-rt l"-'_I __

    := 1-'':'' ::::;;

    1-:

    -- 1- .. ,--1- 1- -- f-

    ~ I~:

    1000

    100

    10

    -: :::.: .::: := ~- :Smal ~ motors, varable 'sp~ jrive, . -- - - I ,

    1 8 10

    100

    Size exponent :

    Electric motors, small 0.86 Gas turbine, engine 0 .76 Steam turbine 0.41

    Module factor:

    20

    200'

    ' 0 60 80 100

    400 600 800 1000

    T urbines. engines, large motors. HP

    Variable speed drives : Ratio 1.5 to 5/ 1

    6/ 1

    Factor 1.0 1.08

    Electric 2.0 (1.5 on fans, pumps, compressors) Gasoline 2.0 Gas, steam turbines 3,5

    2000 4000 6000 10000

    Factors : Electric motors Speed, 1800 1.0 rpm 3600 1.04

    1200 1.6 900 2.6

    Construction : TE FC 1.0 Explosion proof 1.2 Drip proof 0.74

    ~ 0 E ., ~ 8 0. u;

    0 U

  • " c.

    294 APPENDIX 1

    BOO

    :'j;:~~-. 200 ~;~.::

    --:-:-0

    ~ .. .:::... 100 -_.

    ii: 10

    -,

    .. _. =:=' =, ...:.~, -:--~-

    -= C.::: . '1 ' j -- f/'-

    ,._-

    8 to

    Si~e exponent :

    Pipel ines 0.99

    Pipe, Pipelines

    Mild steel

    20 40

    --1- '-: .-.

    1-"-

    --- 1"-

    =:b:

    -'.~+' ' 1" -_. ,---- ::-..:I~:- I "

    60 80 100 200 400 600 800 1000

    Pipe size, in ,

    Factors : 304 stain less, schedule lOS

    Bar. pipe 2 .05 Traced, insulated 3.4

    Fi ttings 18 Valves 94

  • EQUIPMENT COST ESTIMATES 295

    '0

    Presses: Roll, Screw

    Mild steel construction

    20 40 60 80 '00

    Capacity, tlh r

    I nstallation factor: 2.05 Material factors :

    Module factor: 2.4 Stainless steel Nickle alloy

    200

    1.5 1.9

    400 800 800'000

  • 296 APPENDIX 1

    :; u

    Factors: Conven tiona l

    Size exponent Installation 1.30 Module factor 1.5 Cast steel 1.4 316 sta in less 2.0 Copper alloy 1.3 Nickel alloy 3.6 Titanium 5.7

    Pumps. Centrifugal

    Cast iron, horizontal, includes mOlor, coupling, base

    6 8 10 20 40 60 80 100

    In-l ine

    1.27 1.75 1.3 1.6

    Flow X pressure , gpm X psi X 1,000 {approximatel '~ HPI

    Pressure factor : Ax ial Mixed Flow Flow

    0.79 0.79 In-line 1.58 1.32 Conventional 2.05 1.70

    Factors:

    Conventional :

    200 400 600 800 1000

    to 150 150- 500-psi 500 psi 1000 psi

    1.00 1,48 1.92 1.0 1.62 2.12

    APS/AVS = 1.6 In-l ine: vertical/ horizontal . 0.89 Mixed , ax ial flow : vertical / horizontal 1 .12

  • 100

    80

    0 60

    0 u; co 40 0

    .~

    :s '5 20 .~

    .s= u ",'

    Iii 10 > '" c: '0 ~

    ~ C)

    a 4 ~ en Ii 8

    1 1

    Factors

    Size eXpOnent Installation Module factor Cast iron Cast steel Stain less Nickel alloy 0-150 psi 150-500 500-1000

    EQUIPMENT COST ESTIMATES 297

    Pumps, Miscellaneous

    Mild steel construction

    20 40 60 80 100 200 400 600 800 1000

    Flow X pressure, gpm X psi X 1,000 (approx imately HP)

    Rec iprocating

    0.59

    3.3 1.0 1.8 2.4 5.0 1.0 1.32 1.53

    Turbine

    0.47 1.38 1.80

    Chemical In jection

    0.52 1.58 2.83 1.0 1.25 1.95

    1.0 1.37 1.79

    General installation factor:

    1.25 - 2.40; avg, 1.74

    Factors:

    Other size e)(ponents:

    Diaphragm .43 Rotary .52 Gear .75 Sump .15

    Reciprocat ing: .:l.P 11,000 - 5,000)/(0 - 1,000) ~ 3.8 Sump: 3600/1800 rpm ~ 1.2

    120011800 in . 1.5 Chemica l injection: Fixedl variable speed 1.67

  • 298 APPENDIX 1

    1000

    800

    600

    400

    200

    100

    80

    60

    :; 8

    40

    q ;;; :;;' 0 20 U

    '0

    8

    6

    6 8 10

    1000 4000 6000 10000

    Size exponent: 15 psi (gal) 0.64

    Pressure Vessels' Mild steel construction

    40 60 80 100 20

    20000 40000 60000 100000

    Vessel weight, Ib

    See columns for pressure and material correction factors.

    200

    200000

    10000

    8000

    6000

    aOOO

    2000

    1000

    800

    600

    ~ 400 8

    0 .

    U;

    200 g

    100

    80

    60

    40

    20

    10 400 600 800 1000

    400000 1000000

  • EQUIPMENT COST ESTIMATES 299

    Reactors-304 stain I ... steel; jacketed; no agitation

    80

    70

    60

    50

    . '"

    40

    B u

    30

    20

    10

    0 0 6 9 10 11 12

    Reactor volume. 1.000 gal

    Module factors: I nstallation factor : Material factors:

    Stainl... 1.8 1.40 - 2.10; ""9.1.70 316 stain Ie.. 1.2 Gla .. lined 2.1 Gla .. lined .8 Mild steel 2.3 Lead lined .7

    Mild steel .6

    OSee agitated tank~

  • 300 APPENDIX 1

    0

    8. :i>

    :s u 200

    100

    80

    60

    40

    40 60 BO 100

    Size exponent 0.69

    'One ton 12,000 Btu

    Refrigerat ion 40 00 F temperature

    200 400 600 800 1000

    Refrigeration, tons

    Installation, Module factor

    1.38- 53; avg. 1.46

    2000 4000 6000 10000

    Evaporat ive temperature factor's:

    +20F o

    - 20 - 40

    1.5 1.9 2.4 3.5

  • 100

    80

    60

    40

    ZO

    '" 10 ;;; 0

    U

    6 8 10

    Size exponent: 0.75

    Module factor : 2.8

    EQUIPMENT COST ESTIMATES 301

    Screens, V ibrating

    Mi ld steel, single deck

    20 40

    Screen area, ft2

    I nstallation factor ;

    1.45- 2.27; avg. 1.85

    60 80 100 zoc 400 600 800 1000

    Factors:

    Double deck Stainless steel Nickel alloy

    1.6 1.25 1.8

  • 302 APPENDIX 1

    100

    BO

    60

    40

    20

    8 q ;;; 10 1;; 0

    U

    1 .1 .2 .4 .6 .B

    Size exponent

    Pug mill 0 .15 Pellet mill 0.12 Pellet izing rolls 0.58

    Installation factor : 2.05

    Size Enlargement Mild steel construction

    6 Capacity , l/ hr

    Factors

    8 10

    Module factor Stainle .. steel Nickel alloy

    20

    Pug mill extruder ---u-

    1.2 1.4

    Screw/pug mill extruder Disk/drum granu lator

    40 60 80100

    Disk, drum granulator Others

    fa ~ 1.1 1.2 1.3 1.4

    5.6 0.68

  • EQUIPMENT COST ESTIMATES 303

    Tanks Mild steel construction unless otherwise noted

    1000

    800 1-' 1--

    600

    400

    200

    100 rT-

    80

    60

    8. 40 (ii

    B u 20

    Small cone top large cone top

    i_ -

    8 10

    Size Module exponent factor

    0.51 1.6 0.51 1.9

    Horizontal, pressure 0 .72 2.08

    Spher. 0.62 1.87

    Fiberglass 0.71 Small storage 0.71

    -

    ,

    , -20 40 60 80 100

    Tank capacity. 1,000 gal

    Pressure factor

    200 250 psi 1.18 1.38 50 75 100 125 200 [ij8 1-:19 US f39" f53

    Ii

    .. - 1=

    1- 1-

    ~ ~.

