seismic&isolation&of& nuclearstructures...seismic&isolation&of&...

41
SEISMIC ISOLATION OF NUCLEAR STRUCTURES Dr. Annie Kammerer, PE Pacific Earthquake Engineering Research Center, UC Berkeley Annie Kammerer ConsulGng Korean Atomic Energy Research InsGtute Daejon Korea April 2015

Upload: others

Post on 14-Apr-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

SEISMIC  ISOLATION  OF  NUCLEAR  STRUCTURES  

Dr.  Annie  Kammerer,  PE  Pacific  Earthquake  Engineering  Research  Center,  UC  Berkeley  

Annie  Kammerer  ConsulGng  

Korean  Atomic  Energy  Research  InsGtute  Daejon  Korea  

April  2015    

Overview  

¨  Seismic  isolaGon  (SI)  basics  and  terminology  ¨  Use  of  SI  in  non-­‐nuclear  applicaGons  ¨  Use  of  SI  in  nuclear  applicaGons  ¨  Design  of  SI  systems  in  a  risk-­‐informed  framework  ¨  ConstrucGon  and  operaGonal  requirements  and  special  

consideraGons  

Seismic  IsolaGon  Basics  

Seismic  IsolaGon  is  a  method  of  decoupling  a  structure  from  the  supporGng  surface  through  the  use  of  specially  designed  equipment.      Applying  the  isolaGon  layer  below  the  foundaGon  is  called  “base  isolaGon.”  (the  focus  of  this  presentaGon)    Equipment  and  floors  can  also  be  isolated.  

The  inerGa  of  the  structure  keeps  it  in  place  as  the  earth  moves  beneath  it.  The  relaGve  displacement  between  the  structure  and  ground  is  taken  up  by  isolators.      An  base  isolaGon  system  is  composed  of  a  “forest”  of  isolators  siYng  on  pedestals  (which  allow  access  to  the  isolators).  

Seismic  IsolaGon  Basics  

Isolators/  IsolaGon  Interface  

FoundaGon  -­‐lower  mat  -­‐pedestals  -­‐moat  walls  

Seismic  IsolaGon  Basics  

Superstructure    (enGre  structure  above  the  

isolators,  acts  as  a  “rigid  body”)  

Basemat  (highly  rigid  mat  

above  the  isolators)    

Seismic  IsolaGon  Terminology  

Moat    (space  to  allow  for  relaGve  movement)  

Moat  wall    (could  be  used  as  hard  Stop)  

Clearance  to  Hard  Stop    (Distance  large  enough  to  limit  pounding.  Sets  some  isolator  

properGes)  

Seismic  IsolaGon  Terminology  

¨  Low  damping  rubber  bearing  ¨  Lead  (core)  rubber  bearing  ¨  FricGon  pendulum  

Common  Types  of  Isolator  Units  

LNG  TANKS,  REVITHOUSSA,  GREECE  Fric6on  Pendulum  Bearings  

Use  of  SI  in  LNG  FaciliGes  

Courtesy  of  Prof.  Andrew  Whi^aker  

LNG  TANKS,  INCHON,  SOUTH  KOREA  Low  Damping  Rubber  Bearings  

Use  of  SI  in  LNG  FaciliGes  

Courtesy  of  Prof.  Andrew  Whi^aker  

SAKHALIN  II  PLATFORMS  Fric6on  Pendulum  Bearings  

Use  of  SI  in  Natural  Gas  Pla_orms  

Courtesy  of  Prof.  Andrew  Whi^aker  

Sensi6ve  and  important  Structures  and  infrastructure  in  the  US  

(tens  of  thousands  of  buildings  worldwide-­‐mostly  in  Japan)  

Hearst  Mining  Building,  UC  Berkeley  

Golden  Gate  Bridge  

San  Francisco  City  Hall  

Use  of  SI  in  Other  Structures  

Use  of  Base  isola6on  under  Nuclear  Power  

Reactors  

Cruas-­‐Meysse  NPP,  France  

Koeberg  NPP,  South  Africa  

Base  IsolaGon  of  Nuclear  FaciliGes  

Cruas-­‐Meysse  NPP  Courtesy  of    Electricite  de  France  

Base  IsolaGon  of  Nuclear  FaciliGes  

Base  IsolaGon  of  Nuclear  FaciliGes  

Cruas-­‐Meysse  NPP  

Courtesy  of  Electricite  de  France  

Other    nuclear    

applica6ons  

Jules  Horowitz  Research  Reactor,  France  

Tokamak  Fusion  Re

actor,  Fran

ce  

Emergency  Response  Centers  at  Kashiwazai-­‐Kariwa,  Fukushima  Daiichi,  and  Fukushima  Daini  

