spin-warp pulse sequence rf g - cfmriweb.ucsd.edu1! tt. liu, be280a, ucsd fall 2012! bioengineering...

11
1 TT. Liu, BE280A, UCSD Fall 2012 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 3 TT. Liu, BE280A, UCSD Fall 2012 Spin-Warp Pulse Sequence G x (t) G y (t) RF k y G y (t) TT. Liu, BE280A, UCSD Fall 2012 Spin-Warp G x (t) k y G y (t) k x TT. Liu, BE280A, UCSD Fall 2012

Upload: others

Post on 18-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

1

TT. Liu, BE280A, UCSD Fall 2012

Bioengineering 280A ���Principles of Biomedical Imaging���

���Fall Quarter 2013���

MRI Lecture 3���

TT. Liu, BE280A, UCSD Fall 2012

Spin-Warp Pulse Sequence

Gx(t)

Gy(t)

RF

ky Gy(t)

TT. Liu, BE280A, UCSD Fall 2012

Spin-Warp Gx(t)

t1 ky

Gy(t)

kx

TT. Liu, BE280A, UCSD Fall 2012

Page 2: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

2

TT. Liu, BE280A, UCSD Fall 2012 Thomas Liu, BE280A, UCSD, Fall 2008

Sampling in k-space

TT. Liu, BE280A, UCSD Fall 2012

Aliasing

TT. Liu, BE280A, UCSD Fall 2012

Aliasing

∆Bz(x)=Gxx Faster Slower TT. Liu, BE280A, UCSD Fall 2012

Intuitive view of Aliasing

kx =1/FOV

FOV

kx = 2 /FOV

Page 3: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

3

TT. Liu, BE280A, UCSD Fall 2012

Fourier Sampling

Instead of sampling the signal, we sample its Fourier Transform

???

Sample

F-1

F

TT. Liu, BE280A, UCSD Fall 2012

Fourier Sampling

GS (kx ) =G(kx )1Δkx

comb kxΔkx

#

$ %

&

' (

=G(kx ) δ(n=−∞

∑ kx − nΔkx )

= G(nΔkx )δ(n=−∞

∑ kx − nΔkx )

kx

(1 /Δkx) comb(kx /Δkx)

Δkx

TT. Liu, BE280A, UCSD Fall 2012

Fourier Sampling -- Inverse Transform

Χ =

*

1/Δkx

Δkx

=

TT. Liu, BE280A, UCSD Fall 2012

Nyquist Condition

FOV (Field of View)

1/Δkx

To avoid overlap, 1/Δkx> FOV, or equivalently, Δkx<1/FOV

Page 4: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

4

TT. Liu, BE280A, UCSD Fall 2012

Aliasing

FOV (Field of View)

1/Δkx

Aliasing occurs when 1/Δkx< FOV

TT. Liu, BE280A, UCSD Fall 2012

Aliasing Example

Δkx=1

1/Δkx=1

TT. Liu, BE280A, UCSD Fall 2012

2D Comb Function

comb(x,y) = δ(x −m,y − n)n=−∞

∑m=−∞

= δ(x −m)δ(y − n)n=−∞

∑m=−∞

∑= comb(x)comb(y)

TT. Liu, BE280A, UCSD Fall 2012

Scaled 2D Comb Function

comb(x /Δx,y /Δy) = comb(x /Δx)comb(y /Δy)

= ΔxΔy δ(x −mΔx)δ(y − nΔy)n=−∞

∑m=−∞

Δx

Δy

Page 5: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

5

TT. Liu, BE280A, UCSD Fall 2012

X =

* =

1/∆k

TT. Liu, BE280A, UCSD Fall 2012

2D k-space sampling

GS (kx,ky ) =G(kx,ky )1

ΔkxΔkycomb kx

Δkx,kyΔky

#

$ % %

&

' ( (

=G(kx,ky ) δ(n=−∞

∑ kx −mΔkx,ky − nΔky )m=−∞

= G(mΔkx,nΔky )δ(n=−∞

∑ kx −mΔkx,ky − nΔky )m=−∞

TT. Liu, BE280A, UCSD Fall 2012

Nyquist Conditions

FOVX

FOVY

1/∆kX

1/∆kY

1/∆kY> FOVY

1/∆kX> FOVX

TT. Liu, BE280A, UCSD Fall 2012

Windowing

GW kx,ky( ) =G kx,ky( )W kx,ky( )

gW x,y( ) = g x,y( )∗w(x,y)