    ~ I~

    :

    ~ __ .c Ie;' 1:-... - -.- ::::: .-... -=

    200 400 600 800 1000

    Factors:

    Rubber lined 1.5 Lead lined 1.6 Stainless 2.0 Floating roof;

    large, field eretted 1.8

    Ins'tallation factor :

    1.20 - 2.30. avg. 1.88

  • 304 APPENDIX 1

    Tanks, (Smal l) 304 sta inless steel

    l00 _____ ~

    o o O.

    ;;>

    U

    . 1 .2 .4 .6 ,8

    Size exponent

    Dished head. 50 psi Flanged. dished head Cone toP. bottom, legs FI.t toP. bottom

    Capacity. 1,000 g.1

    0.68 0.48 0.57 0.93

    10 20 40 60 80 100

    Factor

    316/304 st.in less steel 1.39

  • o o o. ;;;; Ii 8

    EQUIPMENT COST ESTIMATES 305

    Thickeners, Clarifiers

    Rake mechanism, concrete tank, drive

    8000

    40

    20~_1I 10~

    10 20 40 Size exponent : 1.03 Installation factor :

    1.63-2.61; avg . 2.12

    Module factor: 3.0

    60 80100

    Diameter. ft

    200 400 600 800 1000

    Tank factor : Concretel steel 0 .7 for units under 40 It diameter

  • 8 q (I)

    :;;' 0 u

    306 APPENDIX 1

    1000

    800

    600

    400

    200

    100

    80

    60

    ., .4

    Vacuum Equipment M ild steel or cast iron

    8 '0

    Ejector Factors

    1 surface condenser 1 .6 2 surface condensers 2.3 1 barometric condenser 1.3 2 barometric condensers 1.7 1 stage 1.0 2 stages 1.8 3 stages 2.1 4 stages 2.5 5 stages 4.0 Cast iron 1.0 Caroon steel 1.3 Stainless steel 2.0 Hastelloy 3.0 Nick le alloy 2.2

    20 40 60 80100 Capacity factor , equiv. air flow.lb/ hr/ vacuum, mm mercury;

    Water throughput , 1,000 gpm (barometric condensers)

    Size exponents: Installat ion factor 1.12

    Module factor 2.2 Vacuum pumps 0.75 Steam iet ejectors 0.42 Barometric condensers 0.67

    REFERENCES

    Allen , D. H., and R. C. Page. 1975. Revised techniques for predesign cost estimating. Chemical Engineering (March).

    Alonso, J. R. F . 1971. Estimating the costs of gas cleaning plants. Chemical Engineering. Axtell, Oliver, and James M. Robertson. 1986. Economic Evaluation in the Chemical Process

    Industries. John Wiley & Sons, New York. Beckman, James, ed. 1986. Series Design of Equipment. Vol. 1, Plant Design and Cost Estimating.

    American Institute of Chemical Engineers, New York.

  • EQUIPMENT COST ESTIMATES 307

    Bennett, Richard D. 1987. Evaporator, crystallizer costs. Swenson Process Equipment Inc., 15700 Lathrop Ave., Harvey, IL 60426; 1988, Matching Crystallizer to Material, Chemical Engineering (May 23): 118-127.

    Blecker, H. G., H. S. Epstein, and T. M. Nichols. 1974. Wastewater Equipment. Chemical Engineering (Oct.).

    Chase, D. J. 1970. Plant costs vs. capacity. Chemical Engineering (April). Chemical Engineering, compo & ed. 1979 and 1984. Modern Cost Engineering: Methods and Data.

    2 vols. McGraw-Hili, New York. Chemical Engineering, compo & ed. 1979. Process Technology and Flowsheets. McGraw-Hili,

    New York. Clark F. D., and S. P. Terni. 1972. Thick wall pressure vessels. Chemical Engineering (April). Corripio, A. B., K. S. Chrien, and L. B. Evans. 1982. Estimate cost of heat exchangers and storage

    tanks via correlations. Chemical Engineering (Feb.): 125-127. Desai, M. B. 1981. Preliminary cost estimating of process plants. Chemical Engineering (July 27). Epstein, L. D. 1971. Costs of standard vertical storage tanks and reactors. Chemical Engineering

    (July 13):141-142. Fang, C. S. 1980. The cost of shredding municipal solid waste. Chemical Engineering (April

    21):151-152. Guthrie, Kenneth M. 1974. Process Plant Estimating, Evaluation, and Control. Craftsman Book

    Co., Solana Beach, CA. Hall, R. S., J. Mately, and K. J. McNaughton 1982. Current costs of process equipment. Chemical

    Engineering (April 5). Happel, J., and D. G. Jordan. 1975. Chemical Process Economics. Marcel-Dekker, New York;

    219-231. Herkimer, Herbert. 1958. Cost Manual for Piping and Mechanical Construction. Chemical

    Publishing, New York. Hoerner, G. M. 1976. Nomograph updates process equipment costs. Chemical Engineering (May). Holland, F. A., F. A. Watson, and J. K. Wilkinson. 1974. How to estimate capital costs. Chemical

    Engineering (April). Huff, G. A. 1976. Selecting a vacuum producer. Chemical Engineering (March). Kharbanda, O. P. 1979. Process Plant and Equipment Cost Estimation. Craftsman Book Co.,

    Solana Beach, CA. Klumpar, L. V., and S. T. Stavsky. 1985. Updated cost factors: process equipment. Chemical

    Engineering (July 22):73-77. -. 1985. Commodity materials. Chemical Engineering (Aug. 19):76-77. -. 1985. Installation labor. Chemical Engineering (Sept. 16):85-87. Koenig, A. R. 1980. Choosing economic insulation thickness. Chemical Engineering (Sept. 8). Kumana, Jimmy D. 1984. Cost update on specialty heat exchangers. Chemical Engineering (June

    25): 169. Lindamood, D. M. 1985. Most economical thickness, hot-pipe insulation. Chemical Engineering

    (April 1):96. Meyer, W. S. and D. L. Kime. 1976. Cost estimation for turbine agitators. Chemical Engineering

    (Sept.). Miller, J. S. and W. A. Kapella. 1977. Installed cost of a distillation column. Chemical Engineering

    (April). Moselle, Gary, ed. 1979. National Construction Estimator. Craftsman Book Co., Solana Beach,

    CA. Mulet, A., A. B. Corripio, and L. B. Evans. 1981. Estimating costs of distillation and absorption

    towers via correlations. Chemical Engineering (Dec. 28):77-82. -. 1984. Pressure vessels. Chemical Engineering (Oct. 5). Patrascu, Anghel. 1978. Construction Cost Engineering. Craftsman Book Co., Solana Beach, CA.

  • 308 APPENDIX 1

    Peters, M. S., and K. D. Timmerhaus. 1980. Plant Design and Economics/or Chemical Engineers. McGraw-Hili, New York.

    Pikulik, A., and H. E. Diaz. 1977. Cost estimating for major process equipment. Chemical Engineering (Oct. 10): 107-122.

    Purohit, G. P. 1985. Cost of double-pipe and multitube heat exchangers. Chemical Engineering (March 4):92-96. (April 1):85-86.

    Sommerville, R. F. 1970. Estimating mill costs at low production rates. Chemical Engineering. -. 1972. New method gives accurate estimate of distillation cost. Chemical Engineering (May). Swearingen, Judson S., and John E. Ferguson. 1983. Optimized power recovery from waste heat.

    Chemical Engineering Progress 79 (Aug):66-70. Ulrich, G. D. 1983. A Guide to Chemical Engineering Process Design and Economics. John Wiley

    & Sons, New York. Valle-Riestra, F. J. 1983. Project Evaluation in the Chemical Process Industries. McGraw-Hili,

    New York. Vatavuk, William M., and Robert B. Neveril. (1980-1983). Air pollution control systems (Parts

    1-16). Chemical Engineering (Oct.-May). -.1980. Pollutant capture hoods. Chemical Engineering (Dec. 1):111-115. -. 1984. Practical emmissions control. Chemical Engineering (April 2):97-99. -. 1984. Gaseous emmissions control. Chemical Engineering (April 30):95-98. Vogel, G. A., and E. J. Martin 1983. Estimating capital costs of facility components. Chemical

    Engineering 90 (24) (Nov. 28):87-90. -. 1984. Operating costs. Chemical Engineering (Jan. 9):97-100. -. 1984. Incinerator costs. Chemical Engineering (Feb. 6): 121-122.

  • APPENDIX 2

    COMPLETE PLANT COST ESTIMATING CHARTS

    The following charts indicate the complete cost of plants to produce various chemicals in differing tonnages. The information has been assembled primarily from four sources: (1) curves on 54 plants published by Guthrie (1974), (2) curves on 18 plants published by Chemical Engineering (1973/1974), (3) 33 nomographs, and about 140 single plant size-cost data notations by Kharbanda (1979), and (4) several hundred recent plant construction notices in Chemical Engineering's Construction Alert. The first three sources are quite old, with most of the information gathered from the mid-60s through the early 70s. The last source was data from 1980 through 1987. Each source was inftation-corrected to 1987 (CE Index of 320) by means of the Chemical Engineering (CE) Index.

