sarma manual resource efficiency

56
Acquire sociallicense forQuarrying Apply BestAvailable Practices forQuarrying Preserve naturalresources PromoteRecycling Facilitateaccess toresources Prevent illegalQuarrying Improveoverall environmental performance HowtoAchieve AggregatesResourceEfficiency inLocalCommunities Manual SEE/A/151/2.4/X

Upload: sfsdffeds

Post on 18-Jan-2016

26 views

Category:

Documents


0 download

DESCRIPTION

aggregate

TRANSCRIPT

Page 1: SARMa Manual Resource Efficiency

Acquire������������social�license�������for�Quarrying�

Apply��������������Best�Available�

Practices�����������for�Quarrying��

Preserve�����������natural�resources���

Promote�Recycling�

Facilitate�access����to�resources��

Prevent�����������illegal�Quarrying�

Improve�overall�environmental�performance�

How�to�Achieve�Aggregates�Resource�Efficiency�

in�Local�Communities��

Manual���

SEE/A/151/2.4/X

Page 2: SARMa Manual Resource Efficiency

����

Based�on:��

the�reports�prepared�within�Work�Package�3�of�the�SARMa�Project��“Sustainable�Aggregates�Resource�Management”�(SEE/A/151/2.4/X)��

���

Website:�http://www.sarmaproject.eu������������

Editing�Information��

Editing:� F.�Chalkiopoulou�&�K.�Hatzilazaridou�(IGME,�Greece)��Cover�Design�&�Photo:� F.�Chalkiopoulou�Printing:� Technical�University�of�Crete�Year�of�Edition� 2011�

��

© Copyright��

This�publication�reflects�the�views�only�of�the�author,�and�the�South�East�Europe�Programme�Managing�Authority�cannot�be�held�responsible�for�any�use�which�may�be�made�of�the�information�contained�therein.�

��

“How�to�achieve�aggregates�resource�efficiency�in�local�communities”��

A�joint�manual,�for�stakeholders'�decision�making�on�the�local�level�

Page 3: SARMa Manual Resource Efficiency

P a g e |�1�

CONTENTS�

� DESCRIPTION� Page�

� Forward� 3�

1� Introductory�information� 5�1.1� Scope�of�the�Manual� 6�1.2� Methodology� 6�1.3� Structure�of�the�Manual� 7�

2� How�do�we�meet�our�needs�for�aggregates?�� 9�2.1� The�significance�of�aggregates�in�everyday�life�� 11�2.2� Brief�description�of�the�practices�applied�to�produce�aggregates�

in�SEE�countries���12�

3� Major�issues�affecting�sustainability�of�aggregate�resources�at�local�level�

23�

3.1� Need�for�sustainable�development� 24�3.2� Social�issues� 24�3.3� Environmental�issues�� 25�3.4� Illegal�quarrying�issues�� 28�3.5� Recycling�issues�� 30�3.6� Permitting�process�issues� 31�

4� Key�parameters�for�the�industry�towards�sustainability�� 33�4.1� General� 34�4.2� Good�practice� 35�

5� Key�recommendations�to�local�authorities�and�communities���� 45�5.1� Develop�local�plans�� 46�5.2� Increase�knowledge�and�awareness� 47�5.3� Prevent�illegal�quarrying� 47�5.4� Promote�recycling� 48�5.5� Introduce�new�tools�in�decision�making� 49�

6� Selected�terms�and�definitions� 50�

7� References� 52�

Page 4: SARMa Manual Resource Efficiency

2�|�P a g e �

Contributors��

Authors�of�the�Manual:�

Chalkiopoulou,�Fotini,�Institute�of�Geology�&�Mineral�Exploration�(IGME),�Greece�Hatzilazaridou,�Kiki,�MSc,�Institute�of�Geology�&�Mineral�Exploration�(IGME),�Greece�

Reviewers:�

Name� Affiliation�

Internal��Agioutantis,�Zach,�Dr� Technical�University�of�Crete�(TUC),�Greece�

Blengini,�Gian�Andrea,�Dr� Politecnico�di�Torino�(Polito),�Italy�

Cibin,�Ubaldo,�Dr� Emilia�–�Romagna�Region,�Environment,�Soil�and�Coast�Defence�Department,�Italy�

Garbarino,�Elena,�Dr� Sustainable�Development�and�Environmental�Department,�Envi�ronmental�Impact�Assessment�Service,�Torino�Province,�Italy�

Marinescu,�Mihai,�Dr� University�of�Bucharest,�Faculty�of�Geology�and�Geophysics,��Romania�

Moisiu,�Ledi� Geological�Survey�of�Albania,�Albania�

Pelosio,�Andrea,�Dr� Territorial�Planning�Service,�Parma�Province,�Italy�

Solar,�Slavko,�Dr� Geological�Survey�of�Slovenia,�Slovenia�

Simic,�Vladimir,�Dr� University�of�Belgrade,�Faculty�of�Mining�and�Geology,�Serbia�

Tamas,�Hamor,�Dr� Hungarian�Office�for�Mining�and�Geology,�Hungary�

Tiess,�Guenter,�Dr� University�of�Leoben,�Austria�

External�Advisory�Board�Members�Brown,�Teresa� British�Geological�Survey�(BGS),�United�Kingdom�

Hejny,�Horst,�Dr� External�Expert�(Consulting),�Germany�

O’Brien,�Jim� President�of�the�European�Aggregates�Association�(UEPG)�Borad,�United�Kingdom��

Shields,�Deborah�J.,�Dr� Colorado�State�University,�United�States�of�America�

External��Adam,�Katerina,�Dr� National�Technical�University�of�Athens�(NTUA),�Greece�

Acknowledgment�

SARMa�project�partners�would�like�to�thank�the�European�Commission�for�the�funding�of�the�project�that�gave�the�opportunity�to�work�together,�share�common�visions,�and�achieve�a�very�high�level�of�cooperation�

that�led�to�this�joint�report.�

Page 5: SARMa Manual Resource Efficiency

P a g e |�3�

Forward�

Aggregates� are� used� in� the� construction� of� housing,� com�mercial�buildings,� industrial�developments�and�a�variety�of�public�infrastructure�projects.�South��ast�Europe�(SEE)�coun�tries� are� rich� in� aggregates,� but� neither� management� nor�supply,� are� coordinated� within� or� across� the� area.� At� the�local� level,� the� issues�are�high�environmental� impacts,� lim�ited�recycling,�need�for�stakeholder�consultation�and�capac�ity,�and�lack�of�social�license�to�operate.�

To�meet�challenges�of�making�these�shifts�the�project�enti�tled� “Sustainable� Aggregates� Resource� Management”� (SEE/A/151/2.4/X� –� SARMa)�was�approved�by�the�EU�Commission�and�co�funded�by�ERDF�funds�in�2009.�The�two�main�project�objectives�are:�

i. To� develop� a� common� approach� to� Sustainable� Aggregates� Resource�Manage�ment� (SARM)� across� SEE,� namely� to� move� towards� efficient� and� low� socio�environmental�impact�Quarrying�considering�also�waste�management,�and�

ii. To�ensure�a�Sustainable�Supply�Mix� (SSM)�policy� in�SEE,� that� is� to�use�multiple�sources,�including�recycled�wastes�and�industrial�by�products�(slag)�that�together�maximize�net�benefits�of�aggregate�supply�across�generations.��

SARMa�objectives� comprise� among�others:� coordination� in�managing�aggregate� re�sources,� increasing� the� transfer� of� know�how,� and� supporting� capacity� building� in�firms,�government�and�civil�society.�Activities�implemented�within�the�SARMa�project�connect�institutional�actors,�decision�makers,�policy�implementers,�economic�sector,�quarry�operators,�civil�society,�and�NGOs�through�workshops�and�targeted�results�at�3�spatial�scales.�On�the�local�scale,�that�is�also�the�content�of�this�Manual,�goals�are:�(a)�optimise�the�efficiency�of�primary�aggregates�production;�(b)�prevent�or��minimize�environmental� impacts� of� quarrying� and� improve� reclamation;� (c)� minimize� illegal�quarrying�by� improving�knowledge;� (d)�promote� recycling� (construction,�demolition�&�quarry�waste),�and�finally�(e)�increase�interested�and�affected�groups’�capacity��to�understand� and� correctly� interpret� the� issues� associated� with� aggregate� quarrying�and�engage�in�informed�dialogue�with�local�authorities�and�quarry�operators.�

Project�Coordinator�

Slavko�V.�Solar�

Geological�Survey�of�Slovenia�

Page 6: SARMa Manual Resource Efficiency

4�|�P a g e �

��

Fig.1:�Block�diagram�of�the�project�structure�&�methodology�applied�for�the�Manual��

Structure�of�SARMa�

WP3:�‘Extraction�and�demolition�site�level�activities’�

WP1� WP2� WP4� WP5�

Activity�3.1:�‘Environmentally�friendly�extraction�practices’�

5�cases�were�studied.�Separate�reports�were�prepared.

Activity�3.2:�‘Illegal�Quarrying’

5�cases�were�studied.�Separate�reports�were�pre�

pared.�

Activity�3.3:�‘Recycling’�

9�cases�were�studied.��Separate�reports�were�

prepared.

