sp first l07

21
06/10/22 © 2003, JH McClellan & RW Schafer 1 Signal Processing First Lecture 7 Fourier Series & Spectrum

Upload: sajid-ali

Post on 29-Jul-2015

54 views

Category:

Engineering


0 download

TRANSCRIPT

Page 1: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 7Fourier Series & Spectrum

Page 2: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 3

READING ASSIGNMENTS

This Lecture: Fourier Series in Ch 3, Sects 3-4, 3-5 & 3-6Fourier Series in Ch 3, Sects 3-4, 3-5 & 3-6

Replaces pp. 62-66 in Ch 3 in DSP First Notation: ak for Fourier Series

Other Reading: Next Lecture: Sampling

Page 3: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 4

LECTURE OBJECTIVES

ANALYSISANALYSIS via Fourier Series

For PERIODIC signals: x(t+T0) = x(t)

SPECTRUMSPECTRUM from Fourier Series ak is Complex Amplitude for k-th Harmonic

0

0

0

0

)/2(1 )(T

dtetxa tTkjTk

Page 4: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 5

0 100 250–100–250f (in Hz)

3/7 je 3/7 je2/4 je 2/4 je

10

SPECTRUM DIAGRAM

Recall Complex Amplitude vs. Freq

N

k

tfjk

tfjk

kk eaeaatx1

220)(

kjkk eAa

21

ka

0a

Page 5: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 6

Harmonic Signal

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

tfkj

kkeatx 02)(

0

00

001

or2

2f

TT

f

Page 6: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 7

Example )3(sin)( 3 ttx

tjtjtjtj ej

ej

ej

ej

tx 9339

88

3

8

3

8)(

Page 7: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 8

Example

In this case, analysisjust requires picking off the coefficients.

)3(sin)( 3 ttx

tjtjtjtj ej

ej

ej

ej

tx 9339

88

3

8

3

8)(

3k1k1k

3k

ka

Page 8: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 9

STRATEGY: x(t) ak

ANALYSIS Get representation from the signal Works for PERIODICPERIODIC Signals

Fourier Series Answer is: an INTEGRAL over one period

0

0

0

0)(1

T

dtetxa tkjTk

Page 9: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 10

SQUARE WAVE EXAMPLE

0–.02 .02 0.04

1

t

x(t)

.01

sec. 04.0for

0

01)(

0

0021

021

T

TtT

Tttx

Page 10: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 11

FS for a SQUARE WAVE {ak}

)0()(1 0

0

0

)/2(

0

kdtetxT

aT

ktTjk

02.

0

)04./2()04./2(04.

102.

0

)04./2(104.

1 ktjkj

ktjk edtea

kje

kj

kkj

2

)1(1)1(

)2(

1 )(

Page 11: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 12

DC Coefficient: a0

)0()(1 0

0

0

)/2(

0

kdtetxT

aT

ktTjk

)Area(1

)(1

0000

0

Tdttx

Ta

T

21

02.

0

0 )002(.04.

11

04.

1 dta

Page 12: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 13

Fourier Coefficients ak

ak is a function of k Complex Amplitude for k-th Harmonic This one doesn’t depend on the period, T0

0

,4,20

,3,11

2

)1(1

21 k

k

kkj

kja

k

k

Page 13: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 14

Spectrum from Fourier Series

0

,4,20

,3,1

21 k

k

kk

j

ak

)25(2)04.0/(20

Page 14: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 15

Fourier Series Synthesis

HOW do you APPROXIMATE x(t) ?

Use FINITE number of coefficients

0

0

0

0

)/2(1 )(T

tkTjTk dtetxa

real is )( when* txaa kk tfkj

N

Nkkeatx 02)(

Page 15: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 16

Fourier Series Synthesis

Page 16: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 17

Synthesis: 1st & 3rd Harmonics))75(2cos(

3

2))25(2cos(

2

2

1)( 22

ttty

Page 17: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 18

Synthesis: up to 7th Harmonic)350sin(

7

2)250sin(

5

2)150sin(

3

2)50cos(

2

2

1)( 2 ttttty

Page 18: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 19

Fourier Synthesis

)3sin(3

2)sin(

2

2

1)( 00 tttxN

Page 19: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 20

Gibbs’ Phenomenon

Convergence at DISCONTINUITY of x(t) There is always an overshoot 9% for the Square Wave case

Page 21: Sp first l07

04/15/23 © 2003, JH McClellan & RW Schafer 22

fseriesdemo GUI