    The first two references were probably quite authoratative when published, and repre-sented contractor prices for that plant alone, plus the necessary raw material and product storage. The infrastructure for a "grass roots" plant, or even for minor utility and other required nonplant facilities was not included. The later two sources, on the other hand, are basically press-release information stating what the complete facility cost. This might include land, site development, and/or any of the infrastructure required to make the plant function. Costs would thus be higher, and the assembled data would be much more scattered because of each location's different requirements.

    Both factors, the early data's age, and the most recent data's complete cost basis, tend to limit the accuracy of the plots. When considerable data were available, high, low and average lines were shown. Presumably the high values represent more infrastructure requirements. When only one data point (i.e., one plant cost at one size) was available, the capacity versus cost line was drawn with a slope of 0.64, the average size-cost exponent of Guthrie's 54 plants.

    Normally it should be expected that the costs shown in these plots should be roughly correct, and perhaps on the high side. However, some of the data from the first three references appear to be very low, so caution should be used with all of the charts. They may be useful as a guide, but not too much confidence should be placed in their accuracy. The basis for the costs should be considered as a reasonably high value for the plant alone, plus storage, and the CE Index 320.

    309

  • 310 APPENDIX 2

    60

    20

    8 o g 0,10

    ;;;; 8 :;;' o u

    8 10

    Size exponent

    Acetic acid Acetone Acetylene Acetaldehyde

    Plant Costs, A

    20 40 60 60100

    Capacity, tid

    0.59 0.55 0.65 0.41

    Raw material

    Methanol Propylene Hydrocarbons Ethylene

    200 400 600 600 1000

  • 200

    100

    0 0

    ~f o.

    '" ~~ 0 u

    10

    "Assumed

    COMPLETE PLANT COST ESTIMATING CHARTS 311

    6 8 10

    Size exponent Acryl ic fi ber Acrylonitrile Alkyl benzene (linear) Aromatic,s Acryl ic acid

    Plant Costs, A

    20 60 60100 200

    Plant capaci ty, tid

    1.02 0.60 1.07 0.40 0.64"

    Raw material

    Acrylon itrile Acetylene, hydrogen cyanide

    400 600 600 1000

  • 312 APPENDIX 2

    60

    40

    8 20

    o ~ ~ 10 ~

    8 c .. 0::

    I 10 20

    Size exponent"

    Allyl chloride Acetic anhyd ride Adipic acid Aniline

    40

    Alylales, detergent

    , All assumed

    Planl COSIS, A

    60 80100

    Plant capacity, tid

    200 400 600 800 1000

    Raw material

    0.64 0.64 0.64 0.64 0.64

    Propylene, C12; Dich loropropane Acetic acid Cyclohexanol Benzene; nit ric, 5ulfu ric acids

  • 1000

    800

    600

    400

    200

    tOO

    80

    10

    COMPLETE PLANT COST ESTIMATING CHARTS 313

    Plant Costs, Aluminum Chemical.

    20 40

    Siz e exponen ts

    Alumina Alumina, sintered Aluminum

    60 80 100 200

    Plant capacity, tid

    400 600 800 1000

    Assumed Aluminum sulfate

    0.54 0.64' 1.0 0.64'

    Raw materials

    Bauxite Alumina Alumina Bauxite, H2 S04

  • 314 APPENDIX 2

    1000

    800

    600

    400

    200

    100

    80

    0 60 0 0 g 40 '" a 0

    " 20 iii 0::

    10

    20

    Assumed

    Pla nt Costs, Ammonium CompOunds

    40 60 80 100

    Size exponents

    Ammonia Ammonium nitrate Ammonium sulfate Ammonium phosphale Ammonium perchlorate Ammonium bicarbonate

    200 400 600 800 1000 2000 4000 6000 10000

    Plant capacity, tId

    0.58 0,65 0,67 0,64' 0,64' 0,64'

    Raw material (process) Gas, air Ammonia; Iprilled) Ammonia. sulfuric acid, (crystalized ) Ammonia, phosphoric acid , (granulatedl Ammonia, CI2 Ammonia, CO,

  • 80

    60

    40

    8 20 o

    ~ ;;; t; 8 c ..

    0::

    I I

    Size exponent

    Butad iene Butanol Butanol Benzene Benzoic acid Bjsphenol A Butanol Butane, iso Benzene, toluene, xy lene

    0.63 0.48 0.69 0.73 0.64' 0.64' 0.64' 0.64' 0.64'

    COMPLETE PLANT COST ESTIMATING CHARTS 315

    to

    Planl COSIS, B

    20 40

    Planl capacity, tid

    Raw malerial Iprocess)

    Butane; butylene Propylene Butylene

    60 80100

    Toluene, H2 lDetol) Toluene Acelone; phenol Elhanol Butan e, pentane Reformate (extraction)

    200 400 600 800 1000

    Factors for benzene process:

    DOIOI 1.0 Litol 1.42 Pyrotol 1.48

    Assumed

  • 316 APPENDIX 2

    100

    80

    8 60 g 0 . 40 ;;;

    10

    t 1

    Size exponent

    Carbon black Chlorine Caprolactum Cyclohexane Carbon tetrachloride Carbon d isu lfide Cement Cyanoacetate Ch loroacet ic acid , mono

    Assumed

    0.S7 0.47 0.52 0 .49 0.48 0.64' 10 0.64' 0.64'

    Plant Costs, C

    10 20 40 60 80 100 200 400 600 800 1000

    Plant capacity , tId lor cement, 10 bbl/d)

    Raw material (process'

    Aromatic oi ls; gas N.CI brine lelectrolysis)ICaust ic soda by product; 1.07 Ib/ lb C12) Cyc/ohex.ne, NH , IAmmonium sulfate by-product; 1.7E Ibllb caprolactum ) Benzene, H2 Prop.ne, CI 2 IPerchlorethylene by-product ; 1.33 Ib/lb CCI, )

  • 1000

    800 I-- 1-' . 1--1-

    600 F==

    400 I~=-

    200

    ...

    ~.

    100

    80 - ~: 0 80

    8 ci 0 40 O.

    in

    8 ~

    20

    0::

    10

    6

    1=

    --= .. -1

    COMPLETE PLANT COST ESTIMATING CHARTS 317

    Pla nt Costs, C

    , , I

    8 10 20 40 60 80 100 200

    Pl ant capacity, tlhr

    Siz e ex ponent-

    Citr ic acid 0.64 Carboxymethyl cellula,. 0.64 Cellu lose ace late 0.64 Cumene 0.64 Cyclohexanone/clyclohexanol 0.64 Ch loroprene monomer 0.64

    Raw mater ia l (process)

    (Submerged fermentation) Cellulose Cellulose Benzene, propylene Benzene, H2 Butad iene, CI2

    ,-I-=-

    1--

    400 600 800 1000

    .. All size exponents assumed Factor for chloroprene raw materiaL Acetylene 1.57

  • 318 APPENDIX 2

    Plant Costs, D

    600

    P!3nl capacity. lid

    Size exponent

    DMT 0.51 Diphenyl amine 0.64' Dichlorophenoxyacetic acid 0.64' DDT 0.64' Detergent alkalate 0.64' Detergent alkalate 0.64 Diethanol amine 0.64 Dimethyl terephthalate 0.64' Dioctyl phthalate 0.64' Dimersol 0.64' Dimersol, ethylene 0.64

    ' Assumed Oiphenyl methane d iisocyanate 0.64

    Raw materia l

    Grassroo ts plants

    Pllenol Ch loral , Chlorobenzene Propylene tetramer. benzene n- paraffin Ethy lene oxide. ammonia p- xylene , methanol Phthalic anhydride

    Dimerization

  • 8 ~i o. ;;;

    Size exponent

    Ethane Ethylene E thy I ene ox ide Ethyl benzene Ethyl chloride Ethylene d ichloride Ethylene glycol

    Assumed

    40

    0.65 0.85 0.80 0.64 0.64 0.64 0.59

    COMPLETE PLANT COST ESTIMATING CHARTS 319

    Plant Costs. E

    60 eo 100 200

    Plant capacity. t Id

    Raw material

    Petroleum Gas:, naptha, gas oil, etc. Ethylene Ethylene. benzene Ethylene. HCI Ethylene. CI, Ethylene ox ide

    400 600 800 1000 2000

    Raw material factors for Ethylene (1350 tid; SI68 MM)

