solar fuels and next generation photovoltaics: the...

33
Our Energy Future. Science and Technology Challenges of the 21 st Century Solar Fuels and Next Generation Photovoltaics: The UNC-CH Energy Frontier Research Center (UNC (UNC 10-4-05) UNC Energy Frontier UNC (UNC 10-4-05) Research Center TJ Meyer 11/15/2010 - 1 Duke-CTMS-11-12-10

Upload: lamdieu

Post on 31-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Our Energy Future. Science and Technology Challenges of the 21st Century

Solar Fuels and Next Generation Photovoltaics:

The UNC-CH Energy Frontier gyResearch Center

(UNC (UNC 10-4-05)UNC Energy Frontier UNC

((UNC 10-4-05)U C e gy o t eResearch Center

TJ Meyer

11/15/2010 - 1

Duke-CTMS-11-12-10

Page 2: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Fossil Fuels: plentiful now and dominate as an energy source (peak oil- 2008-2025?)

Where will the energy come

11/15/2010 - 2

Cicerone- NAS- April, 28, 2008

from?

Page 3: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Environmental Impacts. The greenhouse gas effect.g g

Solar radiation passes through the atmosphere

Earth radiates energy back into space. Atmospheric greenhouse gases the atmosphere

and heats the earth.

Atmospheric greenhouse gases trap some outgoing energy, retaining heat.

UN Inter-

Greenhouse Gas EffectGreenhouse Gas Effect

UN Inter-governmental Panel on Climate Change (10-

Increased concentrations Increased concentrations of greenhouse gases of greenhouse gases ––carbon dioxide, carbon dioxide,

Increased concentrations Increased concentrations of greenhouse gases of greenhouse gases ––carbon dioxide, carbon dioxide,

Greenhouse Gas EffectGreenhouse Gas Effectg (2007), NAS (9-2010)-”Global warming is ,,

sulfur dioxide, sulfur dioxide, nitrous oxide, nitrous oxide, methane, mercurymethane, mercury ––enhance the earth’s heatenhance the earth’s heat--

,,sulfur dioxide, sulfur dioxide, nitrous oxide, nitrous oxide, methane, mercurymethane, mercury ––enhance the earth’s heatenhance the earth’s heat--

warming is unequivocal”

11/15/2010 - 3

trapping ability impacting trapping ability impacting global warming.global warming.trapping ability impacting trapping ability impacting global warming.global warming.At what cost?

Page 4: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Sea Level Rise

Sea level rise could be between 2.5 and 6.2 ft by the end of th t (P di f th N ti l A d fthe century (Proceedings of the National Academy of Sciences, 12/9)

ManhattanManhattan

Coastal North Carolina

11/15/2010 - 4

Page 5: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Energy and Environment: Strategy For a New Energy Future

• Utilize all energy options:– Clean coal

Shale and tar sands

•Our Energy Future:- increased

– Shale and tar sands– Coupled with CO2 capture

and storage (sequestration)N l

efficiency - minimize impact- sustainability.

– Nuclear – Hydrogen and fuel cells– Renewable energy

solar

•Transition from petroleum for transportation(wind, solar, biomass,

geothermal)Energy use and infrastructure:

E t

transportation.

•Large scale, viable energy options:– Energy storage

– Efficiency and conservation – Energy and environmental

d li

energy options:Solar, nuclear, and hydrocarbons with sequestration.

11/15/2010 - 5

modeling– Water for energy

q

Page 6: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Solar Energy: ~10,000 Times Current Energy Use but Requires Energy Storage

•Solar Energy isDiffuse: ~60,000 ,sq miles to meet current US power demands (3 TW)*

3 TW

demands (3 TW) Intermittent: 6 hours of useful

20 TWsunlight per day

RequiresRequires Energy Storage

11/15/2010 - 6

Storage

*at 10% efficiency, NREL. $60 Trillion at $400/m2.

Page 7: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Solar Energy. PhotovoltaicsCurrent Use US: 1/8%; 30¢/KWHCurrent Use US: 1/8%; 30¢/KWH

Solar Panels

Dow Solar ShinglesOPVOrganic Photovoltaics (OPV)

90% of US homes use asphaltshingles. Solar shingles could provide 40 80% of home

Organic Photovoltaics (OPV)

11/15/2010 - 7

provide 40-80% of home electricity consumption.