Base  IsolaGon  in  Nuclear  FaciliGes  

From  INPO  11-­‐005  Addendum  August  2012    Lessons  Learned  from  the  Nuclear  Accident  at  the  Fukushima  Daiichi  Nuclear  Power  Sta6on      “The  seismically  isolated  emergency  response  centers  at  the  Fukushima  Daiichi  and  Daini  nuclear  power  staGons  filled  a  vital  need  in  protecGng  emergency  response  personnel  and  ensuring  access  to  the  site  could  be  maintained  during  the  accident.”  

Experience  in  the  2011  Earthquake  

¨  In  2008  NRC  began  research  in  SI  ¨  NRC  research  addressed  key  items  

¤  VerGcal  and  beyond-­‐design-­‐basis  loading  ¤  Development  of  isolator  component  for  NRC’s  SSI  Modeling  Tool  (the  ESSI  Simulator)  

¤  TesGng  of  full  size  isolator  systems  at  large  loads  on  eDefence  to  confirm  analysis  tools  and  models  

¤  Development  of  performance-­‐based  criteria  for  regulaGon  of  NPPs  using  seismic  isolaGon  systems  

¤  Development  of  determinisGc  “rules  of  thumb”  to  provide  conservaGve  factors  for  performance  criteria  

¨  Development  of  NUREG  &  modeling  tools  to  address  NRC  staff  needs  (also  feeding  into  new  IAEA  guidance)  

NRC  AcGviGes  

NRC-­‐sponsored  tesGng  of  SI  units  

DCPP  Time  History    Lead  Rubber  Bearing    

NRC-­‐sponsored  tesGng  of  SI  units  

Fixed  Base  Structure  

Structure  Isolated  with  FricGon  Pendulum  and    Lead  Rubber  Bearings  

NRC-­‐sponsored  tesGng  of  SI  units  

Drag  NRC  NUREG  

¨  Isolator/IsolaGon  system  design  (approach  and  tools)  

¨  Assurance  of  isolaGon  system  performance  

¨  Umbilicals  and  cross-­‐over  structures  

¨  ConstrucGon  QA/QC  

¨  OperaGons  and  Maintenance  

¨  NUREG  developed  to  provide  background  informaGon  and  proposed  recommendaGons  for  RG  

Kammerer1,  Whi^aker2,  and  ConstanGnou2    

1US  NRC  2University  of  Buffalo  

Drag  NRC  NUREG  

¨  Guidance  focuses  on  technologies  with  track  record  in  US  and  accepted  by  US  pracGGoners:  lead  rubber,  low-­‐damping  rubber  and  fricGon  pendulum  bearings.  

¨  Guidance  is  provided  for  horizontal  systems;  verGcal  isolaGon  systems  could  be  allowable.  

¨  Guidance  is  focused  on  tradiGonal  designs,  though  it  can  also  be  used  for  SMRs  if  any  appropriate  design-­‐specific  enhancements  are  included  

¨  IsolaGon  of  equipment  or  floor  isolaGon  is  allowable,  but  is  not  addressed  in  the  NUREG.    

Guidance  Philosophies  

¨  The  isolators  cannot  be  allowed  to  fail  and  should  be  removed  from  any  realisGc  sequence.  

¨  Singletons  that  are  safety  related  must  have  more  stringent  design  criteria  than  more  convenGonal  construcGon.    

¨  The  potenGal  for  failure  and  cliff  edge  effects  is  removed  through  use  of  a  hard  stop.    

¨  The  concepts  of  FOSID  and  HCLPF  should  be  incorporated  to  the  extent  possible,  recognizing  that  seismic  isolators  are  inherently  non-­‐linear.    

¨  The  extended  DBE  concept  discussed  in  the  Near  Term  Task  Force  Report  should  be  incorporated.    

