soil and environmental chemistry-2012

Download Soil and Environmental Chemistry-2012

Post on 06-Nov-2015




23 download

Embed Size (px)




  • Soil and Environmental Chemistry

  • William F. BleamUniversity of Wisconsin, MadisonAMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD


    Academic Press is an imprint of ElsevierSoil and EnvironmentalChemistry

  • Academic Press is an imprint of Elsevier

    permission, further information about the Publishers permissions policies and our arrangementswith organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,can be found at our website: book and the individual contributions contained in it are protected under copyright by the

    Publisher (other than as may be noted herein).

    NoticesKnowledge and best practice in this field are constantly changing. As new research and

    experience broaden our understanding, changes in research methods, professional practices, ormedical treatment may become necessary.Practitioners and researchers must always rely on their own experience and knowledge in

    evaluating and using any information, methods, compounds, or experiments described herein. Inusing such information or methods they should be mindful of their own safety and the safety ofothers, including parties for whom they have a professional responsibility.To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,

    assume any liability for any injury and/or damage to persons or property as a matter of productliability, negligence or otherwise, or from any use or operation of any methods, products,instructions, or ideas contained in the material herein.

    Library of Congress Cataloging-in-Publication DataBleam, W. F. (William F.)Soil and environmental chemistry / William F. Bleam.p. cm.

    Reprinted with corrections.Includes bibliographical references and index.ISBN 978-0-12-415797-2 (alk. paper)

    1. Soil chemistry. 2. Environmental chemistry. I. Title.S592.5.B565 2012b631.41dc23


    British Library Cataloguing-in-Publication DataA catalogue record for this book is available from the British Library.

    For information on all Academic Press publications,visit our website: www.elsevierdirect.comTransferred to Digital Printing in 201230 Corporate Drive, Suite 400, Burlington, MA 01803, USAThe Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

    # 2012 Elsevier Inc. All rights reserved.No part of this publication may be reproduced or transmitted in any form or by any means,electronic or mechanical, including photocopying, recording, or any information storage andretrieval system, without permission in writing from the publisher. Details on how to seek

  • To Wilbert F. Bleam, my father and so much more.

  • develop problem-solving skills. Examples and problems rely on actual exper-

    imental data when available, supplemented by data gleaned from the USDA

    Natural Resources Conservation Service Soil Data Mart, the United States

    Environmental Protection Agency PBT Profiler and Integrated Risk Infor-mation System, and the National Atmospheric Deposition Program, to namea few. These examples are designed to develop key problem-solving skillsPreface

    The Earth, atmosphere, water, and living things abide intimately and insepar-

    ably in a place we call the soil. Any attempt to describe the chemistry of thispeculiar corner of the environment inevitably sets boundaries. Hydrology sits

    beyond the boundary for many soil chemists; but certain chemical processes

    take decades to develop, making residence time an important variable, to

    say nothing of belowground water transport. Again, soil microbiology may

    lay beyond the black stump separating chemistry from its cousin biology;

    yet respiratory processes drive redox chemistry wherever microbes are found

    in nature. Is there sufficient chemistry in risk assessment to warrant its inclu-

    sion despite differences in scientific dialect?

    Moving the boundaries outward to include Soil Moisture & Hydrology andRisk Assessment forces compensating choices. Herein Clay Mineralogy & ClayChemistry embraces layer silicates and swelling behavior, but demurs thebroader discussion of structural crystallography. Mineral weathering makes its

    appearance in Acid-Base Chemistry as the ultimate source of basicity, butdetailed chemical mechanisms receive scant attention. Ion exchange is strippedto its bare essentialsthe exchange isotherm and the factors determining its

    appearance. Natural Organic Matter & Humic Colloids adds content related tocarbon turnover and colloidal behavior, but does not take on the humification

    process or the primary structure of humic molecules. Water Chemistry down-plays algebraic methods in favor of model validation, reflecting my experience

    that students attain more success applying their chemical knowledge to validat-

    ing simulation results than slogging through mathematically complex and sym-

    bolically unfamiliar coupled equilibrium expressions. The hallmark of Acid-Base Chemistry is integrationpulling together water chemistry, ion exchange,and fundamental acid-base principles to develop an understanding of two chem-

    ically complex topics: exchangeable acidity and sodicity.