    Ethane 1.0 Propane 1.10 Naptha 1.48 Gas oil 2.76

    (produces 0.59 t propylenel t ethylene)

  • ~

    320 APPENDIX 2

    60

    40

    20

    ;;; 10

    1;;'" 8 8 li 6 ~

    Plant Costs. E

    __ II I--

    1 1

    -Assumed

    B 10 20 40 60 SO 100

    Plant capacity. tid

    Size exponent

    Epichlorhydrin 0.64 Ethyl ether 0.64 Ethyl hexanol 0.64 Ethyl diamine 0.64

    Raw material

    Al lyl ch loride Propylene. synthesis gas Acetaldehyde Ethylene dichloride

    c.:;:

    -- [.::: 1::::

    200 400 600 800 1000

  • ~ u E .. n:

    COMPLETE PLANT COST ESTIMATING CHARTS 321

    Plant Costs, Ethanol l Fermentation), Methanol

    6 10 20

    Size exponents

    Methanol Ethanol

    Ethanol plant capacity, MM gallvr Methanol , 100,000 t/vr

    0.78 0.90 > 10 MM gal/vr 1.0 to 10 MM gal/yr

    Raw materials (process)

    Methane, CO, H2 (Fermentat ion)

  • 322 APPENDIX 2

    100

    SO

    60

    40

    "

    0 20

    8 0" 8, , , , ;;; 10 :;;'

    8 8 ~ 0::

    1-:-..:::1::: 1 - .-.

    I-- ,:.'-'..: I:::I-F -' i-+

    Plant Co,ts, F

    I ~

    8 10 20 40 riO 80 100 200 400 600 800 1000

    ~Assumed

    Plant capacity, tid

    Si.~e eXpOnent

    Formaldehyde

    Fatty alcohol Fluorocarbon Ferric chloride Fructose, crystalline Fructose, syrup

    0.55 0.66 0.64' 0.64' 0.64' 0.64 0.64

    Raw materials

    Hydrocarbons, aqueous Methanol Coconut oil Carbon tetrachloride, H F Ferrous chloride, CI2

  • COMPLETE PLANT COST ESTIMATING CHARTS 323

    Size exponent

    Glycol 0.79 Glycerine 0.64'

    .. Assumed

    Plant Costs, G

    Plant capacity, tId

    Raw materia I

    Ethylene, CI , A l lyl alcohol, epichlomydrin

  • 324 APPENDIX 2

    100 V -f---

    80 :;:; =

    60 - I 8 40 D .

    ~~

    ~ 20 0:: 1-=0

    I=-~ .-= o

    8 f----I--

    6

    Si2e exponent

    Argon Oxygen Hydrogen LNG SNG Garbon dioxide

    Plant Costs, Gases

    II

    1- 1-

    .-

    r=:::::I--. I-I-:' -- I - 1- .. 1- 1- .

    6 8 10 20 40 60 80 100 200 400 600 800 1000

    Plant capacity : argOn 1,000 sefh; SNG, 1,000,000 sefd; hydrogen. oxygen, tid; LNG, 1,000 tid

    0.89 0.59 0.65 0.68 0.75 0.72

    Raw material, process

    Air, liquified Air. liquified Methane; partial ox idation; reforming Tea I arc process Coal

    Factors for SNG feedstock

    Coal 1.0 Crude oil 0.6 Medium, heavy gas oil , 0.5 Naptha, kerosene, 0.3

    light gas oil

  • 8 o

    g '"

    COMPLETE PLANT COST ESTIMATING CHARTS 325

    Plant Costs, Liquid Air, Hydrogen, Carbon Dioxide, Oxygen, Nitrogen

    200 400 600 800 1 000

    Plant capacity, tid

    Size exponent

    Carbon dioxide, liqu id Ox.ygen , liquid A ir. nitrogen, liqu id Argon , hydrogen, liquid

    0.72 0.37 0.66 0.66 (esl.l

    2000 4000 6000 10000

  • 326 APPENDIX 2

    o 60 o o 0' ~ 40 in

    10

    8

    6 f-------

    I ::::-1::--I

    I

    "Assumed

    , , ,

    Size exponent

    8 10

    Hydrochloric acid Hydrofluoric acid Hexamethylene tetramine Hydrogen peroxide Hydrogen cyanide

    Planl Costs, H

    20 40 60 80 100 200 400 600 800 1000

    Plant capacily, tid

    0.69 0.72 0_64' 0.73 0.70

    Raw materials

    Sail, H 2 SO, INa, SO, by- prod U cl I CaF" H,S0 4 Methanol, ammonia lsopropy lene alcohol, 0, Propane, ammonia

  • Assumed

    COMPLETE PLANT COST ESTIMATING CHARTS 327

    a 10

    Size exponent

    Isoprene I soprapano I I sobutvlene lsooctanol Impact modifiers Impact modifiers for

    Methylmethacrylate-butadiene- sty rene

    Plant Costs. I

    III

    20 40 60 80 100 200

    Plant capacity. tId

    0.49 0.73 0.64' 0.64' 0.64' 0.64'

    Raw material (process)

    Propylene. methanol. O2 Propylene I liquid extract ion) Heptane

    1--

    I--

    .=~'- ..

    c_:.:..;... .:~: .....

    400 600 600 t 000

  • 328 APPENDIX 2

    tOOO

    800

    600

    400

    200

    100

    80

    60

    g q

    40 ;;;

    \3 [ij

    20 ii:

    10

    6

    "Assumed

    Plant Costs, L, M

    8 10 20 40 60 60100 200

    Plant capacity, tId

    Size exponent

    Lithium carbonate Maleic anhydride Melamine Methyl chloride Methyl ethyl ketone Methyl isobutyl ketone M ercaptobe nl O th i azole Methyl methacrylate Monochloroacetic acid

    0.64" 0.48 0.64" 0.64" 0.64" 0.64 0.64' 0.64 " 0.64'

    Raw material

    Spodumene are Benzene Urea, ammonia Methanol

    An iline Acetone, HCN Acet ic acid. CI ,

    400 600 800 1000

  • 8 20 0 8-q

    '" ::: 8 ~ n:

    . Assumed

    COMPLETE PLANT COST ESTIMATING CHARTS 329

    Plant Costs, M

    8 10 20 40 60 80 100 200 400 600 800 1000

    Plant capacity, ti d

    Size exponent ~

    Monosodium methyl arsonate 0 .64 Magnesium oxide 0 .64 Magnesium hydrox ide 0 .64 Methyl tertiary butyl ether 0 .64 Methyl amine 0 .64

    Methanol - see page for ethanol

    Raw material

    (coproduct sod ium cocodylate - herbicides) Seawater ; brine Seawater; brine (calcined)

    (coproduct , O.67 t dimethyl formamide)

  • 330 APPENDIX 2

    800

    600

    400

    200

    100

    80

    8 60 o 8-o~ 40

    VJ

    6 8 iii 20 ii:

    10

    6

    1 1

    A .... med

    Plant Costs. N

    -DB

    8 10 20 40

    Plant capacity . tid

    Size exponent

    Ni'tric acid Naplhol B Nylon 616 r .. in Nylon fi lament N itrophosphale N itro compounds, organic

    0.59 0.64' 0.64' 0.64' 0.64' 0.64'

    - I .. -.

    60 80 100 200

    Raw material

    Ammonia Napthalene Ad ipic acid Dimethyl formamide Phosphate ore. NH03

    1--- , ... I .. 1- 1-

    400 600 BOO 1000

  • COMPLETE PLANT COST ESTIMATING CHARTS 331

    c .. 0::

    800

    600

    400

    200

    40

    Planl Costs, a

    60 80,00 200 400 600 800' 000

    Plant capacity, tid

    Size exponent

    Oxo alcohols Olelins, alpha Olefins, linear, higher

    -Assumed

    0.74 0.64' 0.64'

    Raw materials Olelins, CO, H2 Hydrocarbons; wax

  • 332 APPENDIX 2

    8 0 6 8.

  • 100

    BO

    40

    8 20 a 8' q ;;;

    10

    8 ~ 6 i[

    2

    Assumed

    COMPLETE PLANT COST ESTIMATING CHARTS 333

    6 8 10

    Size exponent

    Protein. single cell Para xylene Phenol

    Phosphoric acid Phosphorus Phtalic anhydride Potassium sulfate

    Plant Costs, P

    20 40 60 BO 100 200 400 BOO 800 1000

    Plant capacity, tid

    0.64' 0.61 0.68 0.72 0.56 1.06 0.72 0.64'

    Raw material (process)

    (Crystallizalioni Benzene; loluene Cumene Phosphate rock, H,SO. Phosphate rock, electricity, coke Napthalene; o-xylene Potassium chloride, H2 S0 4

  • 334 APPENDIX 2

    BO

    0

    8 0' 8. Vi ~.