Guidance  Philosophies  

¨  Assurance  of  performance  must  incorporate  a  combinaGon  of  prototype  and  producGon  tesGng  to  physically  demonstrate  quanGfiable  confidence  levels  and  performance  reliability  in  both  the  isolators  and  the  umbilicals.    

¨  Guidance  must  consider  how  seismic  isolaGon  systems  could  fit  within  a  cerGfied  design  framework.    (Design  of  the  Basemat  up  is  cerGfied  and  isolators  tuned  to  the  site)  

¨  Although  the  guidance  focuses  on  isolated  light  water  reactor  superstructures,  the  approach  should  be  technology  neutral  enough  to  be  extended  to  other  designs,  such  as  for  small  modular  reactors.    

¨  RealisGc  approaches  for  achieving  clear  and  technically  based  performance  targets  should  be  described.  

A  hard  stop  assures  survivability  

Hard  Stop  Requirement  

TesGng  Requirements  

Isolator  behavior,  capacity,  and  reliability  can  be  determined  through  a  program  of  prototype  tesGng.  The  isolator  unit  must  have  a  high  confidence  of  a  low  probability  of  failure  (HCLPF)  at  the    CHS  deformaGon.    

Capacity          Seismic  MoGon  Parameter  

Cond

iGon

al  Probability  of  Failure  

Example  of  prototype  

tesGng  at  UCSD  

TesGng  Requirements  

TesGng  Requirements  

All  isolators  ALSO  quality  tested  to  their  deformaGon  under  design  basis  ground  moGon  (this  will  be  less  than  the  CHS)  to  assure  that  the  performance  is  as  expected.  This  gives  very  high  confidence  that  the  isolaGon  system  can  survive  earthquake  loading,  even  if  beyond  design  basis.    

Maximum  deformaGon  under  design  basis  ground  moGon  

The  moat  is  sized  such  that  there  is  less  than  1%  likelihood  of  any  impact  of  superstructure  with  the  wall  under  the  DBE  ground  moGon  when  modeling  is  performed  to  account  for  difference  in  actual  earthquake  records  (Gme  histories)  and  uncertainGes  in  parameters.    

Prob

ability  from

 mod

eling  

<1%  likelihood  of  impact  

Design  of  Moat  

Isolators and/or Isolation system Super-structure  

Connections/ umbilicals   Moat/Hard Stop  

Hazard and Associated

Risk Parameter  

Isolation unit and system design and

performance criteria

Approach to demonstrating unit

performance Performance expectations  

GMRS+2 The envelope of the RG1.208 GMRS and the minimum foundation input motion3 for each spectral frequency

No long-term change in mechanical properties. 100% confidence of the isolation system surviving without damage when subjected to the mean displacement of the isolator system under the GMRS+ loading.

Production testing must be performed on each isolator for the mean system displacement under the GMRS+ loading level and corresponding axial force.

Superstructure design and performance must conform to NUREG-0800 under GMRS+ loading.

Umbilical line design and performance must conform to NUREG-0800 under GMRS+ loading.

The moat is sized such that there is less than 1% probability of the superstructure contacting the moat or hard stop under GMRS+ loading.

EDB4  GMRS  The  envelope  of  the  ground  moGon  amplitude  with  a  mean  annual  frequency  of  exceedance  of  1x10-­‐5  and  167%  of  the  GMRS+  spectral  amplitude    

90%  confidence  of  each  isolator  and  the  isolaGon  system  surviving  without  loss  of  gravity-­‐load  capacity  at  the  mean  displacement  under  EDB  loading.  

Prototype  tesGng  must  be  performed  on  a  sufficient  number  of  isolators  at  the  CHS5  displacement  and  the  corresponding  axial  force  to  demonstrate  acceptable  performance  with  90%  confidence.  Limited  isolator  unit  damage  is  acceptable  but  load-­‐carrying  capacity  must  be  maintained.  

There should be less than a 10% probability of the superstructure contacting the moat or hard stop under EDB loading.

Greater than 90% confidence that each type of safety-related umbilical line, together with its connections, remains functional for the CHS displacement. Performance can be demonstrated by testing, analysis or a combination of both.6

CHS displacement must be equal to or greater than the 90th percentile isolation system displacement under EDB loading. Moat or hard stop designed to survive impact forces associated with 95th percentile EDB isolation system displacement.7 Limited damage to the moat or hard stop is acceptable but the moat or hard stop must perform its intended function.