Page 8: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Energy Storage with Solar Fuels

Hydrogen, CO, natural gas, liquid hydrocarbons and oxygenatesand oxygenates

2 H2O + 4 hν 2H2 + O2(∆Go = 4 92 eV n = 4)(∆Go = 4.92 eV, n = 4)

2 H O + CO + 8 hν CH + 2O2 H2O + CO2 + 8 hν CH4 + 2O2(∆Go = 10.3 eV, n = 8)

• Spin-Offs: load leveling; energy storage• Uses: existing energy infrastructure.

11/15/2010 - 8

Page 9: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Natural Gas Power Plants.A Closed Cycle with Solar Fuels

CH4 + O2

CO2 + H2O11/15/2010 - 92 H2O + CO2 + 8 hν CH4 + 2O2

Page 10: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Photosynthesis. Chloroplast Structure

5

(~5 μ; 1-1000/cell)

Solar driven water reduction of COSolar driven water reduction of CO2 occurs in the

666 2612622 OOHCCOOH +→+

Solar driven water reduction of CO2.thylakoid membrane of chloroplasts.

11/15/2010 - 10

Voet and Voet 24-1

)/675;/2820(1.29 molkcalmolkjouleseVGo =Δ

Page 11: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

UNC EFRCUNC EFRC

DOE: DOE: Solar Fuels & Next Generation Solar Fuels & Next Generation Photovoltaics: $17.5 M/5 yrsPhotovoltaics: $17.5 M/5 yrsPhotovoltaics: $17.5 M/5 yrsPhotovoltaics: $17.5 M/5 yrs

“Integrating skills and talents of multiple investigators to “Integrating skills and talents of multiple investigators to enable fundamental research at a level of scope and complexity enable fundamental research at a level of scope and complexity not possible with individual or small group research projects”not possible with individual or small group research projects”

PeoplePeople 26 faculty, 7 scientific staff13 postdocs, 20 grad students, 15 affiliates

p g p p jp g p p j

CollaborationsCollaborations Duke, NCSU, NCCU, U. Florida, RTI

PartnershipsPartnerships Research Triangle Institute, Research T i l E C ti (RTEC) Triangle Energy Consortium (RTEC), Research Triangle Solar Fuels Institute (RTSFI), National Instruments, DuPont

User Facilities User Facilities Spectroscopy, Fabrication & Photolysis

Page 12: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

OrganizationOrganization

EFRC DirectorMeyer

Deputy DirectorPapanikolas

Executive CommitteeMeyer 1 Papanikolas

Meyer, Papanikolas, Schauer, Schanze 2, Lin,

Beratan 2, Pinschmidt

LinSchanze 2

Research CouncilMeyer, Papanikolas,

Schanze 2, Lin, Lopez,Brookhart, Forbes, Murray SamulskiMurray 1 Brookhart 1 Forbes Samulski LopezBeratan 2

Solar Fuels Materials Next Generation Photovoltaics

Catalysis Interfacial Structure & Dynamics

Murray, SamulskiMurray Brookhart Forbes Samulski LopezBeratan

1. Member National Academy of Sciences2. Collaborating Partner Institution

(Lin/Lopez/Samulski) (Papanikolas/Schanze 2 )(Brookhart/Meyer/Murray) (Forbes/Papanikolas)

Page 13: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

EFRC RESEARCHEFRC RESEARCH

Solar Fuels Materials

Next Generation Photovoltaics

Catalysis Interfacial Structure & Dynamics

Water Oxidation

(Lin/Lopez/Samulski) (Papanikolas/Schanze*)(Brookhart/Meyer/Murray)y

(Forbes/Papanikolas)

CO2 Reduction

InterfaceDynamics

Interfacial Structure

Framework Materials

Semi-conductors

Polymers Peptides OPVTheory DSSC/DS-PEC Devices

Solar Fuels OPV

Page 14: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Chemical Approaches to Artificial Photosynthesis. Modular Approach

• Light absorption, sensitization • Electron transfer quenchingq g• Vectorial electron/proton transfer, redox splitting

• Catalysis of water oxidation and reduction• Catalysis of water oxidation and reduction

Photosystem II4 h Li ht

2 H O 2 H4 e-

4 hν Light HarvestingAntenna

4 e-O-O bondformation

Alstrum-Acevedo, Brennaman, Meyer, Inorg. Chem. 2005,

Meyer, Accounts of Chemical Research1989, 22, 163.

2 H2O

O2

4 H+

2 H2

CatOx D CatRedA

4 e4 e

PCETPCET

4 H++

formation

Multi e-

catalysis ET interfaceMulti e-

catalysis

C

11/15/2010 - 14

g ,44, 6802.

Proton Transfer

cata ys s ET interface cata ys s

Meyer, et. al. Inorg. Chem. 2005, 6802; Accounts Chem Res 1989, 163.

