semiconductor devices and opto-electronics

51
Semiconductor devices and opto- electronics Meint Smit Leon Kaufmann Xaveer Leijtens Opto-Electronic Devices Group Eindhoven University of Technology

Upload: lamar-ferrell

Post on 02-Jan-2016

77 views

Category:

Documents


0 download

DESCRIPTION

Semiconductor devices and opto-electronics. Meint Smit Leon Kaufmann Xaveer Leijtens. Opto-Electronic Devices Group Eindhoven University of Technology. Course information. Opto-electronics: Book:Gerd Keiser, Optical Fiber Communications 3rd edition, McGraw-Hill, obligatory! - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Semiconductor devices and opto-electronics

Semiconductor devices and opto-electronics

Meint Smit

Leon Kaufmann

Xaveer Leijtens

Opto-Electronic Devices GroupEindhoven University of Technology

Page 2: Semiconductor devices and opto-electronics

2

Course information

• Opto-electronics:– Book: Gerd Keiser, Optical Fiber Communications

3rd edition, McGraw-Hill, obligatory!– Contact: Xaveer Leijtens

[email protected] – 247 5112

• Electronic devices:– Book: Linda Edwards-Shea, The Essence of Solid-

State Electronics, Prentice Hall, obligatory!– Contact: Leon Kaufmann

[email protected] – 247 5801

• Website: http://oed.ele.tue.nl (education)

Page 3: Semiconductor devices and opto-electronics

3

Course overview

Week Mon 1,2 Tue 1,2 Wed 2,3 Fri 2 (vko) Fri 3,4

49 Lect o Lect e Instr o Lect e Lect o

50 Lect e Instr e Instr o Lect e Lect o

51 Lect e Instr e Instr o Lect e Lect o

2 Lect e Instr e Instr o Lect e Lect o

3 Lect e Instr e Instr o Lect e Instr e

Page 4: Semiconductor devices and opto-electronics

4

Contents semiconductor devices

• Recapitulation: electrons in atoms, introduction to quantum mechanics

• Solid state materials: crystal structures, energy band diagrams of insulators, metals and (un)doped semiconductors

• Semiconductors and carrier transport• Principle of operation of pn junction diodes• Fundamentals of MOSFETs• CMOS technology (incl. video demonstration)

Page 5: Semiconductor devices and opto-electronics

5

OGO3.2Free space optical communication

Kickoff Meeting Dec 1 in MA1.41 13:30h

Page 6: Semiconductor devices and opto-electronics

6

Contents Opto-Electronics

Lecture Chapter About

1 1 Introduction

2 Optical fibers

2 3 Fiber transmission properties

5 Power launching and coupling

3 4 Light sources

4 6 Light detectors

5 7 Optical receivers + guest lecture

Page 7: Semiconductor devices and opto-electronics

7

Examination

• Closed-book examination, formula sheet will be provided• Electronic devices: Edwards-Shea, chapter 1-8• Opto-electronics: Keiser

Chapter # pages

1 not: 1.4 and 1.5 15

2 not: 2.3.5, 2.4.3-9, 2.7.2-4, 2.8-10 30

3 3.1.2-3.1.4: no formula’s, only mechanismsnot: 3.1.5, 3.3, 3.4, 3.5.4-5

28

4 not: 4.4 and 4.5 44

5 not: 5.1.3, 5.2.1-end, with p 212, 218 8

6

7

Page 8: Semiconductor devices and opto-electronics

8

Optical communication

+ ––

TRANSMITTER FIBRE

+ –

RECEIVER

Page 9: Semiconductor devices and opto-electronics

9

Electromagnetic spectrum

• Optical communication wavelength: = 1500 nmcorresponds to = c/ 200 THz = 200.000 GHz

• 1% = 2 THz = 2000 GHz• EDFA-bandwidth 30 nm 4 THz

Page 10: Semiconductor devices and opto-electronics

10

Standard Single-Mode (SM) Fiber

Fiber coreSiO2+ GeO2

Ø 10 mn 1.443

SiO2 Cladding

Ø 125 mn 1.44

Primary coating (soft)Ø 400 m

Secondary coating (hard)Ø 1 mm

Page 11: Semiconductor devices and opto-electronics

11

Optical source

+ ––

TRANSMITTER

FIBER

Performance

Modulation speedFiber-coupled power

Page 12: Semiconductor devices and opto-electronics

12

Light Emitting Diode (LED)