Windowing the data in Fourier space

Results in convolution of the object with the inverse transform of the window

Page 6: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

6

TT. Liu, BE280A, UCSD Fall 2012

Resolution

TT. Liu, BE280A, UCSD Fall 2012

Windowing Example

W kx,ky( ) = rect kxWkx

"

# $ $

%

& ' ' rect

kyWky

"

# $ $

%

& ' '

w x,y( ) = F −1 rect kxWkx

#

$ % %

&

' ( ( rect

kyWky

#

$ % %

&

' ( (

)

* + +

,

- . .

=WkxWky

sinc Wkxx( )sinc Wky

y( )

gW x,y( ) = g(x,y)∗∗WkxWky

sinc Wkxx( )sinc Wky

y( )

TT. Liu, BE280A, UCSD Fall 2012

Effective Width

wE =1

w(0)w(x)dx

−∞

wE

wE =11

sinc(Wkxx)dx

−∞

= F sinc(Wkxx)[ ]

kx = 0

=1Wkx

rect kxWkx

%

& ' '

(

) * * kx = 0

=1Wkx

Example

1Wkx

−1Wkx

TT. Liu, BE280A, UCSD Fall 2012

Resolution and spatial frequency

2Wkx

With a window of width Wkx the highest spatial frequency is Wkx

/2.This corresponds to a spatial period of 2/Wkx

.

1Wkx

= Effective Width

Page 7: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

7

TT. Liu, BE280A, UCSD Fall 2012

Windowing Example

g(x,y) = δ(x) + δ(x −1)[ ]δ(y)

gW x,y( ) = δ(x) + δ(x −1)[ ]δ(y)∗∗WkxWky

sinc Wkxx( )sinc Wky

y( )=Wkx

Wkyδ(x) + δ(x −1)[ ]∗ sinc Wkx

x( )( )sinc Wkyy( )

=WkxWky

sinc Wkxx( ) + sinc Wkx

(x −1)( )( )sinc Wkyy( )

Wkx=1

Wkx= 2

Wkx=1.5

TT. Liu, BE280A, UCSD Fall 2012

Sampling and Windowing

X =

* =

X

* =

TT. Liu, BE280A, UCSD Fall 2012

Sampling and Windowing

GSW kx,ky( ) =G kx,ky( ) 1ΔkxΔky

comb kxΔkx

,kyΔky

#

$ % %

&

' ( ( rect

kxWkx

,kyWky

#

$ % %

&

' ( (

gSW x,y( ) =WkxWkyg x,y( )∗∗comb(Δkxx,Δkyy)∗∗sinc(Wkx

x)sinc(Wkyy)

Sampling and windowing the data in Fourier space

Results in replication and convolution in object space.

TT. Liu, BE280A, UCSD Fall 2012

Sampling in ky

kx

ky

Gx(t)

Gy(t)

RF

Δky

τy

Gyi

Δky =γ2π

Gyiτ y

FOVy =1Δky

Page 8: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

8

TT. Liu, BE280A, UCSD Fall 2012

Sampling in kx

x Low pass Filter ADC

x Low pass Filter ADC €

cosω0t

sinω0t

RF Signal

One I,Q sample every Δt

M= I+jQ

I

Q

Note: In practice, there are number of ways of implementing this processing.