    ::; u

    ~

  • 800 ._

    600 1--

    400

    200

    100

    80

    60

    :; 20 ii:

    10

    8

    6

    4

    2

    1

    1-'

    r--

    1--,---

    COMPLETE PLANT COST ESTIMATING CHARTS 335

    Plant Costs, Polyme"

    -8 10 20 40 60 60 100 200 400 6008001000

    Plant capacity tid

    All size exponents assumed at 0.64.

  • 336 APPENDIX 2

    1000

    800

    Pla nt Costs. Polymers

    20

    Plant capacity. tid

    All size exponents assumed at 0 .64 . except Polycarbonate 0.79

    200 400 GOO 800 1000

  • 100 '

    60 ' ,

    g ;;;

    10 I

    8 10

    'Assumed

    COMPLETE PLANT COST ESTIMATING CHARTS 337

    Plant Costs, S (Organic)

    1--

    1--

    r:::::r::;-

    i--';" I- I~ ~I~ 20

    Size exponent

    Styrene Sorbitol

    40 60 60100

    Plant capacity, tId

    Sulfonated and sulfated surfactants and detergents

    0.56 0.64' 0.64 '

    200 400 600 800 1000

    Raw materials Benzene, ethylene, steam Corn syrup

  • 338 APPENDIX 2

    ,~

    '"

    , "

    'tlr 10 13 ~

  • 1000

    600

    400

    200

    100

    80

    60

    g" 40 q

  • 340 APPENDIX 2

    Plant Costs, I J. V, X

    8 o 8 0. CI)

    1_-10 20

    Size exponent

    Urea

    40

    Uranium oxide Uranium hexa fluoride Vinyl acetate Vinyl chloride o-xylene p-xylene

    Assu med

    60 80100 200 400 600 8001000

    Plant capacity, tid

    0.64 0.64' 0.64' 0.65 0.88 0.64' 0.64'

    Raw materials (process)

    Ammon ia, CO2 Uranium ore Uranium ore. fluorine Ethylene Ethylene, CI2 .o,t HCI Mixed xylenes (fractionation ) Mixed xylenes !fractionation I

  • 60 8 8 q ;;; ~'

    13 " i Ii:

    10

    COMPLETE PLANT COST ESTIMATING CHARTS 341

    PI.nt COS". Met.,s. C.rbon

    8 to 20 40 60 80 100 Plant capacity. tid of metal produced

    Size exponents 0.64-1 ,0 avg. 1.0 Carbon fibers 0 .85

    200 400 600 BOO 1 000

  • 8 8' o. ;;; ~~ u

    ~ ii:

    342 APPENDIX 2

    1000

    800 --=- --600

    400 i==-'

    L-c

    ~::Z' 200

    =-100

    80

    60

    40

    F

    20

    f-C-- -10

    8

    10

    ' ....

    ."

    20

    Plant Costs. Minerals

    -..

    40 60 80 100 200 400 600 800 1000

    Plant capacity. t Id

    Size exponents:

    Assumed to be 0.64

    1"'-1"-

    , 1..- .. ,.

    ~:.:.:::

    1-

    1-- = :: 1-.. .. 2000 4000 6000 10000

  • 1000

    = = 800 600

    400

    1=

    200

    =-100

    80

    0 60

    8 0 0 40 0. ;;; ~f u ;: 20 .. iL

    10

    8

    =

    l== 1

    1

    COMPLETE PLANT COST ESTIMATING CHARTS 343

    Plant Costs. Natural Gas Purification

    - . ,

    - ~~ ~~~~'~

    I :.G

    , , ~~ .. ~

    C .. ~~: :.G'

    -8 10 20 40 60 80 100

    Plant capacity, M scfd

    Size exponents

    Gas treat ing alone 0.75 Gas treating with liquids fract ionation 0.75 Sour gas treating with sulfur recovery 0.84

    and liquids fractionation

    :,~

    ,

    200

    i---- ... 1---

    1--""

    1-- 1' '''

    I.:: I:::

    400 600 800 1000

  • 0

    8 0" 8. Vi .: ::; u

    ~ 0:

    344 APPENDIX 2

    1000

    800

    600

    400

    200

    100

    80

    60

    40

    20

    10

    6

    , Assumed

    Petroleum Plant Costs, Complete Plants

    8 10 20 40 100

    Plant capacity , 1,000 bbl /d o r 1,000.000 scfd gas

    Size exponent

    Complete ref inery Gas processing Wax plant Lube plant Grease plant Re-refined oil

    0.86 0.52 0.64' 0.59 0.64' 0.64'

    Raw materials

    Recovery of " Iight.nd,"

    Reclaimed motor oil

  • 80

    60

    40

    COMPLETE PLANT COST ESTIMATING CHARTS 345

    I-==r= I-~

    Petroleum Plant Costs, Cracking

    I-;~ I:: =: _. H -I- 1._

    4 8 '0 20 40

    Plant capaci ty, 1,000 bbl /d

    Size exponent Ortho flow; general ; air li ft TCC 0.49 Hydro cracking; flu id catalytic crack ing IFC;;) 0.~3 Vi,breaking 0.54 Thermal 0.65

    60 80

  • 346 APPENDIX 2

    200

    100

    80

    60

    8' 40

    0 .

    ;;;

    ~ i 20 a:

    10

    "Assumed

    Pelroleum Plant Costs, Coking, Extraction, Etc.

    8 10 20 40 60 80 100 200

    Plant capacity, 1,000 bbl/d

    Size exponent

    Cok ing, delayed Cok ing, fluid bed Aromatics extract ion Residium supercritical extraction Naptha recovery Residium desu lfurization Absorption

    0.42 0.64 0.64-0.64 -0.64" 0.64" 0.64-

    Operation

    Thermal cracking; coke production Thermal cracking; coke prOduction Uquid extraction of aromatics High pressure, temperation extraction Distillation, desu lfurization, etc. Hvdrogenation

  • COMPLETE PLANT COST ESTIMATING CHARTS 347

    Petroleum Plant Costs, Sulfur Removal; Extraction

    20

    10

    a 8 D

    ~. '" :;; 0

    " i ii:

    2

    1 1

    Size exponent

    Desulfurizing Hydrotreating Sweetening Gas oil desulfurization

    Extraction Propane deasphalting Propane dewaxing Solvent dewaxing

    4 6 8 10 20 40 60 80

    Plant capacity, 1,000 bbl/d

    0.64 0.57 0.78

    0.61 0.47 0.66

    Operation

    Hydrogen treating of lube oils, naptha Treatment of gasoline to remove mercaptans, sulfides Hydrogen treatment of gas oils

    Propane liquid ext.raction of vacuum distilled crudes Propane addition, filtration, stripping of diesel, etc. oils Solvent extraction of lube oils

  • 8 8' D ,

    ;;; :;;' 0

    " ~ 0:

    348 APPENDIX 2

    Petroleum Plant Costs, Gasoline Production, Distllation

    60

    40

    20

    10

    8 10

    Size exponent

    Alkylation, low A lkylation, high Distillation, vacuum Disti llation, atmospheric Isomerization Polymerization Reforming. Disti llation

    0.63 0.49 0.73 0.87 0.64 0.61 0.63

    20 40 60 80100 200 400 600 600 1000

    Plant capacity, 1,000 bbl/d

    Operation

    Med ium weight unsat . hydrocarbons to gasoline

    Crude oil fractionation

    Hydrogenation to upgrade pentane, hexane, etc. Conversion of olefinic streams into higher octane Dehydrogenation of paraffins, etc. into cycle compounds Genera l dist illation

  • 8 ~ .. ~.

    8 c ..

    0::

    COMPLETE PLANT COST ESTIMATING CHARTS 349

    Plant Costs, Power from Refuse, Co--generation

    6 8 10 20 40 60 BO 100 200 400 600 800 1000

    Plant capacity, MW

    Size exponent 0.15

  • 350 APPENDIX 2

    8 o . U;

    il u

    Water (Drinkingl Preparat ion Plants

    2000

    1000

    800

    -600 400

    200

    . ..

    1-100

    80

    80 1-

    40

    I~"-

    20 1-'"

    1-:' ._-10

    1--' 1--1- '

    .1 .2 .4 .6 .8 6 8 10 20

    Water production, 1.000 gpm

    Size exponents

    Desalination 0.89 Standard treatment 0.65 Pumping. clarif ication 0.74

    Standard treatment: floculation. clarification. fil tration. chlorination . 'See Desalination graph

    1=

    i-' 1--' ..