Typical performance data

Power in MM-fiber: 100 W

Power in SM-fiber: 1 W

Direct Modulation Bandwidth: 100 MHz

+

Page 13: Semiconductor devices and opto-electronics

13

Laser

Typical performance

Power (in fiber): 5-10 mWMax: 100-300 mWDirect Modulation Bandwidth: 1-10 GHz

Page 14: Semiconductor devices and opto-electronics

14

Photodiode detector

Typical performance data

Responsivity: ~1 mA / mWBandwidth: 1-20 GHz

+ –

Page 15: Semiconductor devices and opto-electronics

15

Optical communication systems

First Generation, ~1975, 0.8 mMM-fiber, GaAs-laser or LED

Second Generation, ~1980, 1.3 m, MM & SM-fiberInGaAsP FP-laser or LED

Third Generation, ~1985, 1.55 m, SM-fiberInGaAsP DFB-laser, ~ 1990 Optical amplifiers

Fourth Generation, 1996, 1.55 mWDM-systems

1.80.8 1.0 1.2 1.4 1.60.9 1.1 1.3 1.5 1.7Wavelength (m)

Att

en

ua

tion

2 dB/cm

Page 16: Semiconductor devices and opto-electronics

16

WDM-transmission

MultiwavelengthTransmitter

MUX

MultiwavelengthReceiver

DMX

opticaltransmitter

opticalreceiver

optical fiber

+ –

Page 17: Semiconductor devices and opto-electronics

17

Erbium-Doped Fiber Amplifier (EDFA)

PUMP LASER 0.98 m or 1.48 m

Er-doped fiber

MUX FILTER

-10

0

10

20

30

1520 1530 1540 1550 1560 1570

wavelength (nm)

ED

FA

ga

in (

dB

)

Page 18: Semiconductor devices and opto-electronics

18

Synchronous Digital Hierarchy

Data rate SDH

Europe

SONET

US & Japan

52 Mb/s OC-1

155 Mb/s STM-1 OC-3

622 Mb/s STM-4 OC-12

2.5 Gb/s STM-16 OC-48

10 Gb/s STM-64 OC-192

40 Gb/s STM-256 OC-768

EuropeSDH: Synchronous

Digital Hierarchy

STM: SynchronousTransport Module

US & JapanSONET: Synchronous

Optical Network

OC: OpticalCarriers

Page 19: Semiconductor devices and opto-electronics

19

WDM experiments

Si electronics

ETDM

installed(10x / 6 yrs)

(10x / 2.5 yrs)

5 yrs

0.01

0.1

1

10

100

1000

10000

1980 1985 1990 1995 2000

Cap

acit

y (G

b/s

)

Trunk transmission capacity

Page 20: Semiconductor devices and opto-electronics

20

# W

DM

-cha

nnel

s

4

16

64

256

0.01 0.1 1 10 100

Channel bitrate (Gb/s)

1

Trunk transmission capacity

•‘97

10 Gb/s

1 Tb/s

0.1 Gb/s

1 Gb/s

100 Gb/s

•‘98

•‘98•

‘99

•‘00

•‘04?

•‘86

•‘96

•‘89

•‘83

•‘80

Page 21: Semiconductor devices and opto-electronics

21

Undersea cables

Page 22: Semiconductor devices and opto-electronics

22

Undersea cable

Cable Capacity fully upgraded (Gbps)

2,400

Fiber Pairs 6

Wavelengths per Fiber Pair 40

Gbps per Wavelength 10

Cable Length (km) 14,500

Page 23: Semiconductor devices and opto-electronics

23

Optical Transport Network

Global Network

Wide Area Network

Metropolitan/Regional Area Optical Network

Corporate/Enterprise Clients

Cable modemNetworks

Client/Access Networks

FTTHMobile

SDH/SONET

ATM

PSTN/IP

ISPGigabit Ethernet

Cable

FTTB

ATM

< 10000 km< 10 Tbit/s

< 100 km< 1 Tbit/s

< 20 km100M - 10 Gbit/s

Courtesy: A.M.J. Koonen

Page 24: Semiconductor devices and opto-electronics

24

O X C

1

2

1

2

in out

X

X

X

X

Integrated optical cross-connect

Dimensions: 8x12 mm2

Page 25: Semiconductor devices and opto-electronics

25

Fibre propagation

n1

n2

Page 26: Semiconductor devices and opto-electronics

26

Fiber performance

z=0 z=L

Dispersion

z=0 z=L

Attenuation

Page 27: Semiconductor devices and opto-electronics

27

Optical attenuation in glass

1960

Att

enua

tion

(dB

/km

)