1)  Analysis  and  design  of  safety-­‐related  components  and  systems  should  conform  to  NUREG-­‐0800,  as  in  a  convenGonal  nuclear  structure.  2)  10CFR50  Appendix  S  requires  the  use  of  an  appropriate  free-­‐field  spectrum  with  a  peak  ground  acceleraGon  of  no  less  than  0.10g  at  the  foundaGon  level.  

RG1.60  spectral  shape  anchored  at  0.10g  is  ogen  used  for  this  purpose.  3)  The  analysis  can  be  performed  using  a  single  composite  spectrum  or  separately  for  the  GMRS  and  the  minimum  spectrum.  4)  The  analysis  can  be  performed  using  a  single  composite  spectrum  or  separately  for  the  10-­‐5  MAFE  response  spectrum  and  167%  GMRS.  5)  CHS=Clearance  to  the  Hard  Stop  6)  SC  2  SSCs  whose  failure  could  impact  the  funcGonality  of  umbilical  lines  should  also  remain  funcGonal  for  the  CHS  displacement.  7)  Impact  velocity  calculated  at  the  displacement  equal  to  the  CHS  assuming  cyclic  response  of  the  isolaGon  system  for  moGons  associated  with  the  95th    

percenGle  (or  greater)  EDB  displacement.  

Two  Hazard  Levels  Used  for    Design  and  Assessment  

 

Ground  Mo6on  Response  Spectrum  +  same  as  for  new  non-­‐SI  structures  

10-­‐4  ground  moGon  with  minimum  FIRS  (NRC  Regulatory  Guide  1.208)    

 Extended  Design  Basis  GMRS  

10-­‐5  ground  moGon  or  1.67xDBGM      

Isolators and/or Isolation system Super-structure  

Connections/ umbilicals   Moat/Hard Stop  

Hazard and Associated

Risk Parameter  

Isolation unit and system design and

performance criteria

Approach to demonstrating unit

performance Performance expectations  

GMRS+2 The envelope of the RG1.208 GMRS and the minimum foundation input motion3 for each spectral frequency

No long-term change in mechanical properties. 100% confidence of the isolation system surviving without damage when subjected to the mean displacement of the isolator system under the GMRS+ loading.

Production testing must be performed on each isolator for the mean system displacement under the GMRS+ loading level and corresponding axial force.

Superstructure design and performance must conform to NUREG-0800 under GMRS+ loading.

Umbilical line design and performance must conform to NUREG-0800 under GMRS+ loading.

The moat is sized such that there is less than 1% probability of the superstructure contacting the moat or hard stop under GMRS+ loading.

EDB4  GMRS  The  envelope  of  the  ground  moGon  amplitude  with  a  mean  annual  frequency  of  exceedance  of  1x10-­‐5  and  167%  of  the  GMRS+  spectral  amplitude    

90%  confidence  of  each  isolator  and  the  isolaGon  system  surviving  without  loss  of  gravity-­‐load  capacity  at  the  mean  displacement  under  EDB  loading.  

Prototype  tesGng  must  be  performed  on  a  sufficient  number  of  isolators  at  the  CHS5  displacement  and  the  corresponding  axial  force  to  demonstrate  acceptable  performance  with  90%  confidence.  Limited  isolator  unit  damage  is  acceptable  but  load-­‐carrying  capacity  must  be  maintained.  

There should be less than a 10% probability of the superstructure contacting the moat or hard stop under EDB loading.

Greater than 90% confidence that each type of safety-related umbilical line, together with its connections, remains functional for the CHS displacement. Performance can be demonstrated by testing, analysis or a combination of both.6

CHS displacement must be equal to or greater than the 90th percentile isolation system displacement under EDB loading. Moat or hard stop designed to survive impact forces associated with 95th percentile EDB isolation system displacement.7 Limited damage to the moat or hard stop is acceptable but the moat or hard stop must perform its intended function.

1)  Analysis  and  design  of  safety-­‐related  components  and  systems  should  conform  to  NUREG-­‐0800,  as  in  a  convenGonal  nuclear  structure.  2)  10CFR50  Appendix  S  requires  the  use  of  an  appropriate  free-­‐field  spectrum  with  a  peak  ground  acceleraGon  of  no  less  than  0.10g  at  the  foundaGon  level.  