TT. Liu, BE280A, UCSD Fall 2012

Sampling in kx

kx

ky

Δkx =γ2π

GxrΔt

FOVx =1Δkx

Gx(t)

t1

ADC

Gxr

Δt

TT. Liu, BE280A, UCSD Fall 2012

Resolution

δx =1Wkx

= 12kx,max

= 1γ

2πGxrτ x

Wkx€

Wky

Gx(t) Gxr

τ x

δy =1Wky

= 12ky,max

= 1γ

2π2Gypτ y

Gy(t)

τy €

Gyp

TT. Liu, BE280A, UCSD Fall 2012

Example

Goal :FOVx = FOVy = 25.6 cmδx = δy = 0.1 cm

Readout Gradient :

FOVx =1

γ2π

GxrΔt

Pick Δt = 32 µsec

Gxr =1

FOVxγ

2πΔt

=1

25.6cm( ) 42.57 ×106T−1s−1( ) 32 ×10−6 s( )

= 2.8675 ×10−5 T/cm = .28675 G/cm

1 Gauss = 1×10−4 Tesla

t1

ADC

Gxr

Δt

Page 9: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

9

TT. Liu, BE280A, UCSD Fall 2012

Example

Readout Gradient :

δx =1

γ2π

Gxrτ x

τ x =1

δxγ

2πGxr

=1

0.1cm( ) 4257 G−1s−1( ) 0.28675 G/cm( )

= 8.192 ms = NreadΔtwhere

Nread =FOVxδx

= 256

Gx(t)

Gxr

τ x

TT. Liu, BE280A, UCSD Fall 2012

Example

Phase - Encode Gradient :

FOVy =1

γ2π

Gyiτ y

Pick τ y = 4.096 msec

Gyi =1

FOVyγ

2πτ y

=1

25.6cm( ) 42.57 ×106T−1s−1( ) 4.096 ×10−3 s( )

= 2.2402 ×10-7 T/cm = .00224 G/cm

τy

Gyi

TT. Liu, BE280A, UCSD Fall 2012

Example

Phase - Encode Gradient :δy =

2π2Gypτ y

Gyp =1

δy 2 γ2π

τ y

=1

0.1cm( ) 4257 G−1s−1( ) 4.096 ×10-3 s( ) = 0.2868 G/cm

=Np

2Gyi

where

Np =FOVyδy

= 256

Gy(t)

τy €

Gyp

TT. Liu, BE280A, UCSD Fall 2012

Sampling

Wkx€

Wky

In practice, an even number (typically power of 2) sample is usually taken in each direction to take advantage of the Fast Fourier Transform (FFT) for reconstruction.

ky

y

FOV/4

1/FOV

4/FOV

FOV

Page 10: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

10

TT. Liu, BE280A, UCSD Fall 2012

Example Consider the k-space trajectory shown below. ADC samples are acquired at the points shownwith

Δt = 10 µsec. The desired FOV (both x and y) is 10 cm and the desired resolution (both xand y) is 2.5 cm. Draw the gradient waveforms required to achieve the k-space trajectory. Labelthe waveform with the gradient amplitudes required to achieve the desired FOV and resolution.Also, make sure to label the time axis correctly.

PollEv.com/be280a TT. Liu, BE280A, UCSD Fall 2012 GE Medical Systems 2003

TT. Liu, BE280A, UCSD Fall 2012

Gibbs Artifact

256x256 image 256x128 image

Images from http://www.mritutor.org/mritutor/gibbs.htm

* =

TT. Liu, BE280A, UCSD Fall 2012

Apodization

Images from http://www.mritutor.org/mritutor/gibbs.htm

* =

rect(kx)

h(kx )=1/2(1+cos(2πkx) Hanning Window

sinc(x)

0.5sinc(x)+0.25sinc(x-1) +0.25sinc(x+1)

Page 11: Spin-Warp Pulse Sequence RF G - cfmriweb.ucsd.edu1! TT. Liu, BE280A, UCSD Fall 2012! Bioengineering 280A" Principles of Biomedical Imaging" " Fall Quarter 2013" MRI Lecture 3"! TT

11

TT. Liu, BE280A, UCSD Fall 2012

Aliasing and Bandwidth

x

LPF ADC

ADC €

cosω0t

sinω0t

RF Signal

I

Q LPF

x

*

x f

t

x

t

FOV 2FOV/3

Temporal filtering in the readout direction limits the readout FOV. So there should never be aliasing in the readout direction.

TT. Liu, BE280A, UCSD Fall 2012

Aliasing and Bandwidth

Slower

Faster x

f

Lowpass filter in the readout direction to prevent aliasing.

readout

FOVx

B=γGxrFOVx

TT. Liu, BE280A, UCSD Fall 2012 GE Medical Systems 2003