    -~

    Ie ::: .::::

    1, ,- . .

    40 60 80 100

  • COMPLETE PLANT COST ESTIMATING CHARTS 351

    Plant costs, Desalination

    tOO

    80

    8 60

    0 8

    40 q V>

    ti 8 c 20 .,

    0::

    to

    8

    6

    8 to

    Plant capacity. million gal pure water/day

    Size exponent Mult istage flash dist illation ,

    electrodialysis, reverse osmosis 0 .89 Vert ical tube evaporators 0 .82

  • 352 APPENDIX 2

    Wastewater or Sewage Treatment

    Secondary sewag

  • COMPLETE PLANT COST ESTIMATING CHARTS 353

    Guthrie, Kenneth M. 1974. Process Plant Estimating, Evaluation, and Control. Craftsman Book Co., Solana Beach, CA: 125-180,334-353,369-371.

    Guthrie, Kenneth M. 1970. Capital and operating costs for 54 chemical processes. Chemical Engineering (June 15): 140-156.

    Kharbanda, O. P. 1979. Process Plant and Equipment Cost Estimation. Craftsman Book Co., Solana Beach, CA.

    Process Economics International. 1979-1980. Vol. 1 (2).

  • APPENDIX 3

    MANUFACTURING COST

    DATA PRESENTED

    There are far less data in the literature on manufacturing cost than on the other compo-nents of cost estimating, primarily because it is a more complex and site, process, or company-specific cost. Some data do exist, however, and they are presented in the following pages. Most of the data are quite old, and difficult to easily update, although an attempt has been made to convert data to early 1987, or CE Index 320 values.

    Section 1 presents manufacturing cost versus plant capacity curves of Guthrie (1974), with the percent breakdown into major cost components when available by Kharbanda (1979). The original Guthrie data were probably quite accurate as a first, general approx-imation, but they are old, and may have suffered badly by attempts to extrapolate them to the present time. The percent breakdown tables were undoubtedly based upon one single plant or process and location, and may be far from typical. Both sets of data at best should only be used for order-of-magnitude or "ballpark" estimates.

    Section 2 gives some detailed manufacturing raw material and utility estimates from Chemical Engineering (197311974), which also probably were quite accurate when published. The processes may have changed considerably since that time, but at least these values should still be useful for conservative first approximations.

    Section 3 provides more of the percent breakdowns of Kharbanda (1979), but now with the single plant size operating cost also estimated. In Section 4 Kharbanda has tabulated (or calculated) the raw materials and utilities required for many processes. As noted previously, the accuracy is probably very poor, but in many cases provides initial rough estimates that are better than nothing, and in other cases it is useful to doublecheck the figures quoted by vendors or others.

    METHODS OF USE

    Since each of the four sections of data overlap each other, are from different authors, and present limited lists of chemicals, each must be separately examined to make a manufacturing cost estimate. For example, ammonia is found in three of the four section's figures and tables. In cases such as this the data may not be consistent and you will have to make your best guess as to which to use and not use. This will complicate your study, but often there is some component of the information you know or feel more confident of, and this will aid in your selection. For instance, you may have heard that the average U.S. ammonia plant now uses 32 million Btu of fuel per ton of ammonia, and that the

    354

  • MANUFACTURING COST 355

    newest plants consume less than 25 million. This can allow you to somewhat adjust and evaluate the data from the three sections.

    In other cases, merely knowing the current competitive selling price can allow you to adjust this data somewhat, assuming that the present manufacturers must make at least some profit on the product. This concept can lead you to further examine various alter-native raw materials, processes, and producers, to see where the competitive advantages exist, which may influence and assist in your cost estimates and recommendations.

    SECTION 1. MANUFACTURING COST VS. PLANT CAPACITY (1); PERCENT COST BREAKDOWN (3)

    Manufacturing Cost, A

    600 Acrylonitrile

    400 Acetone Acetic acid

    Acetylene

    Ammonia

    Ammonium nitrate

    Ammonium SUlfate

    40

    6 8 10 20 40 60 80 100 400 600 800

    Plant capacity, tid

    Manu facturing cost, %

    Plant Raw Utiliti .. , capacity, tid materials Depreciation ~ Raw materials

    Acrylonitrile 85 37 46 17 Propy lene, NH3 Acetone 70 74 6 20 Isopropanol; vapor

    70 84 6 10 ; liquid Acetic acid 70 51 24 25 Acetaldehyde, ethanol

    140 32 46 22 Methanol Acetylene 50 15 45 40 Hydrocarbon, Ammonia 1000 36 50 14 [email protected]/MM btu Ammonium nitrate 700 77 15 8 Ammonia

  • 356 APPENDIX 3

    Manufacturing Cost, B, C, E

    : Chlorine

    1 I ,

    8 10 20 40 60 80100 200 400 600 800 1000

    Plant capacity, tid

    Manufacturing cost, % Plant Raw Utilities. capacity, tid materials Depreciation labor Raw materials (processl

    Butanol 70 68 9 23 Ethanol Ethylene ox ide 85 48 33 19 Ethylene. (SOl

    85 68 18 20 Ethylene, IShe11) Carbon black 110 27 50 23 Oil Cyclohe"ane 140 92 5 3 Benzene, H:z Butene 140 32 54 14 Butane Ethylene 280 25 45 30 Ethane; naptha

    825 13 44 43 Propane; naptha Ethanol 280 57 24 19 Ethylene

  • 8000

    IiOOO

    4000

    2000

    1000

    800

    c c S

    600

    Ii 400 8 CI>

    .~ .'l ~ 200 ~ c

    :!E

    100

    80

    60

    40

    20

    10 6 a 10

    Isoprene

    Methanol Glycol Formaldehyde

    MANUFACTURING COST 357

    Manufacturing Cost, F, G, H, I, M

    HYdrofluoric acid

    Glycol

    FormaldehYde f-

    HydrOchloric acid

    20 40

    Plant capacity, tid

    60 80100

    HYdrogen perox ide

    Isoprene

    Methanol

    200 400 600 6001000

    Manulacturing cost, %

    Plant Raw Utilitiesl ca~i!y, tid materials De2reciation labor Raw materials

    140 42 44 14 Propylene 140 50 25 25 Methanol 200 22 44 34 Methane 110 90 4 6 Ethylene oxide 140 59 23 18 Methanol

  • 358 APPENDIX 3

    Manufacluring Com, N, 0, P

    1000

    800 ~ 0 .t: 600 '" >;;,' 0

    " 400 co .!: :; ~ "5 200 ~ i

    100 , Plant capacilY, lId

    Manufacturing cost. %

    Planl Raw Utili ties, capacily, lId materials Depreciation labor Raw maler ial, (process)

    Polyvinyl chloride 70 59 24 17 Vinylchloride: (suspe nsion : emulsion)

    Phenol 140 43 35 22 (Modified Rasch ig) 140 33 35 32 Cumene

    Phlhalic anhydr ide 40 38 50 12 o- xylene 40 53 41 6 Fluid bed: naDhthalene

    p-xylene 70 34 50 16 (Fractionation) Propylene 70 77 13 10 Propane Nitric acid 300 53 36 11 Ammon ia

  • 600 _

    400

    c: 200 ~ ... ~ 100 o 80 11 "; 60 c: .

    :::E 40

    20

    10 1 2 4

    Styrene Sulfur Urea Vinyl acetate Vinyl acetate Vinyl chloride Vinyl chloride

    6 8 10

    Plant capacity, tid

    140 150 300

    70 70

    140 140

    MANUFACTURING COST 359

    Manufacturing Costs, S, U, V

    ;u/furic"acid -20 40 60 80100 200 400 600 800 1000

    Plant capacity, tid

    Manufacturing cost, % Raw Utilities, materials Depreciation labor Raw materials

    68 14 1S Ethyl benzene 0 59 41 H, S - rich gas

    66 19 15 Ammonia, CO2 70 21 9 Acetic acid, acetylene 49 42 9 Ethylene 80 10 10 Acetylene, HCI 71 15 14 Ethylene, Clz

  • 6

    . 2

    .1 1

    .1 1

    Manufacturing Costs, Petroleum Plants

    Coking

    8 10 20 40 60 80100

    Plant capacity, 1000 bbl/day

    Manufacturing Costs, Petroleum Plants

    8 10 20 40 60 80 100

    Plant capacity, 1000 bbl/day

    200 400 600 800 1000

    200 400 600 800 1000

  • i 2

    ~ ;;; Ii o u .8 go

    .~ .6 .. c. o

    .4

    .2

    .1 1

    MANUFACTURING COST 361

    Operating Cost, Wastewater Treatment

    i I .--1

    8 10 20 40 60 80 100 200 400 600 800 1000

    Plant capacity, mill ion gallday

    Curve: Primary . secondary treatment , sludge handl ing, chlorinat ion

    Factors Sand filtration 0.27 Activated carbon 0.62 Electrodialysis 1.08

    Manufacturing Costs

    SECTION 2. DETAILED REQUIREMENTS PER TON OF PRODUCT

    I. Acetaldehyde 225 tId (75,000 t/yr) (Hydrocarbon Process 1967)

    Raw materials: Ethylene Oxygen (99 .5%), scf Air, scf HCl (as 20 0 Be acid), lb Catalyst, $