RG1.60  spectral  shape  anchored  at  0.10g  is  ogen  used  for  this  purpose.  3)  The  analysis  can  be  performed  using  a  single  composite  spectrum  or  separately  for  the  GMRS  and  the  minimum  spectrum.  4)  The  analysis  can  be  performed  using  a  single  composite  spectrum  or  separately  for  the  10-­‐5  MAFE  response  spectrum  and  167%  GMRS.  5)  CHS=Clearance  to  the  Hard  Stop  6)  SC  2  SSCs  whose  failure  could  impact  the  funcGonality  of  umbilical  lines  should  also  remain  funcGonal  for  the  CHS  displacement.  7)  Impact  velocity  calculated  at  the  displacement  equal  to  the  CHS  assuming  cyclic  response  of  the  isolaGon  system  for  moGons  associated  with  the  95th    

percenGle  (or  greater)  EDB  displacement.  

Performance  Criteria  for  the  Isolator  and  Isola6on  System  

 • Design  and  Performance  Criteria  • Approach  to  demonstra6ng  Performance  

 

Performance  Criteria  for  the  Superstructure,  Connec6ons/umbilicals  and  Moat/hard  stop  

 

Isolators and/or Isolation system Super-structure  

Connections/ umbilicals   Moat/Hard Stop  

Hazard and Associated

Risk Parameter  

Isolation unit and system design and performance

criteria

Approach to demonstrating unit

performance Performance expectations  

GMRS+2 Envelope of the RG1.208 GMRS and the minimum foundation input motion3 for each spectral frequency

No long-term change in mechanical properties. 100% confidence of the isolation system surviving without damage when subjected to the mean displacement of the isolator system under the GMRS+ loading.

Production testing must be performed on each isolator for the mean system displacement under the GMRS+ loading level and corresponding axial force.

Super-structure design and performance must conform to NUREG-0800 under GMRS+ loading.

Umbilical line design and performance must conform to NUREG-0800 under GMRS+ loading.

The moat is sized such that there is less than 1% probability of the superstructure contacting the moat or hard stop under GMRS+ loading.

2)  10CFR50  Appendix  S  requires  the  use  of  an  appropriate  free-­‐field  spectrum  with  a  peak  ground  acceleraGon  of  no  less  than  0.10g  at  the  foundaGon  level.  RG1.60  spectral  shape  anchored  at  0.10g  is  ogen  used  for  this  purpose.  

3)  The  analysis  can  be  performed  using  a  single  composite  spectrum  or  separately  for  the  GMRS  and  the  minimum  spectrum.  

100%  confidence  in  the  isolators  achieved  through  produc6on  tes6ng  of  each  

isolator    

Super  structure  and  internals  

designed  to  ISRS  from  the  design  basis  ground  

mo6on    

 moat  sized  for  <1%  prob.  of  impact  

 

 GMRS

+  

Isolators and/or Isolation system Super-structure  

Connections/ umbilicals   Moat/Hard Stop  

Hazard and Associated

Risk Parameter  

Isolation unit and system design

and performance criteria

Approach to demonstrating unit

performance Performance expectations  

EDB4  GMRS  The  envelope  of  the  ground  moGon  amplitude  with  a  mean  annual  frequency  of  exceedance  of  1x10-­‐5  and  167%  of  the  GMRS+  spectral  amplitude    

90%  confidence  of  each  isolator  and  the  isolaGon  system  surviving  without  loss  of  gravity-­‐load  capacity  at  the  mean  displacement  under  EDB  loading.  

Prototype  tesGng  must  be  performed  on  a  sufficient  number  of  isolators  at  the  CHS5  displacement  and  the  corresponding  axial  force  to  demonstrate  acceptable  performance  with  90%  confidence.  Limited  isolator  unit  damage  is  acceptable  but  load-­‐carrying  capacity  must  be  maintained.  

There should be less than a 10% probability of the super-structure contacting the moat or hard stop under EDB loading.

Greater than 90% confidence that each type of safety-related umbilical line, together with its connections, remains functional for the CHS displacement. Performance can be demonstrated by testing, analysis or a combination of both.6

CHS displacement must be equal to or greater than the 90th percentile isolation system displacement under EDB loading. Moat or hard stop designed to survive impact forces associated with 95th percentile EDB isolation system displacement.7 Limited damage to the moat or hard stop is acceptable but the moat or hard stop must perform its intended function.