1

10

100

1000

0.11970 1980 1990 2000

20 dB/km (Corning)

0.16 dB/km

CVD (Chemical Vapor Deposition)

Page 28: Semiconductor devices and opto-electronics

28

1.80.8 1.0 1.2 1.4 1.60.9 1.1 1.3 1.5 1.7

Wavelength (m)

Att

enua

tion

(dB

/km

)

0.2

0.5

1.0

1.5

0.16 dB/km

Rayleighscattering

IR band edge

OH--peak

UVabsorption

0.70.6

Fiber attenuation (SiO2)

Page 29: Semiconductor devices and opto-electronics

29

A note on dB and dBm

• dB– optical signals:

– electrical signals:

• dBm– absolute power value (with 1 mW as reference)

– power level in dBm:

2

1log10P

P

22

11

2

1

2

1 log10log20log20IV

IV

I

I

V

V

mW

P

1log10

elelopt PIP electrical dB = 2 x optical dB

Page 30: Semiconductor devices and opto-electronics

30

Reflection & refraction

n2<n1

n1

1 1

1

2

2

Snell’s law

2211 sinsin nn

2211 coscos nn

n2<n1

n1

1= c

c

Critical angle

1

2sinn

nc

1

2cosn

nc

n2<n1

n1

1 >c

Total internal reflection

Page 31: Semiconductor devices and opto-electronics

31

Numerical Aperture

1

2cosn

nc Critical angle:

Maximum entrance angle:

cn

n sinsin0

1max,0

Multimode fiber

n1

n2

0

c

n0

n0

22

21

211max,00 cos1sinsin nnnnnNA cc

Numerical aperture:

n

n

n

nn

n

nn

nnn

1

212

1

22

21

21

2

: if 222

22

1 nnnnnNA

61.0 max,0NA

Page 32: Semiconductor devices and opto-electronics

32

L

n1

n2

Dispersion (intermodal)

c

t

c

n

n

nL

T

2

1

c

nLT 1

min

cc

nLT

cos1

max

1

2cosn

nc

c

n

c

n

n

nL

T

2

1

nc

NA

c

n

c

n

n

nL

T2

2

2

1

T

LLB

2

2

NA

nc

T

LLB

kmnsnc

NA

c

n

c

n

n

nL

T /2

2

2

1

kmsMbNA

nc

T

LLB )/(

22

Page 33: Semiconductor devices and opto-electronics

33

Bandwidth and bit rate

tT

FWHM

dBo

0

1.5

3

oe

dBe

0

3

6

oe

e

CCT

B

22

1120

Rule of thumb:

(incoherent)

Bandwidth

Cross talk

opteldet PPI

Page 34: Semiconductor devices and opto-electronics

34

refractiveindex

SM Single-Mode

Fiber types

MM-SIMulti-ModeStep Index

MM-GIMulti-ModeGraded Index

2/1

1 21

a

rnrn

Page 35: Semiconductor devices and opto-electronics

35

Fiber classification (1)

Core diameter 50 - 400 m

Cladding 125 (500) m

2nd coating 250 - 1000 m

NA 0.16 - 0.5

Attenuation 1 - 4 dB/km

Bandwidth 6 - 25 MHz.km

Application Short distance, low cost

limited bandwidth

MM-SI: Multi Mode - Step Index fiber

Page 36: Semiconductor devices and opto-electronics

36

Fiber classification (2)

Core diameter 50 m standard

Cladding 125 m

2nd coating 200-1000 m

NA 0.2 - 0.3

Attenuation 1 dB/km (1300 nm)

Bandwidth 150 MHz.km - 2 GHz.km

Application Medium distance communication

LED/Laser sources

MM-GI: Multi Mode - Graded Index fiber

Page 37: Semiconductor devices and opto-electronics

37

Fiber classification (3)

Core diameter 3-10 m

Cladding 50-125 m

2nd coating 200-1000 m

NA ~0.1 (not used)