    Each chapter includes insofar as possible: actual experimental data plotted

    in graphic form, one or more simple models designed to explain the chemical

    behavior manifest in experimental data, and quantitative examples designed toxv

  • and to demonstrate methods for making sound estimates and predictions using

    basic chemistry principles, proven chemical models, and readily accessible

    soil, environmental, and chemical data.

    I wish to acknowledge several individuals who contributed to the planning,

    writing, and completion of this book. Philip Helmke and Phillip Barak, my

    chemistry colleagues at Madison, influenced uncounted choices of content

    and emphasis. Birl Lowery, John Norman, and Bill Bland, my soil physics

    colleagues, guided my choice to include hydrology. Robin Harris and Bill

    Hickey fed my interest and passion in environmental microbiology. Dr. Beat

    Muller of EAWAG (Das Schweizer Eidgenossischen Technischen Hochschulenund Forschung) was most helpful on all questions regarding ChemEQL. RobertW. Taylor, a friend dating from my Philadelphia days, exemplified encourage-

    ment. My graduate advisorsRoscoe Ellis, Murray B. McBride, and Roald

    Hoffmanguided my development as a young scientist, setting me on a course

    that ultimately led to writing this book. Edna J. Cash, a dear friend, diligently

    edited final drafts and proofs. Sharonmy wifewas always patient, always


    William F. Will Bleam,October 2010


  • Elements: Their Origina

    Elements 16

    1.12 Estimating the Most Probable

    Concentration and

    Appendix 1F. The Estimate of

    Central Tendency and

    Variation of a Log-Normal

    Popular Science published an electronic version of the Periodic Table of the

    Elements in November 2006 ( that contained pictures of virtually all of the elements in pure form. Nota-

    bly absent are the radioactive elements: promethium Pm, astatine At, radon Rn,

    francium Fr, actinium Ac, protactinium Pa, and elem

    Soil and Environmental Chemistry.# 2012 Elsevier Inc. All rights reserved.Concentration Range Using Distribution 37

    1.1. INTRODUCTION1.11 Concentration Frequency

    Distributions of the

    Dilutions and the Law of

    Proportionate Effect 35nd Abundance

    Chapter Outline1.1 Introduction 1

    1.2 A Brief History of the Solar

    System and Planet Earth 2

    1.3 The Composition of Earths

    Crust and Soils 3

    1.4 The Abundance of Elements

    in the Solar System, Earths

    Crust, and Soils 3

    1.5 Elements and Isotopes 4

    1.6 Nuclear Binding Energy 6

    1.7 Enrichment and Depletion

    during Planetary Formation 8

    1.8 Planetary Accretion 9

    1.9 The Rock Cycle 12

    1.10 Soil Formation 13the Logarithmic

    Transformation 18

    1.13 Summary 21

    Appendix 1A.

    Factors Governing Nuclear

    Stability and Isotope

    Abundance 22

    Appendix 1B.

    Nucleosynthesis 25

    Appendix 1C. Thermonuclear

    Fusion Cycles 32

    Appendix 1D. Neutron-Emitting

    Reactions that Sustain the

    S-Process 34

    Appendix 1E. Random SequentialChapter 1ents beyond uranium U.


  • Soil and Environmental Chemistry2There is a reason images of these elements are absent: every one of them is unsta-

    ble and, therefore, extremely rare. The Periodic Table of the Elements asserts that

    all elements exist in principle, but this particular table correctly implies that all ofthe elements from hydrogen to uranium exist on planet Earth. In fact, every sam-

    ple of water, rock, sediment, and soil contains every stable elementand proba-bly most of the unstable elementsfrom hydrogen to uranium.

    The Environmental Working Group published an article in October 2008

    entitled Bottled Water Quality Investigation: 10 Major Brands, 38 Pollutants

    (Naidenko, Leiba et al., 2008). Among the contaminants found in bottled water

    sold in the United States were the radioactive strontium isotope Sr-90 (0.02

    Bq L1), radioactive radium (isotopes Ra-286 plus Ra-288; 0.02Bq L1), boron(6090 mg L1), and arsenic (1 mg L1). These concentrations, combined with acommentary listing the potential and actual toxicity of these substances, can be

    alarming. The important question is not whether drinking water, food, air, soil,or dust contains toxic elem


View more >