4)    The  analysis  can  be  performed  using  a  single  composite  spectrum  or  separately  for  the  10-­‐5  MAFE  response  spectrum  and  167%  GMRS.  

6)    SC  2  SSCs  whose  failure  could  impact  the  funcGonality  of  umbilical  lines  should  also  remain  funcGonal  for  the  CHS  displacement.  

7)    Impact  velocity  calculated  at  the  displacement  equal  to  the  CHS  assuming  cyclic  response  of  the  isolaGon  system  for  moGons  associated  with  the  95th    percenGle  (or  greater)  EDB  displacement.  

90%  confidence  in  each  isolator  

achieved  through  prototype  tes6ng  

to  the  CHS  displacements  

 

>90%  confidence  in  umbilical  

func6onality  

<10%  chance  of  structure  impac6ng  moat  

 

 moat  designed  for  EDB  impact  

loads    

 Exten

ded  DB

 GMRS

 

Design  Requirements  

¨  Design  must:  ¤  incorporate  a  hard  stop  ¤  meet  the  performance  criteria  ¤  allow  for  isolator  inspecGon  and  

replacement  ¤  address  isolaGon  system  and  umbilical  

requirements  

¨  Analyses  must  account  for:  ¤  long-­‐term  change  in  properGes  ¤  variability  of  properGes  ¤  rocking,  rotaGon,  and  other  3D  responses  

Design  Requirements  

¨  The  superstructure  basemat  must  be  able  to  span  a  lost  isolator  unit,  even  one  on  the  perimeter.  

¨  The  superstructure  basemat  and  foundaGon  rag  must  be  sufficiently  rigid  to  assure  that  the  verGcal  loads  on  the  isolators  are  relaGvely  uniform.  

¨  The  potenGal  for  long-­‐term  se^lement  must  be  accounted  for.  

AddiGonal  Design  ConsideraGons  

¨  AddiGonal  seismic  monitoring  equipment  must  be  incorporated  along  the  edge  of  the  basemat.  

¨  The  SI  system  must  be  protected  against,  or  designed  for  fire,  high  winds,  flood,  etc.  

¨  ConsideraGon  should  be  given  to  extreme  loadings  such  as  aircrag  impact  and  explosions.  

¨  Fire  protecGon  systems  for  the  SI  systems  are  safety  related  equipment.  

¨  Design  should  address  LOSP  and  other  emergency  condiGons.  Passive  systems  should  be  used.  

Design  Analysis  

¨  Three  opGons:  1)  coupled  Gme  domain,  2)  coupled  frequency  domain,  and  3)  mulG-­‐step  

¨  Coupled  3D  Gme  domain  modeling  and  the  mulG-­‐step  approach  have  no  usage  restricGons  

¨  Coupled  frequency  domain  can  only  be  used  with  low  damping  rubber  bearings  and  in  certain  limited  circumstances.    

¨  Input  moGons  must  have  appropriate  long-­‐period  content  and  duraGon.    

¨  The  isolator  unit  numerical  model  must  be  validated  against  actual  data.  

OperaGonal  Requirements  

¨ An  in-­‐unit  inspecGon  program  is  required  ¨  InspecGon  plan  must  address  aging/degradaGon  ¨  The  isolators  must  recover  quickly  enough  to  withstand  large  agershocks  within  tens  of  minutes.  

¨  Isolators  should  have  an  inherent  property  that  passively  re-­‐centers  the  system.  

¨  The  protecGon  of  the  seismic  isolaGon  system  should  be  included  in  emergency  and  severe  accident  miGgaGon  planning  where  appropriate  

Design  Process  Requirements  

¨ Professional  peer  review  must  be  incorporated  into  the  design  and  development  process.  (detailed  list  of  topics  is  provided  in  NUREG)  

¨ QA/QC  procedures  should  be  developed  based  on  ANSI/ASME  NQA-­‐1-­‐2008.  10  CFR  50,  Appendix  B  requirements  are  applied  to  the  isolator  units.  

¨ QA/QC  approach  for  tesGng  in  ASCE  7-­‐10  can  be  used  as  a  base,  but  be  enhanced  to  meet  the  criteria  in  the  NUREG.  

THANK  YOU  FOR  YOUR  KIND  ATTENTION  

QuesGons?