Attenuation 0.20@1550 - 0.4@1300 dB/km

Bandwidth >> 500 MHz.km

Application Long distance communication

Lasers, standard fiber

SM-SI: Single Mode - Step Index fiber

Page 38: Semiconductor devices and opto-electronics

38

The wave equation

Plane wave:

Spherical wave:rjkeE

R

eE

Rjk

Solutions to Maxwell’s equations:

2

kn

knk

/0

0

r

rr

n

kk

0000

phase fronts

Page 39: Semiconductor devices and opto-electronics

39

Wave vector and decomposition

kz

kx

kkx

kz

z

x

z

x

zjkxjk zx eezxE ),(

zz

xx

k

k

2

2

Page 40: Semiconductor devices and opto-electronics

40

Interference

x

x

z

z

phase frontsabsorber

metallic plates

kz

kx

k+

kx+

kz

+

kx-

k-

-

zjkx

zjkxjkxjk

rkjrkj

z

zxx

exk

eee

eezxE

cos2

,

xx

xz

k

nkk

kkk

2

0

22

Page 41: Semiconductor devices and opto-electronics

41

The metallic waveguide

metallic plates

d

z

x

kz zj

x exkzxE cos,

dx 2x

xk 2

220

2xz kknk

Page 42: Semiconductor devices and opto-electronics

42

Modes & Rays

waveguide

d

2 1 0

m=0 m=2m=1

d

mk mx

1,

0

,arcsinnk

k mxm

Page 43: Semiconductor devices and opto-electronics

43

Optical waveguide modes

m=0 m=4m=3m=2m=1

n2

n1

n0

k

z

m=0m=1

m=2m=3

m=4

kx

n1k0

c2

c0

substrate modes

superstrate modes

guided modes

n0k0n2k0 n1k0

Page 44: Semiconductor devices and opto-electronics

44

Mode intensity profiles

• Optical modes:

• Excitation of modes:

0 1 2

d

a

Planar:

Single-mode if V

Fiber:

Single-mode if V 2.405

22

21

2nn

dV

22

21

2nn

aV

Page 45: Semiconductor devices and opto-electronics

45

V-parameter

• V number: determines how many modes a fiber supports

• Lowest order mode HE11 has no cut-off

• Single-mode fiber:

NAa

nna

V

22 2

22

1

405.2V

Page 46: Semiconductor devices and opto-electronics

46

Number of modes

• Number of modes in step-index fiber

• Optical power in the cladding

2

2

2

1 22

22

1

2V

nna

M

MP

Pcladding3

4 for large values of V

Page 47: Semiconductor devices and opto-electronics

47

Step index fiber modes (2)

Effective index /k as a function of

Single-mode fiber: V 2.405

NAa

nna

V

22 2/12

22

1

HE11

TE01TM01

EH11

HE12

HE31

0 1 2 4 53 6

n1

n2

k

Page 48: Semiconductor devices and opto-electronics

48

Birefringence

• HE11:

• Birefringence: difference in effective refractive indices between two polarization modes

• Fiber beat length: phase difference between the two polarization modes is

xyf nnB

xyp nnk

L

0

Horizontal modeVertical mode

Page 49: Semiconductor devices and opto-electronics

49

Fiber materials

• Silica glass fiber– starting material: pure silica (SiO2) in the form of fused quartz

(amorphous)– modification of refractive index by addition of impurities

• lowering refractive index : B2O3, F• raising refractive index : P2O5, GeO2

• Polymer optical fiber (POF)– large core (multimode)– large refractive index difference between core and cladding– easy handling– relatively high losses

Page 50: Semiconductor devices and opto-electronics

50

Losses in polymer optical fiber

• Absorption loss in POF >>> Absorption loss in Silica fiber search for low loss polymers

• PMMA (Poly Methyl Metacrylate)• PS (Polystyrene)• FA (Fluoro acrylate)

– Typical absorption levels: 100 dB/km– Low loss windows: several windows in the range 500-800 nm

• New material development: perfluorinated polymer 50 dB/km from visible to 1600 nm

• Core type• Step index• Graded index

Page 51: Semiconductor devices and opto-electronics

51

Advantages of Optical communication

Huge bandwidth

Small and light

Low loss

Electrical isolation

No EMI (Lightning, interference)

Security (no tapping)

Reliability

Low cost per bit