    Utilities: Electricity , KW hr Steam (150 psig) , M lb

    One Stage (Oxygen)

    1,3401b 9,460

    30 2.75

    45 2.4

    Two Stages (Air)

    1,3401b

    54 ,000 80 2.75

    270 2.4

  • 362 APPENDIX 3

    Process Water, M gal Demineralized water, gal Cooling tower water, M gal

    Labor, operators/ shift

    2. Ammonia (2)

    Raw materials: Gas, process and fuel, MMBtu Catalyst and chemicals, $

    Utilities: Electricity, kW hr Makeup water, M gal

    Labor, operators/shift

    3. Benzene (Houdry Hydrodealkation Processes) Raw materials: Detol

    Cyclohexane, napthenes Hydrogen, M scf 11.4 Catalyst, $ 0.47 Clay, Ib 0.54

    Utilities: Electricity, kW hr 49 Fuel, MM Btu;

    consumed 2.26 produced 10.0 net + 7.74

    Steam, Ib; consumed produced net

    Boiler feed water, gal Cooling water, M gal

    4. Butadiene (Shell ACN Process) (2) Raw materials:

    Butane Acetonitrile, Ib Other chemicals, $

    Utilities: Electricity, kW hr Steam (600 psig, 600F), Ib Refrigeration (@ 40F), Btu Process water, gal. Cooling water (30F rise), M gal

    Labor, operators/shift By-products, per ton Butadiene

    Butylene, ton 1.335; Light ends, Ib 11 Heavy ends, Ib 89

    88

    88

    4.05

    (2)

    One Stage (Oxygen)

    1.7 120 48 3 t04

    Natural Gas

    32.6 1.13

    15 2.9 5

    Pyrotol Approx 98.5% yields

    22.6 0.63 0.82

    47.2

    3.0 25.0

    + 21.8 1,940 1,810 -130

    0.72 10.43

    98.6% yield 0.296 0.44

    72 6,460

    71,160 11.8 31.4

    1.5

    Two Stages (Air)

    7.2

    48 3-4

    Naphtha

    32.7 1.23

    26.6 3.0 5

    Litol

    4.9 0.32 0.36

    41

    3.36 4.9

    + 1.54 300

    1,074 + 774

    3.91 6.86

  • MANUFACTURING COST 363

    5. Caprolactum (Stamicarbon Process); 38,500 tlyr plant (2)

    Raw materials: Cyclohexane, Ib Hydrogen (>95%; 100% basis), Ib Ammonia,lb Aqua ammonia (20% on 100% NH3 basis), Ib Oleum (100% H2S04 basis), Ib Sodium hydroxide, Ib Benzene,lb Tolulene, Ib Phosphoric acid Catalysts, $

    Utilities:

    Electricity, kW hr Fuel (75 % furnance efficiency), MM Btu Steam, Ib; 440 psig

    184 56

    Refrigeration (6C), M Btu Boiler feedwater, gal (95C) Process water, gal Cooling water, gal

    By-products:

    Ammonium sulfate, tIt Hydrogen (40% H2), Ib/t Hydrogen (95% H2), Ib/t

    6. Chlorine (Hooker Diaphragm Process) (2)

    Raw materials:

    Salt, tons Misc. chemicals, materials, $ Diaphragm asbestos, Ib HCI,lb H2S04 ,lb

    Utilities:

    Electricity, kW hr: to cells other

    Steam, Ib: evaporation other

    Labor/plant capacity, tId Supervision Operators, man hours Cell rebuilding, man hours Maintenance, man hours

    By-products:

    Caustic Soda, tIt Hydrogen, Ib/ton

    2,120 192 632 962

    2,720 200 28 16 10 15.10

    376 1.7

    14,380 3,340 7,260

    126 295 760

    42,400

    1.75 12 28

    3.52 0.12 0.2

    10 12

    2,980 250

    5,460 700

    200 One man per shift

    500

    0.52 0.22 0.03 0.016 0.32

    2.14 56.32

    0.17

    900

    0.18 0.016 0.12

  • 364 APPENDIX 3

    7. Cyclohexane (IFP Liquid Phase Hydrogenation Process) (2) Raw materials:

    Benzene,lb Hydrogen, Ib Catalyst, $

    Utilities: Electricity, kW hr Steam (300 psig), Ib Boiler feed water, gal Cooling water (lOC rise), gal

    By-products: Fuel gas, Ib Steam (65 psig), Ib

    8. Cyclohexanol (Stamicarbon Process) (2) Raw materials:

    Cyclohexane, Ib Caustic soda, Ib Catalysts, $

    Utilities: Electricity, kW hr Steam, Ibs: 454 psig

    56 psig Refrigeration (OC), M Btu Process water, gal Cooling water, (8C rise), M gal

    1,870 130

    11

    8 370 230

    4,000

    620 1,900

    2,200 180

    1.56

    200 7,300

    700 66

    101 101

    9. Ethylene (propylene) (Lummus Naphta Pyrolysis Process) (2) Raw materials: High Severity;

    ethane recycle

    Medium range naptha, tons (117-308 of; 73 API) Catalysts, chemicals, $ Utilities:

    Electricity, kW hr Fuel, MM Btu Boiler feed water, gal Cooling water, M gal (25F rise)

    Labor: Operators, foremen/shift

    Maintenance material, % of capital

    By-products, Ib/ton ethylene: Propylene Butadiene Buty lenes/butanes Hydrogen Methane rich gas (21,630

    Btu/lb) Ethane Benzene

    5.95 1.55

    34 26 96 70

    8 2

    991 272 251

    92 956

    401

    Moderate severity; no

    recycle

    8 1.55

    34 26 96 70

    8 2

    1,454 356 669

    77 1,014

    400 358

  • MANUFACTURING COST 365

    Toluene Cg aromatics Cs - 400F + gasoline 400F + fuel oil (17,100 Btu/lb)

    10. Fonnaldehyde (Reichhold Fonnox Process) Raw Materials:

    Methanol, gal NaOH,lb Catalyst, Ib Ion exchange resin, fe

    Utilities: Electricity, kW hr Steam, startup (168 hr/yr),

    M Ib (150 psig) Fuel, startup (168 hr/yr),

    MBtu Process feedwaterj gal Boiler feedwater, gal Cooling water, M gal: 85F

    Instrument air, scf Labor:

    Operator/shift Supervisor/shift Laboratory, hr/wk

    60F

    Maintenance: % of capital By-product:

    Steam Ib/ton 150 psig

    (2)

    High Severity; ethane recycle

    199 105 404 280

    (per ton at 35 % solution)

    130 2.2 0.08 0.0002

    78.5

    300

    26.88 238

    94 22.2

    3.72 300

    1 3 3

    820

    11. Liquefied natural gas (TEALARC Process) 1 MMM scfd (2) Chemicals:

    Monoethanol amine, lb Antifoamant, lb Caustic soda, lb Hydrazinc, lb Tri sodium phosphate, lb Morpholine, lb Chlorohydric acid, lb Chlorine, lb (assumes seawater cooling) Molecular sieves, lb

    Utilities: Electricity, kW hr Fuel, lb (13% of feed) Steam, M lb Cooling Water, M gal

    Labor: Operators, technicians, engineers/3 shifts Maintenance/3 shifts

    0.154 0.0006 0.0112 0.0052 0.0020 0.0024 0.0084 0.56 0.016

    29 260

    4.1 36.4

    40 50

    Moderate severity; no

    recycle

    280 115

    1,104 174

  • 366 APPENDIX 3

    12. Methanol (lCI/Kellogg Process) (2) Raw materials:

    13.