Page 15: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Dye Sensitized Photoelectrosynthesis Cells (DSPEC)

CO2 + e‐ e‐e‐ e‐

e‐

PEM1/2 H2O 1/2 H2

TiO2 hν

hνe-

1/2 H2O

4H2O

2O2 + 8H+

8H+e ee e

hνCH4

+ 2H2O

*C CatOxD CatRed

e-

1/4 O2 + H+

e- e-

H+

TiO2

1/4O2 + H+

Modular: Assemble Critical Elements:

e- e-

- molecular/nano light absorption- electron transfer, catalyst activation- water oxidation; water/H+/CO2 reduction

CT

RO

DE

Design-Translational Issues:- materials, materials properties, synthesis, scale up- device design and evaluation- engineering and scale up

ELE

C

- engineering and scale up

Page 16: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Catalysis. Catalysis. Water Water OxidationOxidation

Catalysis

(Brookhart/Meyer/Murray)- Rates

P th R t2 H2O - 4 e- - 4 H+ → O2

Water Oxidation

CO2 Reduction

- Pathways. Rate enhancements of > 104of > 10- Characterizationof Intermediates

Yang, et al

Page 17: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

CatalysisCatalysis

Catalysis

(Brookhart/Meyer/Murray)Retention of reactivity on oxide electrodes and semiconductors

Water Oxidation

CO2 Reduction Nano ITO

Pd(0) Morphology: Controlled by Electrodeposition Scan Rate

Bakir, M.; Sullivan, B. P.; MacKay, S.; Linton, R. W.; Meyer, T. J. Chem. Mater. 1996, 8, 2461-2467.

CO Reduction: CO + 8 e- + 8 H+→ CH + 2 H O10 mV/s 500 mV/s

( ) p gy y p

[FeII(vbpy)3][PF6]2

reductive cyclingbetween -0.45 Vand -1.45 V

poly-[FeII(vbpy)3][PF6]2(electrode-supported)

0.1 M [NEt4][CN] poly-[FeII(vbpy)2(CN)2],poly-(vbpy)

(electrode-supported)CH3CN PdIICl2(PhCN)2[NB ][PF ]

reductive cyclingbetween -0.45 Vand -1.45 V

poly-[FeII(vbpy)3][PF6]2 / Pd0

(electrode-supported)

CO2 Reduction: CO2 + 8 e + 8 H → CH4 + 2 H2O

• High surface area polymer stabilized M(0) electrodes

• Metal complexes in

[NBu4][PF6]CH3CN

5.0 μm 3.0 μm

solution and on surfaces

• Pyridine catalysis

Page 18: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Interfacial Structure Interfacial Structure and Dynanicsand Dynanics

Interfacial Structure & Dynamics

(Forbes/Papanikolas)Catalyst

hvET

InterfaceDynamics

Interfacial Structure DSSC/DS-

PEC Devices

CatalystET

H O

O2 +H+

Chromophore H2O

Integrated molecular assemblies and- Integrated molecular assemblies and nano-structures

- Surface binding and stability- Rates and Efficiencies: Injection and backRates and Efficiencies: Injection and back

electron transfer in chromophore-catalyst assemblies on TiO2 and new oxide semiconductors (e.g. Nb2O5).W ki d i- Working devices: or assemblies under device conditions.

Page 19: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Interfacial Structure Interfacial Structure and Dynanicsand Dynanics

Chromophore-Catalyst assemblies • Maximize solar absorption

Interfacial Structure & Dynamics

(Forbes/Papanikolas)• Maximize device dynamics Concentrate, store, and use multiple photons/redox equivalents

• Rapid rates, robust performance• Surface stable

(Forbes/Papanikolas)

InterfaceDynamics

Interfacial Structure DSSC/DS-

PEC

PO

HOHO

4+

POHO

HO

4+

• Surface stable• Process engineering• Large scale arrays

Devices

RuN

NN

NN

N

POH

O

PO

OH

O

HOOH

RuN

NN

NN

N

P

POH

O

PO

OHHOOH

NN

N N

N

PO

OHHON

N

PO

OHHO

NRu

NN

OH2Ru

NN

N OH2

NN

Page 20: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Interfacial Structure Interfacial Structure and Dynanicsand Dynanics

Interfacial Structure & Dynamics

(Forbes/Papanikolas)1MLCTCB Injection

O +H+

InterfaceDynamics

Interfacial Structure DSSC/DS-

PEC Devices

3MLCT

hv

TransportET

Catalyst

H O

O2 +H+

GS

BETH2O

Catalysis

Challenge: Wide Range of Time Scales

VBBET

ET

Transport

semiconductor

10-15 10-12 10-9 10-6 10-3 100

Injection

Time (s)

