sound waves biology. making sound!! trachea and larynx – tube vocal cords – strings modulations...

23
Sound waves Biology

Upload: hallie-monkman

Post on 16-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Sound waves

Biology

Page 2: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Making sound!!

• Trachea and Larynx – tube• Vocal cords – strings• Modulations – nasal, sinus, tongue…

Page 3: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Fig. 15.1

Page 4: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Fig. 15.2a

Page 5: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Fig. 15.3

Page 6: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Fig. 15.4

Page 7: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Biology

• Mammalians hearing organ is within the ear– The inner ear also contain organs of equilibrium

• A lateral line system and inner ear detect pressure waves in most fishes and aquatic amphibians

• Many invertebrates have gravity sensors and are sound-sensitive

• Ultrasound

Page 8: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Ear

• Special sensory organ• Mechanoreceptors– Pressure from sound waves are detected by hairs

inside the inner ear

Page 9: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Outer Ear

• Ear canal– Collects sound waves and channels them to

tympanic membrane– Pressure variations in the sound waves exert

forces on the eardrum and cause it to vibrate

Page 10: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Middle ear

• Contains three bones (smallest bones in your body)– These bones transmit force exerted on the eardrum to the

inner ear through oval window– Three small bones: Malleus, incus, stapes

• Uses lever system with mechanical advantage of 2– Force delivered to oval window is multiplied by 2

• The area of the oval window is 1/20 of the size as tympanic membrane– The pressure created in the fluid-filled inner ear is about 20 times more

• Overall amplification is(initial pressure*2*20) 40 times the initial pressure is transmitted

– Enables our ear to detect very low intensity sound

Page 11: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Inner ear - hearing

• The inner ear consists of a labyrinth of channels housed within the temporal bone.– The cochlea is the part of the inner ear

concerned with hearing.• Structurally it consists of the upper

vestibular canal and the lower tympanic canal, which are separated by the cochlear duct.• The vestibular and tympanic canals are filled

with perilymph.

Page 12: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

• From inner ear structure to a sensory impulse: follow the vibrations.– The round window functions to dissipate the

vibrations.• Vibrations in the cochlear fluid basilar

membrane vibrates hair cells brush against the tectorial membrane generation of an action potential in a sensory neuron.

Page 13: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Fig. 49.17

Page 14: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Fig. 49.18

Page 15: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

A lateral line system and inner ear detect pressure waves in most fishes and aquatic amphibians

• Most fish and amphibians have a lateral line system along both sides of their body.– Contains mechanoreceptors

that function similarly to mammalian inner ear.

– Provides a fish with information concerning its movement through water or the direction and velocity of water flowing over its body.

Fig. 49.20

Page 16: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

• Statocysts are mechanoreceptors that function in an invertebrates sense of equilibrium.– Statocysts function

is similar to that of the mammalian utricle and saccule.

Many invertebrates have gravity sensors and are sound-sensitive

Fig. 49.21

Page 17: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

• Sound sensitivity in insects depends on body hairs that vibrate in response to sound waves.– Different hairs respond to different frequencies.

• Many insects have a tympanic membrane stretched over a hollow chamber.

Fig. 49.22

Page 18: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Sound perception

• Awareness of sound• Remarkable sensitivity and range

– Frequency between 20 -20,000 Hz• Pitch – perception of frequency easily detect difference

between 1000 and 1003 Hz• Loudness is the perception of intensity

– Ear does not respond linearly to intensity– Ear is more sensitive (2000 – 5000 Hz) at certain frequencies than

others– Very large intensities are needed to hear near the extremities– The threshold of normal hearing is often defined as 0 dB at 1000Hz

Page 19: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Units

• Sound intensity is defined as the sound power per unit area. The basic units are watts/m2 or watts/cm2

• Decibels measure the ratio of a given intensity I to the threshold of hearing intensity , so that this threshold takes the value 0 decibels (0 dB). – sound level

• Frequency: 20 Hz - 20,000 Hz(corresponds with pitch)

• Intensity: 10-12 - 10 watts/m2 • Sound level: (0 to 130 decibels)

Page 20: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Ultrasound• The term "ultrasonic" applied to sound refers to anything above the

frequencies of audible sound, and nominally includes anything over 20,000 Hz.

• Sounds in the range 20-100kHz are commonly used for communication and navigation by bats, dolphins, and some other species.

• Much higher frequencies, in the range 1-20 MHz, are used for medical ultrasound. – echo time and the Doppler shift of the reflected sounds to measure the

distance to internal organs and structures and the speed of movement of those structures.

– Intensity is kept low• 1-10 W/m2 – for ultrasound• 1000 W/m2 to destroy cancerous tissue

Page 21: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Bats

• Bats use ultrasound for navigation. Their ability to catch flying insects while flying full speed in pitch darkness is astounding. Their sophisticated echolocation permits them to distinguish between a moth (supper) and a falling leaf.

• http://www.npr.org/templates/story/story.php?storyId=106733884

Page 22: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Infrasound

• A number of animals produce and use sounds in the infrasonic range.

• The rumbling vocalizations of elephants were measured to have frequencies as low as 14 Hz which were detectable at a range of 10 km. – Observations of elephant behavior suggests that they responded to

the waves through the ground before they heard them in the air - plausible since the waves would travel faster in the solid material.

• Whales and rhinos produce some very low frequency sounds. • The flightless cassowary birds of Papua New Guinea and

Australia emit low frequency calls around 23 Hz.

Page 23: Sound waves Biology. Making sound!! Trachea and Larynx – tube Vocal cords – strings Modulations – nasal, sinus, tongue…

Whales

• Individual pods of whales have their own distinctive dialect of calls, similar to songbirds. Some such calls are known to be stable over a period of 10 years.

• Humpback whales produce a variety of moans, snores, and groans that are repeated to form what we might call songs. The frequency of these songs range from about 40 Hz to 5 kHz.

• Whales are also known to produce some very intense low frequency sounds which they may use to stun or disorient small fish for prey.