seeding of free electron lasers by various techniques a. meseck

52
Seeding of free electron lasers by various techniques A. Meseck

Upload: horatio-barrett

Post on 29-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

  • Seeding of free electron lasers by various techniquesA. Meseck

    *CLASSE-Seminar Nov. 2009 A. Meseck

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Synchrotron RadiationTHz

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Synchrotron Radiation Sources

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Wiggler and Undulator TrajectoryUndulatorparameter Res. Wavelength:

    *CLASSE-Seminar Nov. 2009 A. Meseck

    FEL- InteractionInterchange between electron beam and radiation field:

    *CLASSE-Seminar Nov. 2009 A. Meseck

    FEL- Equation of Motion

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Amplification ( Low Gain ) The amplification of radiation intensity depends on the electron density.

    For small electron densities the amplification per turn is small.

    For > 0 a net intensity amplification is expected.

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Madey -Theorem:The amplification (Gain) is proportional to the negative derivative of the resonance-curve of the spontaneous undulator spectrum. Low Gain

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Low Gain FEL

    *CLASSE-Seminar Nov. 2009 A. Meseck

    JLAB ERL-FEL

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Mirrors for FELs

    *CLASSE-Seminar Nov. 2009 A. Meseck

    High Gain - SASE FEL Extremely high electron densities lead to a permanent amplification of the radiation intensity. The electrons are bundled into packages: Micro-bunching The electrons radiate coherently.

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Spectral Properties of the SASE -FELsZeit [s]

    *CLASSE-Seminar Nov. 2009 A. Meseck

    HGHG SASE Power [GW]Spectrum [a.u.]Advantages of Seeding

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Short Laser Pulse (Ti:Sa) brilliant electron beamHigh Gain Harmonic Generation (HGHG)*Dispersive sectionRadiator*Developed by L.-H. Yu et al.,BNL Phys. Rev. A44/8 (1991) 5178

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Cascaded HGHG-FEL LasersFinal Amplifierr1= s/n1r2= s/n1 /n2f= r2

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Down-conversion of the seeding wavelength to the desired wavelength.

    With fresh bunch technique - Classical HGHG a) with final amplifierb) with an extended last radiator

    Without fresh bunch technique - Modulator cascade - Radiator cascade- Combination of modulator and radiator cascade - Superradiant cascade Cascading towards < 1nm

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Imprinted energy modulation Energy modulationOutput powerTotal energy spreadin radiator Dispersion chicane modulator and radiator

    *CLASSE-Seminar Nov. 2009 A. Meseck

    *CLASSE-Seminar Nov. 2009 A. Meseck

    The seeded bunch part is no longer suitable for a further seeding process .Use a long bunch and shift interaction region for each stage2nd StageFinal Amplifier1st StageElectron bunchseed

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Ensure that the phase correlation and pulse length are conserved!

    the shot-noise effects are suppressed!* E. Saldin et a., Opt. Comm. 202 (2002) 169 Limits the total harmonic number

    High seed power required

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Classical High-Gain Harmonic-Generation Cascade using Fresh Bunch Technique and Final AmplifierBessy FEL : LE-Line

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Classical High-Gain Harmonic-Generation Cascade using Fresh Bunch Technique ChicaneChicaneFB-ChicaneSTARS

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Modulator Cascade

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Split Modulators Cascade

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Split Modulators Cascade

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Modulator Cascade ECHO Scheme Modulator 1 + Chicane 1Modulator 2 + Chicane 2

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Modulator Cascade ECHO Scheme Modulator 1 + Chicane 1Modulator 2 + Chicane 2

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Radiator Cascade

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Modulator and Radiator Cascade ** DEVELOPMENTS IN CASCADED HGHG-FELsB. Kuske , A. Meseck, http://accelconf.web.cern.ch/AccelConf/FEL2008/papers/tupph058.pdf

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Superradiant Radiator Cascade

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Superradiant Radiator Cascade

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Superradiant Radiator Cascade

    *CLASSE-Seminar Nov. 2009 A. Meseck

    The ratio between superradiance parameter S = s Nw / lband the slippage parameter k = lc /lb(bonifaccio-definitions) is the key-parameter.

    If the slippage is too small (=> short wavelength), there is no benefit from the superradiant pulse for harmonic generation. Limit of Superradiant cascades

    *CLASSE-Seminar Nov. 2009 A. Meseck

    With fresh bunch technique- Classical HGHG a) with final amplifierb) with an extended last radiator

    Without fresh bunch technique - Modulator cascade - Radiator cascade- Combination of modulator and radiator cascade

    - Superradiant cascade

    Cascading towards < 1nmnoise-amplification => HHG seeds ?Increased energy spread too small slippage (=> short wavelength)DEVELOPMENTS IN CASCADED HGHG-FELsB. Kuske , A. Meseck, http://accelconf.web.cern.ch/AccelConf/FEL2008/papers/tupph058.pdf

    *CLASSE-Seminar Nov. 2009 A. Meseck

    40nm800MeV-1200 MeVs=40nms=40nms=20nms=10nmExtension: Classical HHG Seeding

    *CLASSE-Seminar Nov. 2009 A. Meseck

    40nm800MeV-1200 MeVs=40nms=40nms=8nmExtension of Classical HHG Seeding II

    *CLASSE-Seminar Nov. 2009 A. Meseck

    calibration and OTR screens on7Match and 3SUND1ORS Experiment at FLASH*OTR screens on 2SUND2

    *CLASSE-Seminar Nov. 2009 A. Meseck

    ORS Experiment at FLASH*

    *CLASSE-Seminar Nov. 2009 A. Meseck

    FROG Trace, ORS Experiment

    *CLASSE-Seminar Nov. 2009 A. Meseck

    ERL driven Seeded FELs?

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Cornell-ERL Mode A : X-ray

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Cornell-ERL Mode A: Soft X-ray

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Mode A: Soft X-ray ; Higher Current

    Bunch Compression

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Cornell-ERL Mode C: Soft X-ray

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Cornell-ERL Mode D: Soft X-ray Space chargedominated beam

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Seeding Example Mode D- Seed powerHHG-Seed?

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Mode D- Seed power and Bunching (funda.)

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Mode D- Energy spread and Bunching (funda.)

    *CLASSE-Seminar Nov. 2009 A. Meseck

    Coherent EmissionDetermined by the desired wavelength range,L .Bunching depends mainly on energy deviation.Bunching at the entrance of the radiator of thesecond stage of STARS with and without space charge force.

    *CLASSE-Seminar Nov. 2009 A. Meseck

    SummarySeeded FELs providereproducible, stable radiation (in terms of wavelength and Intensity)better control on pulse shape and pulse durationtransverse and longitudinal coherence

    Short wavelength seeds (HHG) with high Intensities are still not state-of-the-art=> Several cascading scheme, e.g. HGHG, modulator and/or radiator cascades, are proposed or already under construction

    Seeding can also be used for beam diagnostics, ORS

    A seeded FEL can also be driven by an ERL