Page 21: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Interfacial Structure Interfacial Structure and Dynanicsand Dynanics

Transient Grating MoranInterfacial Structure

& Dynamics(Forbes/Papanikolas)

Transient AbsorptionVis Pump / Vis-NIR Probe

Femtosecond Stimulated Raman ScatteringFSRS Papanikolas/Moran

PapanikolasInterfaceDynamics

Interfacial Structure DSSC/DS-

PEC Devices

Transient AbsorptionVis Pump / Vis-NIR Probe Papanikolas

Transient EmissionTCSPC or Streak Camera Papanikolas

Transient AbsorptionLow light/Ultrasensitive DetectionBrennaman/Meyer

Transient AbsorptionGated CCD DetectionBrennaman/Meyer

Low-light/Ultrasensitive Detection

Transient Near-IRStep-Scan Detection

Transient Photocurrent/Photovoltage

Brennaman/Meyer

Brennaman/Meyer

Brennaman/Meyer

10-15 10-12 10-9 10-6 10-3 100

Time (s)

y

Page 22: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Dye Sensitized Dye Sensitized PhotoelectrosynthesisPhotoelectrosynthesisCells (DSPEC)Cells (DSPEC)

I. DYE SENSITIZED PHOTOELECTROSYNTHESIS CELLS FOR SOLAR FUELS PRODUCTIONCatalyst Development Molecular Catalysts for Water Oxidation - Photostable, high turnover

Catalytic Materials for Water Oxidation - In solution & at interfacesCatalysts for CO Reduction to useful fuelsCatalysts for CO2 Reduction - to useful fuels

Materials Development New Metal Oxide Electrode Materials Assembly Development Chromophore-Redox Mediator-Catalyst Assemblies Integration & Device Development Solar Fuels Devices - Dye Sensitized Photoelectrochemical Cells (DS PEC)

Fundamental Studies Interfacial dynamics

Interfacial Structure & Dynamics

(Forbes/Papanikolas)

4H2OCO2 + 8H+e‐ e‐e‐ ‐

e‐

PEMInterfaceDynamics

Interfacial Structure DSSC/DS-

PEC Devices2 8H+e ee e‐

*

C CatOxD CatRed

CB

2O2 + 8H+hν CH4 + 2H2OVB

Page 23: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Dye Sensitized Dye Sensitized PhotoelectrosynthesisPhotoelectrosynthesisCells (DSPEC)Cells (DSPEC)

• Maximize solar absorption - to ~900 nm (1.38 eV) for single photon absorption; 40% efficiencies

• Maximize device dynamics - control of structure and energetics • Concentrate, store, and use multiple photons/redox

equivalents - for water oxidation; water/H+/CO2 reduction• Rates - exceed rates of solar insolation, ~10 mA/cm2

• Robust performance >2x1010 cycles/annum• Process engineering – product separation & scale up• Large scale arrays

Interfacial Structure & Dynamics

(Forbes/Papanikolas)

InterfaceDynamics

Interfacial Structure DSSC/DS-

PECPEC Devices

Page 24: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Dye Sensitized Solar Cells Dye Sensitized Solar Cells (DSSC)(DSSC)

GOALS•Increase V with Nb2O5 otherIncrease Voc with Nb2O5 other

semiconductors•Ditto with new dyes and

redox carriers•Tandem cells with

photoanodesand cathodes

Interfacial Structure

Gratzel- Accounts Chemical Research 2009

& Dynamics(Forbes/Papanikolas)

InterfaceDynamics

Interfacial Structure DSSC/DSDynamicsStructure DSSC/DS-

PEC Devices

Page 25: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Framework Materials• Synthetic tunability of framework

Wave Wang, to be submitted to JACS

Synthetic tunability of frameworkmaterials at the molecular level allows optimization of individual catalysts for proton/CO2reduction and water oxidation.reduction and water oxidation.

•The photon collection efficiency of light-harvesting framework materials can be similarly

ti i dCaleb Kent, JACS, ASAP

optimized.

• Integration of light antenna and catalysts into framework materials should enable photocatalytic total water splitting without relying on sacrificial reagents.

Solar Fuels Materials

(Lin/Lopez/Samulski)

Framework Materials

Semi-conductors

Page 26: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

SemiconductorsSemiconductors

GOALSA) Oxide semiconductors with desirable band energy properties for photoanodes and photocathodes in solar fuel applications: e g COphotoanodes and photocathodes in solar fuel applications: e.g., CO2

reduction with Nb2O5, SrTiO3.