    Natural gas, MM Btu Catalyst, $

    Utilities: Electricity, kW hr Fuel, net, MM Btu Boiler feed water, gal Cooling water circulation, M gal

    Labor: operators/shift Maintenance: % of capital By-product: steam, Ib

    Phenol (2) Hercules-BPCI Phenol-

    Raw materials:

    Cumene,lb Hydrogen, Ib NaOH, Na2C03, H2S04 , Ib Catalyst, $

    Utilities: Electricity, k W hr Fuel, MM Btu Steam, M Ib (450 psig) Cooling water, M gal (30F

    rise) Labor, operators/shift

    others

    Maintenance, % of capital By-products:

    Acetone

    2,700 0.80

    24 0.84

    228 0.38

    10.6 65

    4

    2

    Acetone, Ib/ton 630 Hydrocarbons, Ib (18,500 Btu/lb) 220

    27 1.40

    4.8 5.14

    297 44

    4 3.5

    271

    Benzene,lb HCI,lb NaOH,lb Catalyst, $ Scrubber oil, Ib

    Hooker

    1,855 60 40

    5.81 16

    182 6.6

    19.5 74

    5 2/day shift I supervisor/shift

    14. Soda ash (Na2CO,; Diamond Shamrock Solvey Process) 550 tid (2) Raw materials:

    Salt (NaCI; brine), Ib Limestone (CaCO,), Ib Ammonia,lb Sodium sulfide, Ibs of S Coke, Ib (2.2 MM Btu/ton Na2C03)

    Utilities: Electricity, kW hr Fuel, MM Btu (oil or gas) Treated water, gal Cooling water, M gal Cooling water, makeup if recycled, Mgol

    Labor, operating man hr/ton maintenance.

    3,060-3,200 2,080-2,800

    4-5 0.6-1.2 160-240

    54-134 7.2

    240 30 (once through) 4.4 0.6 0.6

  • MANUFACTURING COST 367

    Supplies: operating, $ maintenance, $

    15. Sodium bicarbonate 150 tid (2) Raw materials:

    Caustic soda, Ib Natural gas, scf

    Utilities: Electricity, kW hr Steam, Ib (15 psig) Process water, 85C, gal Cooling water, M gal (20 F rise) Compressed air, 100 psig, scf

    Labor, operators/shift Maintenance, % of capital

    0.21 1.05

    965 5,360

    42 69

    290 12.9

    590 2 3.5

    16. Synthetic natural gas (CRG/Kellogg Naphtha Reforming Process) Material per MM scf of SNG (993 Btu/scf)

    Raw materials: Naphtha, M Ib (20,263 Btu/lb; Dist. 365F 47.95 Chemicals, $ 8.44 Catalysts, $ 63.70

    Utilities: Electricity, kW hr 850 Fuel, M Ib (20,263 Btu/lb) 4.22 Boiler feedwater make up, M gal 4.7 Cooling tower circulation, M gal (25F rise) 9.6 Cooling tower makeup, gal 380

    17. Styrene (Monsanto/Lummus Process) 900 tid (2) Raw materials:

    Ethylene, Ib 620 Benzene,lb 1,680 Catalysts, chemicals, $ 4.4

    Utilities: Electricity, kW hr 76 Fuel, MM Btu 4.32 Steam, M Ib: 200 psig 4.8

    75 psig 2.7 Cooling water, M gal 26.1

    Labor, operators/shift 3 supervisors (total) 2

    Maintenance, % of capital 2-3 By-products:

    Toluene, Ib/ton 126 AICI) (22 % solution), Ib/ton 28 Steam condensate, gal 863

    18. Sulfuric acid (Monsanto Contact Process) (2) Raw material:

    Sulfur, Ib 674

    (2)

  • 368 APPENDIX 3

    Utilities: Process water, gal 60 Boiler feedwater, gal 324 Cooling water, circulation (25 F rise), M gal 7 Power, Kwh (steam turbine) 9

    Labor, operators/shift Maintenance, % of capital By-product:

    5

    Steam, M Ib (225 psig) 1.7

    19. Urea (Stamicarbon CO2-Stripping Process; producing prills) (2) Raw Materials: Biuret 0.7-0.8%

    Ammonia, Ib 1140 Carbon dioxide, Ib 1510

    Utilities: Electricity, kW hr Steam, M Ib (368 psig) Cooling water, M gal (l5C rise)

    Labor: operators, supervisors/shift Maintenance, % of capital By-product:

    Steam, Ib (60 psig)

    109 2

    11.5 3 3

    300

    0.2-0.25% 1140 1510

    127 2.2

    11.5 4 3

    700

  • SE

    CT

    ION

    3.

    SIN

    GL

    E P

    LA

    NT

    SIZ

    E:

    PE

    RC

    EN

    T C

    OS

    T B

    RE

    AK

    DO

    WN

    (3

    )

    Mfg

    %

    as

    Pla

    nt C

    apac

    ity.

    C

    ost.

    % a

    s %

    as

    Uti

    liti

    es.

    Pro

    cess

    or

    Che

    mic

    al

    tid

    C

    ilb

    Raw

    Mat

    eria

    l D

    epre

    ciat

    ion

    Lab

    or

    Raw

    Mat

    eria

    l

    Ace

    tald

    ehyd

    e 70

    25

    55

    29

    16

    E

    thyl

    ene

    70

    25

    72

    12

    16

    Eth

    anol

    A

    ceti

    c an

    hydr

    ide

    70

    29

    78

    9 13

    A

    ceti

    c ac

    id

    Acy

    rlic

    sta

    ple

    30

    175

    28

    26

    46

    Dim

    ethy

    l fo

    nnam

    ide

    Adi

    pic

    acid

    18

    0 38

    79

    9

    12

    Cyc

    lohe

    xano

    l A

    llyl

    chl

    orid

    e 40

    43

    47

    34

    19

    P

    ropy

    lene

    Ani

    line

    55

    32

    65

    25

    10

    N

    itro

    benz

    ene

    Ben

    zene

    35

    0 14

    .5

    44

    38

    18

    Nap

    htha

    14

    0 14

    .5

    72

    17

    II

    Tol

    uene

    B

    enzo

    ic a

    cid

    7 37

    22

    39

    39

    T

    olue

    ne

    Bis

    phen

    ol A

    30

    42

    63

    23

    14

    A

    ceto

    ne.

    phen

    ol

    Cap

    rola

    ctam

    11

    0 62

    51

    31

    18

    C

    yclo

    hexa

    ne

    Car

    bon

    disu

    lfid

    e 14

    0 14

    42

    40

    18

    M

    etha

    ne.

    S C

    arbo

    n te

    trac

    hlor

    ide

    30

    21

    53

    32

    15

    Pro

    pane

    . C

    I 2

    Car

    boxy

    met

    hyl

    7 83

    45

    33

    22

    C

    ellu

    lose

    ce

    llul

    ose

    3: >

    Cel

    lulo

    se a

    ceta

    te

    70

    81

    36

    26

    26

    Cel

    lulo

    se.

    acid

    ic a

    cid

    Z c:

    Chl

    orop

    rene

    ."

    >

    m

    onom

    er

    65

    60

    34

    53

    13

    But

    adie

    ne

    0 65

    80

    28

    62

    10

    A

    cety

    lene

    -I

    c:

    C

    umen

    e 22

    0 17

    80

    10

    10

    B

    enze

    ne.

    prop

    ylen

    e J:I

    Z

    Cyc

    lohe

    xono

    ne-

    140

    40

    68

    18

    14

    Cyc

    lohe

    xane

    C

    )

    cycl

    ohex

    anol

    0

    Dic

    hlor

    ophe

    noxy

    15

    78

    62

    24

    14

    P

    heno

    l 0 CJ

    )

    acet

    ic a

    cid

    (2.

    4)

    -I

    DD

    T

    30

    57

    53

    33

    14

    Chl

    oral

    . ch

    loro

    C

    o)

    01

    benz

    ene

    CD

  • % a

    s w

    Pla

    nt C

    apac

    ity,

    %

    as

    % a

    s U

    tili

    ties

    , P

    rinc

    ipal

    ~

    Che

    mic

    al

    tid

    C

    ilb

    Raw

    Mat

    eria

    l D

    epre

    ciat

    ion

    Lab

    or

    Raw

    Mat

    eria

    l ,. "a "a

    Det

    erge

    nt a

    lky

    late

    70

    25

    80

    12

    8

    Pro

    pyle

    ne,

    benz

    ene

    m

    175

    32

    83

    14

    3 n-

    Par

    affi

    n Z

    C

    D

    ieth

    anol

    amin

    e 18

    23

    63

    28

    9

    Eth

    ylen

    e ox

    ide,

    . NH

    3 X

    D

    imet

    hyl

    70

    56

    48

    32

    20

    p-xy

    lene

    , m

    etha

    nol

    w

    tere

    phth

    alat

    e D

    ioct

    y I

    phth

    alat

    e 55

    27

    84

    7

    9 P

    htha

    lic

    anhy

    drid

    e E

    pich

    lorh

    ydri

    n 55

    57

    78

    II

    II

    A

    llyl

    chl

    orid

    e, C

    I 2