B) Delineate transport properties and tailor them to achieve good injection ) e eate t a spo t p ope t es a d ta o t e to ac e e good ject ocharacteristics and large surface areas minimizing optical and electronic loses.

Traditional sintered nanoparticles

UNC improved structure

Solar Fuels Materials

(Lin/Lopez/Samulski)

Framework Materials

Semi-conductors

Page 27: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Next Generation Next Generation PhovoltaicsPhovoltaics

II. NEXT GENERATION PHOTOVOLTAICSComponent Development Light-Harvesting Systems – High stability, efficient energy transport

Nanostructured Electrodes for Photovoltaic ApplicationsNanostructured Electrodes for Photovoltaic ApplicationsIntegrated Systems Integrated Assemblies – derivatized polymer & polypeptide scaffolds with multiple

chromophores & electron transfer donors & acceptorSurface Attachment – to semiconductor oxides

Device Development Next Generation Photovoltaic Devices

Nano-structured Photonic Electrode

hνNext Generation

PhotovoltaicsLight Harvesting

Antenna

Hole Transport

Photovoltaics (Papanikolas/Schanze*)

Polymers Peptides OPVHole Transport

Channel

Page 28: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

PolymersPolymers

Specific Properties:---Energy + Charge transport---Surface active for attachment to metal-oxide surface Next Generation---Surface active for attachment to metal-oxide surface---Self-assembly

Next Generation Photovoltaics

(Papanikolas/Schanze*)

Polymers Peptides OPVPolymers Peptides OPV

Page 29: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

OligopeptidesOligopeptides

- Controlled structures: Stepwise synthesis

- Molecular Modeling: calculated structures

- Inter- and intra-coil: energy, ET d idynamics

- Binding to oxide semi-conductor: TiO2, ZnO.

- Single molecule microscopy- Single molecule microscopyon surfaces

- Injection back ET: Ultrafast emission and absorption:emission and absorption:

Next Generation Photovoltaics

(Papanikolas/Schanze*)

Polymers Peptides OPV

Page 30: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Bulk Heterojunction Polymer Solar Cells

Next Generation Photovoltaics

(Papanikolas/Schanze*)

Polymers Peptides OPV

• New architecturesN d

Durrant, J. MRS Bulletin 2008, 33, 670• New donors• Carbon nanotubes

11/15/2010 - 30

30

Page 31: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

TheoryTheory

• Reaction pathways, barriers, MM, QM: water oxidation, CO2 reductionEl t t f h i i i id• Electron-energy transfer mechanisms in rigid media

• Interfacial structure and dynamicshν Energy

transfer

• Modeling and simulation • Device performance

•Beratan- mechanism(s) of triplet triplet excitationof triplet-triplet excitation energy transfer in metal-organic frameworks and relatedmaterials.materials.

Page 32: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

Theory. Theory. CurrentCurrent

•Models for multi-pathway Dexter mechanism: excitation transfer for MOFs and peptides.•Predict and estimate pKa values for transition metal hydrides.p a y•Energy migration in multi-chromophore coiled-coil peptides. •Calculation of pKas and redox potentials.•Calculate pathways for catalytic CO2 reduction.•Simulations for the complete catalytic water oxidation cycle by single-site ruthenium catalysts.

D* A*

B*

* *

B*Energy

D

D

A

A

D

D*

A

A*

B B

Dexter energy transfer pathways.

Page 33: Solar Fuels and Next Generation Photovoltaics: The …phy.duke.edu/~muller/ctms/Lectures/TJMeyer_101112.pdf · i. dye sensitized photoelectrosynthesis cells for solar fuels production

From Photons to FuelsFrom Photons to Fuels

Catalyst Design & DevelopmentCatalyst Design & Development•• Water Oxidation CatalystsWater Oxidation Catalysts

SCIENCESCIENCE

•• Water Oxidation CatalystsWater Oxidation Catalysts•• COCO2 2 Reduction CatalystsReduction Catalysts

Component Design & DevelopmentComponent Design & Development•• LightLight--Harvesting SystemsHarvesting Systems•• Metal Oxide ElectrodesMetal Oxide Electrodes

IntegrationIntegrationTranslational Translational

ResearchResearch gg•• Light Harvesting/Catalyst IntegrationLight Harvesting/Catalyst Integration•• Surface AttachmentSurface Attachment

DevicesDevicesDevicesDevices•• Photoelectrochemical CellPhotoelectrochemical Cell

Design & DevelopmentDesign & Development

DEVICESDEVICESDEVICESDEVICESRTI, RTSFI, Venture Capital, Industrial Partners