1�synthesis�report�on�“Extraction�and�Demolition�

Site�Level�Activities”�

1�synthesis�report�on�“Illegal�Quarrying”�

1�synthesis�report�on�“Recycling”�

Activity�3.4:��Preparation�of�a�Manual�for�site�level,�based�on�the�3�synthesis�reports�

���DISTRIBUTION�

1�joint�Manual�entitled:��

“How�to�achieve�aggregates�resource�efficiency�in�local�communities�

(in�English�&�national�languages)�

1. Individual�SARMa�WP3�&�WP4�reports�

2. Bibliography�

1. Internal�reviewing�

2. External�reviewing�

Page 7: SARMa Manual Resource Efficiency

P a g e |�5�

���

1.� Introductory�Information��

‘Resource�efficiency’�is�defined�in�general�as�a�prac�tice�in�which�the�primary�consideration�of�material�use�begins�with� the� concept�of� "Reduce� �� Reuse� ��Recycle���Repair"�stated�in�descending�order�of�pri�ority.�[Selected�terms�and�definitions,�chapter�6�of�the�Manual]��

Applying�the�above�definition�to�aggregates,�SARM�(Sustainable� Aggregates� Resource� Management)�and� SSM� (Sustainable� Supply�Mix)� are� the� key� ac�tions� that� have� to� be� undertaken� by� all� involved�parties� (producers,� authorities,� communities)� in�order�to�achieve�resource�efficiency.��

Therefore� the� goals� are:� i)� to� move� towards� effi�cient�and�low�socio�environmental�impact�of�Quar�rying�considering�also�waste�management (SARM),�and� ii)� to� use�multiple� sources,� including� recycled�wastes� and� industrial� by�products� (slag)� that� to�gether�maximize� net� benefits� of� aggregate� supply�across� generations� (SSM).� [Source:� SARM�� glossary, http://www.sarmaproject.eu/]�

Page 8: SARMa Manual Resource Efficiency

6�|�P a g e �

1.1� Scope�of�the�Manual��

The�Manual� “How� to� achieve� aggregates� resource� efficiency� in� local� communities”�represents�a�key�public�output�of�the�SARMa�project.�It�targets�all�stakeholders�at�the�local�level,�i.e.,�the�quarry�operators�(industry),�the�society�/�community�and�the�local�authorities.� It� comprises� a� set� of� advice,�messages� and� recommendations,� and� ex�plains�requirements�for�and�actions�needed�to�enhance�resource�efficiency�in�quarry�ing�at�local�level.�The�proposed�recommendations�are�aiming�to:�

� Encourage�the�application�of�good�practices�for�environmentally�friendly�extrac�tion�activities;�

� Introduce�ideas�for�development�of�tools�in�order�to�prevent�illegal�quarrying;�

� Promote�recycling�activities�that�can�be�used�for�aggregates�production.�

This�document�is�not�technical�or�legislative�in�character�and�does�not�aim�to�replace�the� existing�official� national�or� Commission� legislative� and� guidance�documents� on�subjects�relevant�to�aggregates�production.�It�highlights�key�holdback�issues�and�the�proposed�corresponding�actions�in�simplified�and�easy�to�read�manner.�

Subsequently,�the�Manual�aims�to�contribute�towards�the�sustainable�development�of�SEE�by�increasing�sustainable�aggregates�management�practices�and�policies,�and�a� sustainable� supply�mix� in� the� region.� These�will� in� turn� lead� to� social� license� for�firms�which�will�enable�them�to�stay�in�business�and�make�a�profit.��

1.2 Methodology��

Fifteen�(15)�partners�from�ten�(10)�countries�of�SEE�area�participated�in�the�SARMa�project� (Fig.�2).�Observers representing�ministries� in� charge�of�mining,� regional�au�thorities,�chambers�of�commerce�and�industry�also�present.�Contributions�have�also�been�made�by�geological�surveys,�institutes�and�faculties�working�regularly�as�experts�and�policy�advisers�with�government�and�industry�and�combining�up�to�date�knowl�edge�and�expertise�in�the�area�of�aggregates.�Also,�eight�decision�making�bodies�are�included�that�all�have�aggregates�under�their�rule.��

The�SARMa�project�was�structured�in�five�Work�Packages�(WPs),�two�(2)�general�and�three�(3)�thematic�(Fig.�1).�Amongst�them,�WP3�‘Extraction�and�Demolition�Site�Level�Activities’�was�the�core�part�of�the�project�aiming�to�fulfill�project�objectives�through�four�activities�focused�on�improving�resource�efficiency�at�local�level.��

The� present� manual� was� implemented� within� activity� 3.4� of� the� project� and� was�based�mainly�on� the� synthesis� reports� prepared�within�WP3� (Fig.� 1).� The� following�sources�were�also�taken�into�account:��

� The� individual� reports� prepared� by� the� project� partners�within�WP3� that� con�cerned� separate� case� studies� from� different� SEE� countries.� Activity� 3.1� cases�were�selected� in�order� to�demonstrate�examples�of�aggregates�extraction�with�application� of� environmentally� friendly� practices.� Activity� 3.2� cases� were� sur�

Page 9: SARMa Manual Resource Efficiency

P a g e |�7�

veyed�for�their�illegal�issues�and�monitoring�approaches�and�were�used�in�order�to�develop� recommendations�on�how� to�prevent� illegal�quarrying� in�SEE� coun�tries.�Finally,�activity�3.3�cases�were�examined�in�order�to�highlight�the�potential�of� producing� aggregates� from� recycling� activities� in� SEE� countries.� Besides� re�ports,�individual�questionnaires�filled�in�by�the�partners�within�activity�3.3�were�also�considered.�These�concerned�the�collection�of� information�related�to�recy�cling�practices�applied�in�the�countries�involved�in�the�project.�

� Reports�prepared�within�WP4,�and�specifically�in�activity�4.1�of�the�project.�This�activity�included�the�study�of�the�legislation�and�regulatory�framework�related�to�sustainable�aggregate�resources�management�in�selected�SEE�countries.�

� Published�documents�and�websites�related�to�the�content�of�the�manual.��������

All�above�sources�are�referenced�in�detail�in�chapter�7�of�the�Manual.�

Before�release,�the�Manual�was�subjected�to�internal�and�external�reviewing�process,�both�by�project�partners�and�by�(appointed)�external�reviewers.� In�this�sense,� it�re�flects� synthesis� of� visions� of�many� experts� from�different� affiliations� (Contributors,�page�4).�

Fig.�2:�2nd�Consortium�meeting�of�the�SARMa�project�partners,�Split,�Croatia,�4�5�of�Feb,�2010�

1.3 Structure�of�the�Manual��

The�Manual�is�structured�in�seven�(7)�chapters.�In�this�chapter,�introductory�informa�tion� is� included� concerning� the� scope� of� the�Manual,� the�methodology� applied� to�prepare�it�and�its�structure.�

Chapter�2�contains�general� information�on�the�European�aggregates�production�ac�tivity� and� the�Quarrying�practices� applied� in� SEE� countries.� Selected�data� from� the�case�studies�of�the�project�are�used�as�examples.�

Chapter� 3� highlights� the�major� issues� related� to� local� level� extraction� activities� as�they�were� identified� from� the� survey� conducted�within� the� project.� The� goal� is� to�underline�the�existing�need�for�operators,�local�authorities�and�communities�in�SEE�to�

Page 10: SARMa Manual Resource Efficiency

8�|�P a g e �

take�measures� in�order� to�manage�these� issues� in�a�sustainable�manner.�Again,� se�lected�data�from�the�case�studies�of�the�project�are�used�as�examples.�

Chapters�4�and�5�highlight�proposed�good�practices�and�recommendations�addressed�to�the�industry�and�local�stakeholders�respectively.�These�sets�of�proposals�comprise�synthesis�of�good�examples�from�SEE�countries,�knowledge�by�experience,�and�widely�accepted�practices�in�Europe.��

Selected�terms�and�definitions�related�to�the�content�of�the�Manual�are�explained�in�chapter�6.�This�was�considered�of�importance�in�order�to�support�the�reading�of�the�Manual�and�help�readers�to�clarify,�if�needed,�certain�significant�terms.�The�sources�used�for�chapter�6�are�specified�and�may�be�accessed�for�further�information.�

Finally,�all�documents�referenced�in�the�Manual�are�presented�in�alphabetical�order�in�chapter�7.�

Page 11: SARMa Manual Resource Efficiency

P a g e |�9�

2. How�do�we�meet�our�needs�for�aggregates?���

Presently,�some�90%�of�the�overall�aggregates�pro�duction� in� Europe� comes� from�naturally� occurring�resources,�in�quarries�and�pits.�The�remaining�10%�of� the� European� aggregates� production� comes�from�marine�deposits,�recycling�of�industrial�waste,�such�as� slag� and�ashes,� and� recycling�of� construc�tion�and�demolition�waste.��

The� production� of� marine� aggregates� and� aggre�gates� produced� from� recycling� activities� will� con�tinue�to�grow;�however,�in�longer–term,�some�85%�of� demand�will� still� need� to� be� covered� from� ag�gregates�produced�from�Quarrying.��

Aggregates� produced� from� recycling� activities�should� not� be� seen� as� competitors� to� aggregates�produced� from� Quarrying,� but� rather� their� joint�utilization� is� strategic� in�order� to�achieve� the�Sus�tainable�Supply�Mix�(SSM)�goal.�

Page 12: SARMa Manual Resource Efficiency

10�|�P a g e �

Manufactured�Aggregates�

(Crushed�Slag,�Fly�Ash)

2%

Sand�&�Gravel�from�Pits41%

Crushed�Rock�from�Quarries

49%

Recycled�from�Construction�&�Demolition�Materials

6%

Marine�Aggregates�(Sea�or�Lake�Dredged)

2%

Fig.�3:�Distribution�of�aggregates�production�in�Europe,�per��source�of�origin�Graph�by�F.�Chalkiopoulou,�based�on�figures�and�categorisation�of�sources,�presented�in�

Planning�policies�and�permitting�procedures�to�ensure�the�sustainable�supply�of�aggregates�in�Europe,��University�of�Leoben�(2010),�Final�Report�commisioned�by�UEPG�(European�Aggregates�

Ascociation),�p.�9.��

Note:�Aggregates�are�produced�also� from�extractive� (or�mining)�waste,�as�defined� in�chapter�2.1.�This�type�of�aggregates� is�not�mentioned�separately� in�the�report�referenced�above.� It� is�assumed� that� this� type� of� aggregates� is� � included� in� the� category� of� ‘Crushed� Rock� from�Quarries’�

Page 13: SARMa Manual Resource Efficiency

P a g e |�11�

2.1 The�significance�of�aggregates�in�everyday�life�

Aggregates� are�defined�as�granular�or�particulate�materials,� either�naturally�occur�ring�(sand�and�gravel)�or�produced�by�crushing�(crushed�rock)�which,�when�brought�together�in�a�bound�(with�cement,�lime�or�bitumen)�or�unbound�condition,�are�used�in�construction�to�form�part�or�whole�of�a�building�or�civil�engineering�structure.�Also�they�are�referred�to�as�‘construction�aggregates’�and�used�mainly�as�concrete,�mor�tar,�road�stone,�asphalt�or�drainage�courses,�or�for�use�as�constructional�fill�or�railway�ballast.�[Selected�terms�and�definitions,�chapter�6�of�the�manual]�

New� terms� have� appeared� such� as� recycled� aggregates� and�manufactured� aggre�gates,�which� are� used� to� describe� products� that� have� other� than� the� conventional�origin�of�aggregates�from�quarries�and�pits.�Recycled�aggregates�are�obtained�from�recycling� of� Construction� and� Demolition� Waste� (C&DW),� for� example� damaged�bricks,�broken�concrete,�brickwork�and�masonry,�while�manufactured�aggregates�are�produced�from� industrial�activities�during� the�processing�or� re�processing�of�waste,�by�products� and� residues.�Manufactured� aggregates� are� sometimes� referred� to� as�secondary� aggregates.� Further� to� the� above,� extractive� waste� (or� mining� waste),�namely�waste� resulting� from� the�prospecting,� extraction,� treatment�and� storage�of�mineral�resources�and�the�working�of�quarries,�may�be�processed�to�produce�aggre�gate�products.�[Selected�terms�and�definitions,�chapter�6�of�the�manual]�

Almost� 65%� of� the� aggregates� consumed� in� Europe� annually� are� used� for� building�construction�purposes.�This� is� especially� so� in� countries�with�high� seismicity�where�buildings�need�to�be�particularly�strong�and�concrete�is�the�standard�building�mate�rial�used.�For�instance,�a�Greek�house�of�120m2�surface�located�in�an�area�with�high�seismicity�needs�180m3�(or�more�than�400�tonnes)�of�concrete�for�its�construction.�It�is�noted�that�70�80%�of�this�concrete�is�composed�of�aggregates.�Social�buildings�like�schools,�hospitals�and�sports�stadiums�require�considerable�quantities�of�aggregates�per� construction� unit.� Based� on� the� European� Aggregates� Association� (2010)� data,�some�3,000�tonnes�of�aggregates�are�required�for�every�new�typical�school,�while�a�new�sports�stadium�may�require�up�to�300,000�tonnes�of�aggregates.�For�this�specific�application�(i.e.�building�construction�purposes),�aggregates�are�used�either�indirectly�in�the�form�of�cement�and�lime�(calcined�forms�of�limestone)�or�directly�as�is,�in�con�crete�and�mortars.�[Source:�Annual�Review�2010�2011,�UEPG,�http://www.uepg.eu/]�

Aggregates� are� very� important� for� infrastructure�works� as�well,� for� example� in� the�construction�of�roads.�Around�30,000�tonnes�of�aggregates�are�needed�for�the�over�all� construction�of� 1km�of� a�national� scale� road.� In� this� application,� aggregates� are�present�in�the�road�base�or�in�the�bituminous�or�concrete�mixes�of�the�road�surfaces.�Quantities�corresponding�to�20%�of�the�annual�European�consumption�of�aggregates�refer�to�construction�of�roads,�runways,�railways�and�waterways.��

In� addition� to� the� uses�mentioned� above,� specific� qualities� of� crushed� calcitic� rock�aggregates�are�used�in�granulated�or�powdered�form�in�various�applications:�animal�feed,�sugar�industry,�glass�industry,�chemical�industry�(paints,�plastics)�etc.�

Page 14: SARMa Manual Resource Efficiency

12�|�P a g e � �

Demand�for�aggregates�is�also�closely�related�to�the�level�of�maintenance�and�repair�of�existing�buildings�and�the�scale�of�civil�engineering�projects.�

Aggregates� transportation�can�add� significantly� to� the� cost�of�aggregates,� since�ag�gregates� are� heavy� and� bulky.� Therefore,� most� markets� are� local� or� regional� and�there�is�relatively�little�international�trade.�The�development�of�an�adequate�network�of�pits�and�quarries�is�required�in�order�to�meet�the�needs�of�local�/�regional�markets�and�reduce�transport�costs�and�the�related�environmental�impacts,�i.e.�CO2�emission.�

The�overall� European�aggregates�demand� is�3�billion� tonnes�per�year,� according� to�UEPG�statistical�data� included� in� their� annual� review�of�2010�2011.�The�aggregates�sector�represents�a�turnover�of�around�20�billion�euros�and�an�average�consumption�of�5.5�tonnes�per�capita�per�year.�According�to�the�same�data�source,�the�aggregates�industry� comprises� some� 16,000� companies� (mostly� SMEs,� i.e.� Small� and�Medium�sized� Enterprises)� operating� in� 24,000� quarries� and� pits� across� Europe,� employing�300,000�people�directly�and�indirectly.�All�these�make�the�aggregates�sector�the�larg�est�by�far�amongst�the�non�energy�extractive�industries.��

Empirical� evidence� shows� that� in� the� advanced� economies,� the� annual� aggregates�demand� in�certain�European�countries�may�reach�up�to�12�tonnes�per�capita.�How�ever,�the�sector�has�suffered�heavily�under�the�current�economic�crisis,�reporting�an�average�decline�of�about�20%�in�2009�compared�to�2008�figures.�In�several�countries,�a�further�decline�in�production�figures�is�reported�in�2010�due�to�recession.��

Nevertheless,� it� is�anticipated�that� the�aggregates�demand�will� soon�recover�to�the�2008�level�of�3.5�billion�tonnes,�and�will�reach�4�billion�tonnes�in�the�medium�term,�driven�mainly�by�economic�growth�in�Central�and�South�Eastern�Europe.�This�growing�demand�for�aggregates�needs�to�be�addressed�by�national�Minerals�Policies�and�Plan�ning�Systems.�[Source:�Planning�policies�and�permitting�procedures�to�ensure�the�sustainable�supply� of� aggregates� in� Europe,� University� of� Leoben� (2010),� Final� report� commisioned� by�UEPG,�p.p.�6,7]�

2.2� Brief�description�of�the�practices�applied�to�produce�aggregates�in�SEE�countries

Regarding� Europe� (Fig.� 3),� some� 90%� of� the� overall� aggregates� production� comes�from�hard�rock�quarries�and�sand�&�gravel�pits�run�on�purpose.�The�remaining�10%�of�the�European�aggregates�production�comes�from�marine�deposits,�recycling�of�indus�trial� waste,� such� as� slag� and� ashes,� and� recycling� of� construction� and� demolition�waste�(C&DW).��

As�documented�within� the�SARMa�project,� the�aggregates�production�practices�ap�plied� in�SEE�countries�comprise:� i)�extraction�and�processing�of� rock� from�quarries,�and�sand�&�gravel�from�pits,� ii)�treatment�of�extractive�(or�mining)�waste�and�exca�vated� soils/rocks� from� civil� works,� and� processing� of� industrial� waste� and� C&DW.�However,� the�main� practice� for� aggregates� production� applied� in� SEE� countries� re�

Page 15: SARMa Manual Resource Efficiency

P a g e |�13�

mains�Quarrying� from�quarries� and�pits� run�on�purpose.�Via� the� specific� activity,� a�wide� range� of� final� products� is� produced,� suitable,� according� to� specifications,� for�various�applications.�Aggregates�produced� from�activities�other� than�Quarrying� can�substitute� the�aggregates� from�Quarrying� in� applications� such�as� road�construction�and�concrete�production,�always�with�respect�to�the�required�quality�standards.��

As�far�as�production�of�aggregates�from�recycling�of�C&DW�is�concerned,�it�is�limited�in�SEE�countries�at�the�moment.�

2.2.1� Crushed�rock�aggregates�and�sand�&�gravel�

A�number�of�case�studies�were�selected,�representing�Quarrying�of�rocks�and�sand�&�gravel�from�quarries�and�pits�respectively�(Table�1).�

These�cases�were�used�as�examples�in�order�to�demonstrate�environmentally�friendly�extraction�practices�applied�in�SEE�countries.�Data�were�provided�and�evaluated�from�5�quarries�and�pits� that� represent� typical�examples�of�aggregates�producing�opera�tions� in�SEE�countries.�Two�of� these�quarries�concern�exploitation�of�sand�&�gravel�(Trstenik���Croatia�and�Lanca�dei�Francesi���Italy),�while�the�remaining�three�(Araxos���Greece,� Revarsarea� �� Romania� and� Kovilovaca� �� Serbia)� are� rock� extraction� opera�tions.� [Source:� Synthesis� report�of� baseline� study� reports�of� SARMa�model� sites;�Activity�3.1�(Best�practices).�http://www.sarmaproject.eu/]�

Table�1:�The�SARMa�case�studies�examined�for�environmentally�friendly�extraction�practices��

SEE����������country�

SARMa� ��������Partner�

Case�Study������������(Quarry�or�pit�name)�

Extracted�Material�

Croatia� MINGORP� �Trstenik� Sand�&�gravel�

Greece� IGME�� Araxos�� Rock�(Limestone)�

Italy� ER�&�Parma�� Lanca�dei�Francesi� Sand�&�gravel�

Romania� FGG� Revarsarea� Rock�(Diabase)�

Serbia� RGF� Kovilova�a� Rock�(Limestone)�

The� exploitation�method� that� is� usually� applied� for�Quarrying� of� rocks� is� ‘open� pit�mining’�(Fig.�4).�The�crushed�rock�aggregates�production�activity�involves�infrastruc�ture�works�on�site�and�off�site�(e.g.�access�/�transport�roads),�development�of�quarry�faces,�extraction�of�rock�(if�necessary,�after�blasting),�treatment�of�the�extracted�ma�terial�with�crushing�and�sieving�(Fig.�5),�storage�and�finally�transportation�of�the�final�products�to�market.�Sand�&�gravel�deposits�are�exploited�with�hydraulic�excavators�(after�removal�of�top�soil)�and�by�dredging�below�the�aquifer�level.�Depending�on�the�grain�size�distribution�of�the�raw�material,�the�extracted�sand�&�gravel�may�require�

Page 16: SARMa Manual Resource Efficiency

14�|�P a g e � �

further� classification� in� order� to� produce� the� necessary� size� fractions� for� the� com�mercial�aggregate�products.�

Fig.�4:�The�Araxos�open�pit�limestone�quarry�in�Greece�

[Source:�Preparatory�site�report�of�Araxos�quarry;�Activity�3.1.�http://www.sarmaproject.eu/]�

�Fig.�5:�Mobile�crushing�and�sieving�plant�unit,�Araxos�quarry�

[Source:�Preparatory�site�report�of�Araxos�quarry;�Activity�3.1.�http://www.sarmaproject.eu/]�

Page 17: SARMa Manual Resource Efficiency

P a g e |�15�

�Fig.�6:�Excavation�of�sand�&�gravel�by�dredging�at�the�Lanca�dei�Francesi�pit�in�Italy�

[Source:�Pilot�site�report�of�Lanca�dei�Francesi;�Activity�3.1.�http://www.sarmaproject.eu/]��

�Fig.�7:�The�Trstenik�sand�&�gravel�quarry�in�Croatia�–�Floating�grab�dredger�with�belt�conveyors�

[Source:��IGM�Sljuncara�Trstenik�d.d.,�Croatia;�Photographer:�B.�Kruk]�

The� Lanca�dei� Francesi� sand�&�gravel�quarry� in� Italy� (Fig.�6)�produces� silt,� clay� and�sandy�clays.�The�Trstenik�quarry�(Fig.�7)�is�located�in�the�floodplain�of�the�River�Sava,�in�the�Zagreb�region,�Croatia.�Quarries�in�that�area�produce�silt,�clay,�gravel,�sand�and�peat.�The�Araxos�quarry�in�Greece�(Fig.�4)�produces�mainly�crushed�rock�aggregates�from� a� calcitic� limestone.� The� Revarsarea� diabase� quarry� in� Romania� produces�crushed� rock�aggregates,� stones,� chippings�and�grinder� sand.�Finally� the�Kovilova�a�limestone�quarry�(Fig.�8)�produces�mainly�crushed�rock�aggregates.��

Page 18: SARMa Manual Resource Efficiency

16�|�P a g e � �

The�average�production�scale�of�the�examined�quarries�and�pits�ranges�from�around�400,000�tonnes�to�850,000�tonnes�of�aggregates�per�year.�The�final�aggregate�prod�ucts�find�applications�in�various�fields�such�as�road�and�building�construction,�railway�ballast,�in�the�glass�industry,�in�metallurgies�and�in�the�animal�food�industry�as�fillers�(Table�2).�

Table�2:��Applications�of�aggregates�produced�from�Quarrying�in�SEE�countries�

Quarry�or�pit� Main�uses�or/and�fields�of�application�

�Trstenik,�Croatia� Road�and�building�construction�

Araxos,�Greece�� Road�and�building�construction�

Lanca�dei�Francesi,�Italy� Cement�mortars,�concrete,�glass�industry,�brick��in�dustry�and�road�embankments��

Revarsarea,�Romania� Construction�of�roads�and�dams,�railway�ballast�

Kovilova�a,�Serbia� Road�and�building�construction�(80%),�metallurgy�(10%),�filler�in�the�animal�food�industry�(10%)�

Fig.�8:�The�Kovilova�a�limestone�quarry�in�Serbia�

[Source:�Preparatory�site�report,�Kovilova�a�quarry;�Activity�3.1.�http://www.sarmaproject.eu/]�

Page 19: SARMa Manual Resource Efficiency

P a g e |�17�

2.2.2� Aggregates�produced�from�recycling�activities��

The� expression� “aggregates� from� recycling”� is� used� here� to� describe� all� aggregate�products�produced�from�recycling�operations�and�activities�other�than�Quarrying� in�quarries� and� pits� run� on� purpose.� Several� kinds� of�mineral� by�products�waste� and�residues�can�be�effectively�turned�into�secondary�products�through�recycling.�These�products�can�be�used�in�substitution�of�or�in�mix�with�natural�aggregates�for�several�end�uses,�saving,�at�the�same�time,�non�renewable�resources and�significantly�reduc�ing�of� land�take�and�subsequent�environmental� impacts.� In� this�sense,� “aggregates� from� recy�cling”� includes� also� aggregates�produced� from� extractive� (or�mining)�waste.��

According�to�the�classification�of�recycling�activities�proposed�and�agreed� among� SARMa� partners,�4� types� of� recycling� activities�were� considered� as� potential�sources� of� aggregates� (Table� 3).��The� recycling� activities,� listed� in�table� 3,� fall� within� the� legal�framework� of� a� number� of� EU�Directives� and� Communications�related� to� management� of� such�types� of�waste.� [Source:� Synthesis� report� of� baseline� study� reports� of� SARMa�model� sites;�Activity�3.3�(Recycling).�http://www.sarmaproject.eu/]�

There� are� quite� a� few� differences� amongst� the� SEE� countries,� regarding� develop�ments�in�the�use�of�recycling�materials�like�C&DW�or�other�types�of�waste�in�order�to�produce�aggregates.�Concerning�especially�recycling�of�C&DW,�both�the�development�and� implementation�of�the�relevant�national� legislations,�as�well�as�achievement�of�C&DW�recycling�targets�is�a�slow�process�in�most�SEE�countries.�The�information�that�follows�was�collected�through�questionnaires�compiled�for�recycling�and�filled� in�by�the�project�partners.�

� In�Albania,�part�of�the�tailings�from�the�chromites�processing�industry�is�treated�for�the�production�of�aggregates�for�the�constructive�industry.��

� There�are�no�recycling�plants�in�Herzegovina,�while�very�few�plants�exist�in�Bos�nia.�

� In�Greece,�national�legislation�on�recycling�of�C&DW�was�enforced�very�recently.�R1�waste�(extractive�waste)�and�R4�waste�(slag)�are�used�for�the�production�of�aggregates� for� road�construction.�R1�waste�and�R3�waste� (excavated�soils/rock�

Table�3:�Classification�of recycling�activities����as�potential�sources�for�aggregates�production�

R1:�� Recycling� of� by�products,� waste� and�residues�from�extractive�activities�

R2:�� Recycling� of� Construction� and� Demoli�tion�Waste�(C&DW)�

R3:�� Recycling� of� excavated� soils/rock� from�civil�works�

R4:�� Recycling�of�industrial�waste�(e.g.�slags�from�civil�ferrous�metal�production,�bottom�ash�from�Municipal�Solid�Waste�(MSW)�incineration,�ashes�from�coal�combustion)

Page 20: SARMa Manual Resource Efficiency

18�|�P a g e � �

from�civil�works)�are�often�used�for�backfilling�works,�but�there�are�no�available�data�on�tonnages.��

� In�Serbia,�the�quantities�of�C&DW�that�are�recycled�for�production�of�aggregates�are�very� low�presently.� Industrial�waste,�such�as�slag�and�ashes�from�coal�com�bustion,�are�used�as�sources�for�aggregates�production,�but�only�occasionally.��

� Slovenia�has�recycling�plants�that�treat�mostly�R2�waste�(C&DW),�R1�waste�(min�ing� waste)� and� R4� waste� (industrial� waste).� Aggregates� produced� from� these�plants�are�used�for�backfilling�purposes,�concrete�production�and�other�construc�tion�purposes.��

� In�Austria,�R1�waste�(mining�waste)�is�used�mostly�as�backfilling�material�within�the�quarries.�However,� high�percentages�of�other� types�of�wastes� are� treated:�83%�(5�million�tonnes�out�of�6�million�tonnes)�of�R2�waste�(C&DW),�72�%�(15.9�million�tonnes�out�of�22�million�tonnes)�of�R3�waste�(excavated�soils/rock)�and�69� %� (1.1� million� tonnes� out� of� 1.57� million� tonnes)� of� R4� waste� (industrial�waste).�Nearly�100%�of�asphalt� (R2�waste)� is�recycled,�while�90�95%�from�used�concrete�(R2�waste)�is�also�recycled.��

The�case�studies�listed�in�table�4�were�considered�as�examples�for�production�of�ag�gregates�from�recycling�activities�in�SEE�countries.�These�cases�were�heterogeneous,�varying�from�processing�of�mining�waste�to�treatment�of�C&DW,�excavated�soils/rock�from�civil�works�and�industrial�waste�(e.g.�slag,�fly�ash).�[Source:�Synthesis�report�of�base�line� study� reports� of� SARMa� model� sites;� Activity� 3.3� (Recycling).�http://www.sarmaproject.eu/]�

Table�4:��List�of�case�studies�considered�for�recycling�within�SARMa�

Country�SARMa�Partner�

Case�Study�Name�Associated�ex�tractive�activity�

Type�of��Recycling�

Albania� METE� Bulqiza� Chromites�mine� R1�

Greece� IGME� Gerakini� Magnesite�mine� R1�

Italy� ER�&�Parma� Madregolo�(Collecchio)� �� R2�

Italy� ER�&�Parma� Castellarano�� Sand�&�gravel� R1,R2,R3,R4�

Romania� FGG&IGR� Deva�Ruschita� Marble� R1�

Slovenia� GeoZS� Velica�Piresica� �� R2,R3�

Slovenia� GeoZS� Sezana� �� R2,R3�

Slovenia� GeoZS� Dogose� �� R2,R3�

Slovenia� GeoZS� Smarje�Sap� �� R2,R3�

Page 21: SARMa Manual Resource Efficiency

P a g e |�19�

For�example,�the�tailings�stemming�from�the�Chromites�Processing�Plant�of�Bulqiza�in�Albania� (200,000� tonnes/year)� are� currently� recycled� and� treated� in� the� dressing�plant�as�mining�waste.�The�recycled�products�comprise�a�marketable�chromites�con�centrate� (38�42%� Cr2O3)� suitable� for� the� chemical� industry� and� metallurgy,� and� a�sand�product�(R1)�suitable�for�concrete�production.�[Source:�Study�report�of�SARMa�case�study Bulqiza�Albania�(3.3�Recycling)]�Also,� in� the� magnesite� mine� of� Gerakini� in� Greece� (Fig.� 9),� by�products� from� the�sorter�unit�plant�of�the�mill�and�extractive�waste�from�the�development�of�the�mine�are� processed� for� the� production� of� R1� aggregates� (150,000� tonnes/year),� suitable�mainly�for�road�construction�(Fig.10).���

�Fig.�9:�General�view�of�waste�material�stockpiles�at�the�Gerakini�magnesite�mine�in�Greece�

[Source:�Baseline�study�report�for�recycling.�Case�study:�Gerakini.�http://www.sarmaproject.eu/]�

�Fig.�10:�Aggregates�(R1)�produced�from�treatment�of�mining�waste�from�the�Gerakini�mine�

Page 22: SARMa Manual Resource Efficiency

20�|�P a g e � �

Six�recycling�plants,�two�from�the�Emilia�Romania�region�of� Italy�and�four�from�Slo�venia,�were�selected�in�order�to�demonstrate�the�potential�for�production�of�recycled�aggregates�(i.e.�recycling�of�C&DW)�in�SEE�countries.��

The�recycling�plant�of�Madregolo�(Collecchio)�in�Italy�(Fig.11)�is�an�example�of�evolu�tion�from�"traditional�quarrying"�to�"integrated�quarrying�and�recycling".�In�particu�lar,�the�plant�re�processes�the�recycled�aggregates�resulting�from�milling�of�road�as�phalt� pavements� (R2)� in� addition� with� natural� aggregates.� Hot�process� and� cold�process�are�the�two�recycling�techniques�adopted.� In�the�first�method,�recycled�ag�gregates� are�added�with� a�percentage� lower� than�20%�of� the� total�mixture.� In� the�second,� the� recycled� aggregates� are� added� with� percentages� up� to� 50%.�Medium�grade� recycled� aggregates� for� road,� airport� and� harbor� construction� are� produced�according�to�the�CE�marking�requirements.�Recycled�asphalt�concrete� is�also�manu�factured.� [Source:�Synthesis� report�of�baseline� study� reports�of� SARMa�model� sites;�Activity�3.3�(Recycling).�http://www.sarmaproject.eu/]�

Fig.�11:�The�recycling�plant�at�Madregolo�(Collecchio),�Italy��

[Source:�Baseline�study�reports�of�SARMa�model�sites�(Recycling).�Case�study�of�Madregolo]�

The�recycling�plant�of�Castellarano�in�Italy�applies�Best�Available�Technologies�(BAT)�in�the�field�of�C&DW�recycling.�The�plant�is�located�nearby�a�plant�producing�sand�&�gravel�in�an�area�that�consists�part�of�the�ceramic�district�Sassuolo�–�Scandiano.�For�this�reason,�76%�of�the�Castellarano�recycling�plant�feed� is�waste�from�the�ceramic�industry�(R4).�The�capacity�of�the�plant�is�150,000�tonnes/year.�[Source:�Baseline�study�reports�of�SARMa�model�sites�(Recycling):�Case�study�of�Castellarano]���

Page 23: SARMa Manual Resource Efficiency

P a g e |�21�

The� case� study� selected� for� Romania� concerns� the� Deva� Ruschita� marble� quarry.�Here,�50%�of�the�excavated�rock�is�used�for�the�production�of�190,000�tonnes/year�of�marble�as�dimension�stone.�The�excavated�rock�blocks�that�are�unsuitable�for�cutting�of�dimension�stones,�as�well�as�the�residues�(e.g.�trimmings)�of�the�cutting�plant�unit�are�processed�by�a�fillers�company,�located�close�to�the�Deva�Ruschita�marble�quarry,�in�order�to�produce�filler�products.� [Source:�Baseline�study�reports�of�SARMa�model�sites�(Recycling):�Case�study�of�Deva�Ruschita]��

The� recycling�plant�of�Velica�Piresica� is� located� in� the�abandoned�part�of� an�active�dolomite� quarry� in� Slovenia.� R2�waste� (C&DW)� and� R3�waste� (excavated� soil/rock�from�civil�works)�are�treated�in�this�plant�in�order�to�produce�high�and�medium�grade�recycled�aggregates�that�are�used�for�road�and�railways�construction.�[Source:�Baseline�study�reports�of�SARMa�model�sites�(Recycling):�Case�study�of�Velica�Pirecica]�

Similarly,� the� recycling� plant� of� Sežana� is� located� in� the� abandoned� part� of� a�limestone� quarry� in� slovenia.� R2�waste� (C&DW)� and�R3�waste� (excavated� soil/rock�from�civil�works)�are�also�treated�in�the�Sežana�plant.�High�grade,�medium�grade�and�low�grade�recycled�aggregates�are�produced�here.�[Source:�Synthesis�report�of�baseline�study�reports�of�SARMa�model�sites;�Activity�3.3�(Recycling).�http://www.sarmaproject.eu/]�

The� third� Slovenian� recycling� case� concerns� the� recycling� plant� of� Dogoše� that� is�located�in�an�exhausted�sand�&�gravel�pit,�partly�remediated,�near�the�Drava�River.�Two� other� plant� units� exist� in� the� same� area:� One� producing� sand� &� gravel�aggregates� and� one� producing� ready�mixed� � concrete.� The� feed� of� the� Dogoše�recycling�plant�comprises�R2�waste�(C&DW)�and�R3�waste�(excavated�soil/rock�from�civil� works),�while� the� recycled� aggregates� produced� are� of�medium� to� low� grade,�suitable�for�road�construction,�production�of�concrete�and�bituminous�mixtures�and�backfilling�works.�[Source:�Synthesis�report�of�baseline�study�reports�of�SARMa�model�sites;�Activity�3.3�(Recycling).�http://www.sarmaproject.eu/]�

The�last�case�examined�is�the�recycling�plant�of�Smarje�Sap�in�Slovenia,�located�in�the�abandoned�part�of�the�active�dolomite�quarry�of�the�same�area.�The�recycling�activity�is�accomplished�only�once�a�year�with�the�use�of�rented�equipment�(crusher)�for�the�treatment�of�R2�waste�(C&DW)�and�R3�waste�(excavated�soil/rock�from�civil�works)�in�order� to� produce� low� grade� recycled� aggregates,� suitable� for� backfilling� works.�[Source:�Synthesis� report�of�baseline� study� reports�of� SARMa�model� sites;�Activity�3.3� (Recy�cling).�http://www.sarmaproject.eu/]�

Based�on�the�analysis�of�the�case�studies,�it�has�to�be�underlined�that�the�majority�of�the�recycling�plants�referred�above�are�installed�at�exhausted�quarry�sites�of�active�or�abandoned�quarries/pits,�in�the�vicinity�of�industrial�zones�and�close�to�urban�areas.�This�practice�is�totally�reasonable,�since:�

� Recycling� plants� are� normally� fed�with�mixtures� of� extractive�waste,� industrial�waste�and�C&DW.�These�materials�are�easily�found�in�such�areas.�

� Crushing� /� classifying�plant�units�of�aggregates�quarries/pits�are�useful� for�and�may�be�used�by�recycling�plants.�����

Page 24: SARMa Manual Resource Efficiency

22�|�P a g e �

�Fig.�12:�Dust�is�a�common�impact�of�Quarrying�[Source:�Authors’�personal�photo�archive]�

Page 25: SARMa Manual Resource Efficiency

P a g e |�23�

��

3. Major�issues�affecting�������sustainability��of�aggregate�resources�������

at�local�level��

��

Aggregates�are�low�cost,�heavy�and�bulky�materials�and� it� is� imperative� for� economic� and� environ�mental�reasons�that�these�are�sourced�close�to�the�main� consumption� centers,� particularly� where�transport�by�rail�or�ship�is�not�possible,�as�is�usually�the�case.�Since�aggregates�are�sourced�mainly�from�surface�mines�there�is�a�direct�impact�on�the�land�scape�aesthetics.�A�number�of�other�potential�envi�ronmental�impacts�may�also�arise�during�the�opera�tion�of�quarries�/�pits�and�from�transport�activities.�Moreover,� Quarrying� may� affect� the� surrounding�communities� and� their� needs.� Thus, even� though�not� formally,� social� acceptance� is� necessary� for�Quarrying�in�order�to�operate�smoothly.�

Page 26: SARMa Manual Resource Efficiency

24�|�P a g e �

3.1� Need�for�sustainable�development��

According� to� the� “World� Commission� on� Environment� and� Development”� report�(1987),�Sustainable�Development�(SD)� is�"development�that�meets�the�needs�of�the�present�without� compromising� the� ability�of� future� generations� to�meet� their� own�needs".�Sustainable�development�implies�economic�growth�together�with�the�protec�tion�of�environmental�quality,�each�reinforcing�the�other.�In�essence,�the�term�“Sus�tainable�Development”�refers�to�achieving�economic�and�social�development�in�ways�that� do� not� exhaust� a� country's� natural� resources.� [Source:� "Our� common� future:� The�World�Commission�on�Environment�and�Development",�Bruntland,�G.,�1987]�

Authorities,� industry,�and�society�must�cooperate�at�the�regional�and�local�planning�levels� for� sustainable� aggregate� extraction� to�be� successful.� To� ensure� the� sustain�able�management�and�supply�of�aggregate�resources,�each�of�the�stakeholders�must�accept�certain�responsibilities.�The�authorities�have�the�responsibility�to�develop�the�policies,�regulatory�framework,�and�economic�incentives�that�provide�the�climate�for�economics�success� for�quarrying�companies�while�also�ensuring�that� the�needs�and�preferences�of� adjacent� communities� are� respected.� The� industry�must�work� to�be�recognized� as� a� responsible� corporate� and� environmental�member� of� the� commu�nity.�The�society�(including�non�governmental�organizations)�has�the�responsibility�to�become� informed� about� aggregate� resource� management� issues.� All� stakeholders�have�the�responsibility�to�identify�and�resolve�legitimate�concerns,�by�constructively�contributing� to� a� decision�making�process� that� addresses� not� only� their� own�but� a�wide� range� of� objectives� and� interests.� [Source:� “Managing� and� Protecting� Aggregate�Resources”,�Open�File�Report�02�415,�U.S.�Geological�Survey,�Langer,�W.�H.,�2002]�

Nowadays,� an� important� part� of� the� environmental� information� used� to� interpret,�forecast� or� design� sustainable� development� issues� related� to� industrial� systems� is�derived� from� the� application� of� the� Life� Cycle�Assessment� (LCA)�methodology.� The�mining/quarrying�industry�is�one�of�the�sectors�in�which�there�has�been�relatively�less�use�of�LCA�based�tools,�or�where�consensus�with� respect� to� implementation�of� the�methodology�has�yet�to�be�achieved.�[Source:�Life�Cycle�Assessment�(LCA)�Guidelines;�Ac�tivity�3.3�(Recycling).�http://www.sarmaproject.eu/]�

In�the�above�context,�certain�responsibilities,�issues�and�challenges�are�generated�for�all� stakeholders� involved� in� the� aggregates� sector� at� local� level.� As� demonstrated�during�the�implementation�of�SARMa,�regarding�SEE�countries�such�issues�and�chal�lenges� include:� achievement�of� social� license� to�operate;�management�of�potential�environmental�impacts;�prevention�of�illegal�quarrying;�promotion�of�recycling�activi�ties;�elimination�of�deficiencies�in�the�related�legislative�framework.�

3.2� Social�issues��

It�is�beyond�doubt�that�society�needs�aggregates�for�infrastructure�development�and�building�purposes,�and�therefore�a�major�concern�is�the�cost�effective�supply�of�ag�gregates�of�acceptable�quality.��

Page 27: SARMa Manual Resource Efficiency

P a g e |�25�

On� the�other�hand,� the�extraction�of� aggregates� from�quarries�or� sand/gravel�pits,�consists�of�a�largely�mechanical�process,�involving�the�transport�of�large�quantities�of�materials�and�this�may�disturb�local�communities�in�various�ways�(see�paragraph�3.3):�a)� changing� landscape�of�neighbouring�sites,�b)�affecting� the�environment,�habitats�and�species,�c)�creating�continuous�disturbance�due�to�transport�of�materials�through�villages,�etc.��In�addition�to�the�disturbances�caused�by�the�very�nature�of�the�extrac�tion�activity�affecting�the�surrounding�environment�and�communities,�local�residents�and� authorities� are� concerned� about� the�post� closure�management� and�use� of� ex�hausted�quarries.�

The�expansion�of� the�surface�aggregates�quarrying�operations�may�be�restricted�by�the�expanding�communities�in�the�absense�of�land�use�plans�and�the�lack�of�raw�ma�terials�extraction�priority�zones.�While�many�quarries�started�off�on�the�periphery�of�communities,�today�these�are�‘swallowed�up’�and�surrounded�by�new�development�as�the�communities�expand.��

Therefore,�social�issues�at�local�level�arise�from�two�conflicting�points�of�view:�a)�the�consumer�point�of�view,�and�b)�the�“disturbed”�citizen�point�of�view.��

Many� citizens�do�not� support� quarrying� in�part� because� they�do�not� recognize� the�dependence�of�society�on�aggregates.�This�“not�in�my�back�yard�syndrome”�may�re�strict�aggregate�development.� [Source:� “Managing�and�Protecting�Aggregate�Resources”,�Open�File�Report�02�415,�U.S.�Geological�Survey,�Langer,�W.�H.,�2002]�

In�recent�years,�through�the�public�consultation�step�foreseen�in�the�environmental�permitting�procedure�established�in�some�SEE�countries,�there�has�been�an�increased�involvement�of�the�local�communities�in�the�decision�making�process�for�new�and�/�or� existing�quarries.� Stakeholders� such�as� local� communities� and�NGOs�may�create�considerable�obstacles� in� the�performance�of�aggregates’�quarries,�especially�when�quarrying� takes� place� near� or� within� nature� conservation� areas� and� important� ar�chaeological� sites.� Summarising,� the� aggregates’� production� activity� needs,� even�though�not�formally,�social�acceptance�in�order�to�operate�smoothly.�

3.3� Environmental�issues�

The�major� environmental� issues� recognised�broadly� to�be� affecting� the� sustainable�development�of�aggregate�resources�are�related�to:�

� How�effectively�the�potential�environmental�impacts�stemming�during�all�phases�of�an�aggregates�extraction�project� (planning,�development,�establishment,�op�eration)�are�assessed,�monitored�and�managed,�and�

� Whether�there�is�an�efficient,�well�developed,�sound�and�site�specific�restoration�plan�that�could�compensate�local�communities�for�the�unavoidable�landscape�al�teration�due�to�extraction�activities.��

Page 28: SARMa Manual Resource Efficiency

26�|�P a g e �

Environmental�impacts�vary�considerably�from�one�quarry�site�to�another,�depending�mainly�on�extraction�methods�and�processing�techniques�applied,�the�overall�design�of�the�project,�as�well�as�the�scale�of�the�extraction�process.��

Extraction� sites� located� in� a� vulnerable� environment,� such� as� a� wetland� or� near� a�river�or�lake,�or�on�land�that�is�of�high�natural�value,�may�have�a�potentially�greater�impact�than�those�located�in�an�already�heavily�impacted�environment.�

Landscape� alteration� is� the�direct,�most� obvious� and� common� impact� of�Quarrying�affecting� the� environment� aesthetically� and� causing� disturbances� not� only� on� local�communities�but�also�on�existing�habitats�(Fig.�13).�

Fig.�13:�General�view�of�the�Kovilova�a�quarry�and�plant�from�the�Despotovac�town,�Serbia��

[Source:�Preparatory�site�report�of�Kovilova�a�quarry;�Activity�3.1.�http://www.sarmaproject.eu/]�

Quarries�may�require�the�removal�of�surface�soils�during�the�extraction�process�and�will� need� space� for� storage� as�well� as� for� associated� infrastructures,� buildings� and�access�roads.�Such�activities�can,�on�occasion,�cause�significant�disturbance�to�wildlife�and�lead�to�the�loss�or�deterioration�of�valuable�natural�habitats.�This�impact�may�be�temporary� or� permanent,� direct� or� indirect,� on�site� or� off�site� and�may� come� into�play�at�different�times�during�the�project�cycle�(Table�5).�

Page 29: SARMa Manual Resource Efficiency

P a g e |�27�

Table�5:��Overview�of�potential�impacts�on�biodiversity�from�extractive�activities��

[Source:�EC�Guidance�on�undertaking�new�non�energy�extractive�activities�in�accordance�with�Natura�2000�requirements,�European�Commission,�July�2010,�p.�31]�

Potential�impacts�on�habitats�and�species�

Stages�/�Activities�

Habita

t�loss,�dete�

rioration�or�frag�

men

tatio

n�

Disturbance�and

/or�

displacemen

t�of�

sensitive�spe

cies�

Loss�of�rare�or�en�

dangered

�spe

cies�

individu

als�or�pop

u�latio

ns�

Changes�in�spe

cies�

compo

sitio

n�(lo

cal�

flora�&�faun

a)�

Site�colon

isation�by�

alien�and�invasive�

pion

eer�species�

Changes�and�de

gra�

datio

n�of�aqu

atic�

ecosystems�

Exploration� � � � � � �

Drilling�and�trenching�� �� �� �� � � ��

Road/trail�construction� �� �� �� �� �� ��

Movement�of�people�and�vehicles�� � �� � � �� �

Site�preparation�/�Mineral�extraction� � � � � � �

Stripping/storing�of�“overburden”�of�soil�and�vegetation�

�� �� �� �� �� �

Infrastructure�development�(power�lines,�roads,�buildings,�crushers,�con�veyor�belts)�

�� �� �� �� �� ��

Blasting�to�release�ores/rock� � �� � � � �

Ore/rock�Extraction�&�stockpiling� �� �� �� �� � ��

Surface�&�ground�water�discharge� � � � � � ��

Drawdown�of�water�table� �� �� �� �� � ��

Transport�of�materials� � �� � � �� �

Processing� � � � � � �

Crushing�/�grinding� � �� � � � ��

Dumps�and�tailings�ponds� �� �� � �� � ��

Site�closure� � � � � � �

Re�contouring�of�pit�walls,�quarry�faces�and�waste�dumps�

� �� � �� �� �

Fencing�dangerous�areas� �� �� � �� � �

Decommissioning�of�roads�/�disman�tling�of�buildings�

� �� � � �� �

Reseeding/re�vegetation�of�disturbed�areas�

� � � �� �� �

Monitoring�and�possible�water�quality�treatments�

� � � � � ��

Quarrying�activities�may�cause�changes�in�water�quality�due�to�wash�water�and�pol�lutants� diffusion� into� the� groundwater.� If� de�watering� of� the� extraction� site� is� re�

Page 30: SARMa Manual Resource Efficiency

28�|�P a g e �

quired,�extractive�activities�can�potentially�modify�hydrological�conditions�in�the�ex�traction�areas�and�in�its�surroundings,�with�consequent�changes�in�the�drainage�net�work� caused� by� a� temporary� imbalance� in� surface� runoff,� infiltration� etc.� In� such�cases,�this�could�lead�to�impacts�on�nearby�or�distant�springs�and�wetlands,�both�in�terms�of�quantity�and�quality�(hydraulic�disruption).�

Different� kinds� and� intensities� of� noise�may� occur� during�Quarrying� and� vibrations�may�be�caused�if�blasting�is�applied.�Both�noise�and�vibrations�may�affect�the�existing�fauna�species�in�the�surroundings,�as�well�as�local�communities�if�settlements�are�in�the�proximity�of�the�quarry.�

Dust�emission�is�also�a�significant�side�effect�of�extraction�and�transportation�activi�ties�and�may�affect�air�quality,�soils,�people�and�habitats�(Fig.�12).��

Nevertheless,� the� aggregates� industry� has� much� improved� its� environmental� per�formance�in�recent�years�and�there�is�increasing�focus�in�achieving�biodiversity�pro�tection� and� excellence� in� nature� protected� areas� like� Natura� 2000.� Several� quarry�cases� from� the� ones� demonstrated�within� SARMa� (Table� 1)� represent� examples� of�operations�in�the�vicinity�of�Nature�Protected�areas.�The�Araxos�Quarry�in�Greece�is�operating�within�a�Nature�2000�area.�The�Lanca�dei�Francesi� in� Italy� is�operating� in�the� Po� River� flood� plains� bordering� a� Natura� 2000� area.� The� Kovilovaca� quarry� in�Serbia� is� operating� near� the� Gorge� of� the� Resava� River� which� is� a� Special� Nature�reserved�area�called�Vinatova�a.�The�Revarsarea�quarry�(Romania)�is�in�the�middle�of�the� migration� path� of� wild� birds.� [Source:� Synthesis� report� of� baseline� study� reports� of�SARMa�model�sites;�Activity�3.1�(Best�practices).�http://www.sarmaproject.eu/]�Currently,�systematic�monitoring�and�sound�management�of� the�environmental� im�pacts�discussed�above�are� foreseen�and�constitute� legislative�obligations� for�quarry�operators� in�most�SEE�countries.�However,�there� is�still�much�way�to�go�in�order�to�achieve�higher�levels�of�environmental�performance�in�the�specific�region.��

3.4� Illegal�quarrying�issues�

In� spite� of� an� existing� legislative� framework� for�Quarrying,� some�SEE� countries� are�still� facing� problems�with� illegal� quarrying� activities.� This� issue� is� related� to� severe�economic,� social� and� environmental� impacts� affecting� not� only� the� restricted� area�where�such�activities�take�place,�but�also�wider�areas.��

A�number�of�cases�studies�were�selected�in�order�to�identify�the�potential�causes�for�illegal�Quarrying�in�SEE�countries�and�propose�ways�to�prevent�it.�Useful�results�were�concluded,� based� on� the� outputs� of� the� specific� survey.� [Source:� Synthesis� report� of�baseline�study�reports;�Activity�3.2�(Illegal�quarrying).�http://www.sarmaproject.eu/]�� Illegal�quarrying�activities� vary� from�small� scale�excavations,�occasionally�oper�

ated�by�individuals�in�order�to�extract�aggregates�for�their�own�use,�to�quarries�developed�at�various�scales.�The�latter�operate�usually�for�a�few�months�and�are�not�easily�controlled�by�local�authorities.�

Page 31: SARMa Manual Resource Efficiency

P a g e |�29�

� It�is�difficult�to�estimate�the�actual�quantities�of�aggregates�deriving�from�illegal�activities� in� SEE� countries,� since� relevant�official� data�are�not� always� available.�Indicatively,�a�study�conducted�by�the�competent�authorities�of�the�Republic�of�Croatia� showed� that� around� 20%� of� the� country’s� aggregate� production� came�from�illegal�sources�in�2009.�[Source:�Activity�3.2�SSM�model�sites:�Sava�River�(Trstenik)�case�study�the�Zagreba�ka�county��Croatia]

� Illegal�activities�are�often�practised� in�areas�of�abandoned�and�not�properly�re�stored�quarries.�Moreover,�abandoned�quarries�are�amenable�to�illegal�disposal�of�various�types�of�wastes�(Fig.14).�

�� Illegal�operators�do�not�employ�health�and�safety�rules�for�extraction.�Therefore�

serious�risks�stem�for�both�the�safety�of�the�illegal�operators�as�well�as,�for�the�surrounding� environment,� settlements� and� habitants.� Also,� since� they� are� not�professionals� and� authorized,� they� do� not� apply� appropriate� and� environmen�tally� friendly�methods/techniques� for�exploitation.�On� the�contrary,� their�usual�practice� is� predatory� aggregates� extraction� accompanied� by� uncontrolled� dis�posal�of�‘waste’.�

�Fig.�14:�Disposal�of�construction�and�household�waste�at��the�abandoned�sites�of�the�

Trstenik�quarry,�Croatia���

[Source:�Activity�3.2�SSM�model�sites:�Sava�River�(Trstenik)�case�study�the�Zagreba�ka�county��Croatia]

Page 32: SARMa Manual Resource Efficiency

30�|�P a g e �

� Illegal�quarrying�activities�have�negative�economic�impacts�at�local,�regional�and�national�level�since�illegal�operators�do�not�pay�taxes�or�other�fees/royalties�en�visaged�for�legal�quarries.�

� The�lack�of�studies�on�the�medium�to�long�term�market�needs�for�aggregates�at�local� level� in� combination� with� complicated� and� time� consuming� permitting�processes�may�encourage�illegal�Quarrying.��

� Finally�an�important�factor�that�“allows”�illegal�quarrying�activities�to�carry�on�is�the�potential�lack�of�efficient�and�consistent�monitoring�processes�and�tools�em�ployed�by�the�competent�authorities.��

3.5� Recycling�issues�

Recycling�should�not�be�considered�a�stand�alone�activity�but�it�should�be�framed�in�a�wider�context�of�integrated�resource�and�waste�management.�In�this�sense,�produc�tion�of�aggregates�from�recycling�activities�(see�paragraph�2.2.2)�is�connected�to�the�relevant�legislation.��

The�European�Union�(EU)�has�adopted�a�number�of�Directives�aimed�at�harmonising�waste�management�and�disposal�policies�throughout�Europe�and�guaranteeing�envi�ronmental�protection.��

� The�Waste�Framework�Directive�(Directive�2006/12/EC�on�waste)��

� The�Landfill�Directive�(Directive�1999/31/EC�on�the�landfill�of�waste)��

� The�Integrated�Pollution�Prevention�and�Control�Directive�(Directive�2008/1/EC)��

� The�Mining�Waste�Directive�(Directive�2006/21/EC�on�the�management�of�waste�from�extraction�industries).��

The�case�studies�presented�in�paragraph�2.2.2�of�the�Manual�(Table�4)�were�consid�ered�as�examples�for�production�of�aggregates�from�recycling�activities�in�SEE�coun�tries.� Through� these� case� studies� it� was� demonstrated� that� the� overall� attitude� to�recycle�and�the�way�recycling�activities�are�conceived�and�managed� in�order�to�be�come�sources�of�aggregates�appears�to�be�essentially�different�from�one�SEE�country�to�another.�[Source:�Synthesis�report�of�baseline�study�reports�of�SARMa�model�sites;�Activity�3.3�(Recycling).�http://www.sarmaproject.eu/]�

Most�SEE�countries�do�not�consider� in� their�minerals�policies� the�production�of�ag�gregates�from�all�potential�recycling�activities.�More�specifically,�production�of�aggre�gated�from�the�treatment�of�extractive�(or�mining)�waste�is�common�practice�in�most�of� them.� On� the� other� hand,� production� of� aggregates� from� C&DW� is� limited� and�relevant� legislation� setting� specific� recycling� targets,� has� not� been� adopted� yet� by�some�countries.��

As� a� result,� databases� on� aggregates� from� recycling� activities� are� either�missing� or�with� limited� information.� [Source:� “Synthesis� report� on� legislation� and� regulatory�

Page 33: SARMa Manual Resource Efficiency

P a g e |�31�

framework� related� to� sustainable� aggregate� resources� management� in� selected� South� East�European�countries”,�SARMa�]�

Given�that�production�of�aggregates� from�recycling�activities�reduces� land�take�and�potential�environmental� impacts,�saving�at�the�same�time�non�renewable�resources�and� thus� increasing� resource� efficiency,� challenging� issues� that� policy� makers� and�public� administrators� are�presently� facing� concern:� i)�how� to�organize�and�manage�collection� and� recycling� of� waste�materials,� and� ii)� to� understand� whether� and� to�what�extent�aggregates� from�recycling�can�complement�aggregates� from�Quarrying�in�order�to�achieve�Sustainable�Supply�Mix�(SSM).�

3.6� Permitting�process�issues�

While�there�is�general�availability�of�locally�sourced�aggregates�in�SEE�countries,�ac�cess�to�aggregate�resources�and�supply�is�often�constrained�by�long�permitting�proc�esses.�

In�most�cases,�the�permitting�systems�concerning�Quarrying�are�unduly�complex�and�slow,� unnecessarily� constraining� access� to� resources,� and� the� validity�of�many�per�mits� eventually� granted� is� too� short� to� justify� adequate� investments.� Hence,� each�country�needs�to�develop�a�simplified,�faster,�justifiable�permitting�system,�ideally�as�a� “one�stop�shop”,� or� the� equivalent� thereof,� by� rationalizing� links� and�procedures�between�national,�regional�and�local�agencies�involved,�while�insisting�on�continued�industry�excellence�in�environmental�and�social�performance.�

Public� participation� is� usually� ensured� during� the� environmental� licensing� phase,�through�public� hearings�or�written� views.�However,� the� interpretation�of� “affected�public”� to�be� invited� is� rather�problematic,�which� leads� to� jurisdictions�by� the� legal�courts� in� many� countries.� [Source:� “Synthesis� report� on� legislation� and� regulatory�framework� related� to� sustainable� aggregate� resources� management� in� selected� South� East�European�countries”,�SARMa�]�

Page 34: SARMa Manual Resource Efficiency

32�|�P a g e �

Fig.�15:�The�Greek�quarry�of�Araxos�is�located�within�a�Nature�Protection�Zone.�The�area�around�the�quarry�site�is�characterized�by�high�biodiversity�features�due�to�its�proximity�to�the�wetlands�of�the�Natural�Park�of�Strofilia�–�Kotihi�[Source:�Authors’�personal�photo�archive]���

Page 35: SARMa Manual Resource Efficiency

P a g e |�33�

������

4.�����Key�parameters�for�the�industry����������������������������������towards�sustainability�

In� essence,� the� term� “Sustainable� Development”�refers� to� achieving� economic� and� social� develop�ment�in�ways�that�do�not�exhaust�a�country's�natu�ral�resources.��

A� Social� License� to� Operate� exists� when� a�mining�project� is� seen� as� having� the� approval� and� the�broad� acceptance� of� the� immediate� and� wider�community.� It� is� a� license� which� can� not� be� pro�vided�only�by�authorities,�by�political�structures,�or�even�by�the�legal�system,�but�it�needs�to�also�come�from� the� acceptance� granted� by� neighbours.� Such�acceptability�must�be�achieved�on�many�levels,�but�it�must�begin�with,�and�be�firmly�grounded� in, the�social�acceptance�of� the� resource�development�by�local�communities.

Page 36: SARMa Manual Resource Efficiency

34�|�P a g e �

4.1� General��

When�assessing�the�potential�impacts�of�aggregates’�extraction�activities�on�society,�and�nature,� it� is� important�to�note�that� these� impacts�may�concern�not� just� the� extraction� site� itself,� but�also� all� associated� infrastructure� and�

other�facilities�such�as�access�roads,�conveyor�belts,�crushers,�storage�sites,�etc.�They�also�concern�all�phases�of�the�project�from�the�initial�exploration�and�actual�opera�tion�of� the�site� (including�site� rotation/expansion)� to� its�eventual�closure�and�reha�bilitation.�To�this�respect,�digital�planning�of�the�quarry�development�is�a�good�tool,�since�it�enables�different�scenarios�and�discussions�to�take�place�between�operators�and�local�stakeholders.�

The�prevention�and�mitigation�of�impacts�throughout�the�life�cycle�of�a�quarry�is�also�to�a�significant�degree�determined�by�decisions�reached�in�the�feasibility�and�design�phase�of�a�project.�The�adoption�of�suitable�mitigation�measures�can�help�to�reduce�or�even�eliminate�some�negative�effects�of�quarrying.�The�sensitivity�of�the�environ�ment�in�which�the�extraction�is�proposed�to�take�place�is�also�of�major�importance.��

Currently,� the� constraints� posed� by� the� prevailing� national� and� European� environ�mental�legislation�demand�improved�environmental�performance�from�the�extractive�industry.�As�a�consequence,�the�application�of�novel,�improved�methods/techniques�that�contribute�to�the�reduction�of�certain�impacts�like�noise,�dust�and�gas�emissions�or�vibrations�is�required.�

Nowadays,� aggregates� operators� are� subject� also� to� pressures� coming� from� local�communities� and� local� authorities� and� the�public� image�of� aggregate� companies� is�becoming�more�and�more�important�for�the�companies’�interests.���

Summarising,�the�aggregates�industry�should�take�into�consideration�the�following:�

� There�is�a�global�urgent�need�for�a�sustainable�management�of�the�environment�and�consequently�of�all�human�and�industrial�activities�that�potentially�affect�it.��Within�this�framework,�the�aggregates’�sector�can�not�be�left�aside;�

� Society�is�more�informed,�more�sensitive�and�more�demanding�on�issues�related�to�the�impacts�of�the�aggregates�extraction�activities;�

� The� legislation� framework� is� becoming�more� strict� especially�when� � protected�areas�like�Natura�2000�sites�are�in�the�vicinity�of�quarrying�activities;��

� The�aggregates�sector�is�facing�increasing�competitiveness�in�terms�of�aggregates�quality�and�commercial�values�of�products;��

Within�the�above�context,� it� is� important�to�note�that�Quarrying� in�SEE�countries� is�performed�by�small�to�medium�sized�enterprises,�operating�with�traditional�practices.�This�rather�conventional�character�of�the�aggregates�sector�makes� it�relatively�diffi�

Page 37: SARMa Manual Resource Efficiency

P a g e |�35�

cult� to�adopt� the�necessary� technological�and�management�changes� that�will� assist�the�industry�towards�sustainable�operation.�As�a�conclusion,�the�Quarrying� industry�in�SEE�countries�should�immediately�review�its�strategies,�methodologies�applied�and�attitude�for�aggregates�production�towards�sustainability.���

4.2 Good�practice�

The� term�“good�practice”� is�defined�as�“the� ideal� strategy� to�counter� identified�ad�verse�effects�on�procedures�or�processes�using� the�Best�Available�Techniques� (BAT).�This�can�apply� throughout� the�quarry� lifespan,� from� initial� surveys� through�the�pro�duction�phase�to�closure�and�aftercare”.�[http://www.goodquarry.com/glossary]��

In�many�cases�good�practice�is�set�by�laws�and�regulations,�with�an�overall�target�of�protecting�the�environment,�and�promoting�a�healthier�and�safer�work�area.�Though,�a�number�of�issues�included�in�good�practice�are�based�on�experience�and�scientific�work�and�although�not� covered�by� regulation,� they�are�most�effective� in� achieving�the�above�results.�In�many�cases�the�application�of�good�practices�has�also�a�positive�economic� effect� since� cleanup� operations� or� additional� restoration� operations� are�avoided.�[Source:�Synthesis�report�of�baseline�study�reports�of�SARMa�model�sites;�Activity�3.1�(Best�practices).�http://www.sarmaproject.eu/]�

4.2.1� Start�from�planning��

Comprehensive� and� early� planning� of� an�aggregates’�quarrying�activity�is�an�impor�tant� key� factor� for� successful� perform�ance�of�the�enterprise.�It�should�consider�all� legislative,� technical,� environmental,�economic� and� social� factors� that� may�affect� the�quarry�operation� from�the�de�velopment� proposal� phase� to� the� post�closure� stages.� Good� planning� concludes�with� a� successful� design� of� the� whole�operation.�In�this�sense:�

� Existing� /� developing� legislative� constraints� and� land� planning� issues� must� be�assessed�well�in�advance;�

� New� technological� achievements� related� to�production�methods� should�be� ex�amined� and� applied� in� the� design� of� the� activity.� Such� novel� techniques� offer�better�health�and�safety�performance�and�potential�to�prevent�and�minimise�en�vironmental�impacts;����

� �he�possibility� to�use�new�generation�equipment� for� the�production�should�be�searched.�Such�machinery�may�be�more�expensive�to�buy,�but�in�the�long�run�it�will�be�proved�a�wiser�choice�than�old�and�traditional�one,�due�to�better�produc�

Page 38: SARMa Manual Resource Efficiency

36�|�P a g e �

tivity�rates,� less�maintenance�needs�and�upgraded�environmental�performance,�in�terms�of�exhaust�gases�emission,�energy�consumption,�etc;���

� A�sustainable�operation�must�be�established�on�the�continuous� interaction�be�tween� the� economical�productive� component� and� the� environmental� compo�nent.�Environmental�experts�should�participate�in�the�core�project�team�for�the�planning�and�design�of�the�quarry�operation;�

� Exploitation�plans�should�integrate�restoration�design�right�from�the�start�of�the�operation�activity.�In�this�framework�it�is�advisable�that�landforms,�land�uses�and�vegetation�patterns�are�identified�through�baseline�studies;��

� Development�of�a�landscape�strategy�before�the�commencement�of�the�project�facilitates�mitigation;�

� Good�practices�from�others’�successful�activities�may�be�useful�to�be�adopted.�

4.2.2� Blasting��

Blasting� is� the� major� ex�traction� process� followed�in�most�hard�rock�quarries�for� aggregates’� produc�tion.�Blasting�causes�noise,���vibrations� and� fumes� that�

Recommendations:� Prepare� early,� integrated� plans,� taking� into� account� legislative�constraints;�identify�critical�stages�for�land�use�management;�

Prepare�local�landscape�assessment�baseline�studies�and�assess�environmental�impacts�thoroughly;��

Develop� a� landscape� strategy� and� restoration� plans� from� the�beginning�having�in�mind�the�after�closure�use�of�the�site;��

Apply�digital�tools�for�planning;� Design�your�project�incorporating�as�many�new�technologies�as�possible;�

Detect�possible�social�opposition�at�a�very�early�planning�stage�and�begin�a�dialogue�to�address�issues�of�concern,�and�

Learn�from�other�successful�‘stories’�and�turn�problems�and�dif�ficulties�into�opportunities.�

Page 39: SARMa Manual Resource Efficiency

P a g e |�37�

may�affect�adjacent�settlements.�Fly�rock�phenomena�may�also�be�noticed.��

The�degree�of�the�rock�fragmentation�achieved�during�extraction� is� largely�depend�ent� on� the� applied� blasting� technique.� This� in� turn� affects� the� productivity� of� the�crushing� equipment� and� the�percentage� of� fines� produced.� A� good�blasting� design�allows� for� controlled� rock� fragmentation,� reduced� fly� rock� generation� and� reduced�cost�of�blasting�and�loading.�

Good�blasting�practices� should� include�application�of� improved� techniques,� like� se�quential�blasting,�that�generate�more�acceptable�patterns�of�vibrations.�Utilisation�of�novel� technology� is� recommended� in� order� to� reduce� noise.� In� any� case,� vibration�and�noise�levels�set�by�legislation,�if�any,�must�be�respected.��

4.2.3� Air�pollution�In�the�broader�quarry�area,�air�pollution�may�be�caused�due�to�both�particulate�mat�ter�emissions�(dust)�and�gas�emissions.�Good�practices�should� include�measures�for�both�groups�of�pollutants,�e.g.�use�of�de�dusting� systems� to� collect� fine�waste� materials,� dust� exhausting�systems�at�the�mills,�etc�(Fig.�16).���

The� potential� dust� generation�sources� such� as� road� or� pit� areas�should�be�moistened�(Fig.�17�and�19).�Internal� transportation� of� material�should� be� done� with� covered� con�veyors� or� trucks� with� slightly� mois�tened� material.� External� transporta�tion� of� the� raw�materials� should� be�done� in� covered� vehicles� or� with�other�dust�suppressing�systems.��

Recommendations:� Apply�sequential�blasting�to�reduce�vibrations;� Use�modern�technology�to�reduce�noise;�

Generate�and�maintain�monitoring�records�of�vibration�and�noise,�and�

Ensure�that�a�good�blasting�design�is�developed�in�order�to�re�duce�fly�rock,�the�cost�of�blasting�and�loading�and�control�better�the�fragmentation�of�the�extracted�material.�

Fig.�16:��Filter�collecting�dust�

[Source:�Preparatory�site�report�of�Araxos�quarry;��Activity�3.1.�http://www.sarmaproject.eu/]

Page 40: SARMa Manual Resource Efficiency

38�|�P a g e �

Fig.�17:�Wetness�system�in�the�Taro�River�quarry�in�Italy�

[Source:�Pilot�site�report�–��Case�study:�Taro�River�alluvial�fan�(Province�of�Parma,�Italy)]�

Recommendations:� Take�measures�to�reduce�dust�and�gas�emissions;�

Install�de�dusting�systems�to�collect�fine�waste�materials;�

Use�dust�exhausting�systems�at�the�mills;�

Keep�the�conveyor�/�crushing�systems�covered;�

Keep�the�road�or�pit�areas�that�generate�dust�moistened;�

Take�care�that�transportation�of�the�materials�within�the�quarry�is�done�with�covered�conveyors�or�slightly�moistened�material;�

Ensure�that�transportation�of�the�materials�through�public�roads�is�done� in�covered�vehicles�or�with�other�dust�suppressing�sys�tems,�and�

Make� sure� that� systematic� monitoring� and� evaluation� of� dust�and�gas�emissions�is�done�and�if�limits�exceeded,�check.�

Page 41: SARMa Manual Resource Efficiency

P a g e |�39�

Systematic� monitoring� and� evalua�tion� of� gas� and� dust� emissions�should� be� done� (Fig.� 18).� If� regu�lated� limits� are� exceeded,� the� cor�responding� equipment� units� that�produce� emissions� should� be�checked.���

Fig.�18:�Dust�monitoring�equipment�

[Source:�Preparatory�site�report�of��Araxos�quarry;�Activity�3.1.�

http://www.sarmaproject.eu/]��

4.2.4� Noise�

Noise�in�quarrying�usually�comes�from�two�major�sources:�Machinery�(stationary,�e.g.�crushers,�or�moving�e.g.�trucks)�and�blasting.�Noise�is�generally�one�of�the�main�con�cerns� addressed� in� the� planning� documentation� for� a� proposed� new� or� extended�quarry.�Operators�will�be�required�to�provide�information�on�existing�ambient�noise�levels,� predicted� noise� levels� at� different� stages� of� the�working� of� the� quarry,� and�details�of�noise�mitigation�measures.�[http://www.goodquarry.com/glossary]�

Suggested�good�practices�should�include�regular�monitoring�of�noise�and�comparison�to�current�legislation�limits�or�site�environmental�terms,�installation�of�noise�suppres�sion�systems�and�use�of�appropriate�blasting�technique�and�blasting�material.�Distur�bances� to� residential�areas�could�be�avoided� if�new�roads�bypassing�them�are�con�structed.��

Recommendations:� Apply�regular�monitoring�of�noise�and�compare�results�to�legis�lation�limits�and�site�specific�environmental�terms;�

Install�noise�suppression�systems;�

Make� no� unnecessary� noise� and� reduce� noise� emissions,� e.g.:�switch�off� equipment�when�not� in�use,� avoid�unnecessary� rev�ving� of� engines;� use� rubber� linings� in� chutes,� dumpers,� trucks,�transfer�points;�

Avoid�work�at�night�near�sensitive�areas,�where�possible;� Use�of�appropriate�blasting�technique�and�blasting�material,�and�

Consider�constructing�new�roads�to�bypass�residential�areas.�

Page 42: SARMa Manual Resource Efficiency

40�|�P a g e �

4.2.5� Quarry�fines�and�waste��

"Any�substance�or�object�the�holder�discards,�intends�to�discard�or�is�required�to�dis�card"� is�WASTE� under� the�Waste� Framework� Directive� (European� Directive� (WFD)�2006/12/EC),�as�amended�by�the�new�WFD�(Directive�2008/98/EC,�coming�into�force�in�December�2010).�Waste� refers� to�materials� that�are�not�prime�products� (that� is,�products� produced� for� the�market)� for� which� the� generator� has� no� further� use� in�terms�of�his/her�own�purposes�of�production,�transformation�or�consumption,�and�of�which�he/she�wants�to�dispose.���

Quarrying�and�the�associated�processing�operations�inevitably�lead�to�the�production�of�quarry�fines�and�waste.�The�amount�and�type�produced�depends�upon�the�geology�and�rock�type�quarried�the�efficiency�of�the�extraction�and�processing�operation�and�the�local�market�for�quarried�products.�New�markets�for�these�sub�economic�quarry�materials�may�help� to� reduce� the�amount� currently�being�held� in� stockpiles� across�the�countries.�[http://www.goodquarry.com/glossary]�

Materials� that� may� be� classified� as� quarry� wastes� include� overburden� and� inter�burden�(material�of� limited�value�that�occurs�above�or�between� layers�of�economic�aggregate� material)� and� processing� wastes� (non�marketable,� mostly� fine�grained�material�from�screening,�crushing�and�other�processing�activities).��

Wastes� and� fines� stemming� from� aggregates� production� in� SEE� countries� are� nor�mally� inert.� The� quantities� produced� vary� greatly� from�quarry� to� quarry:� there� are�rock�quarries� that�produce�zero�waste,�and�there�are�also�sand�and�gravel�quarries�that�may�produce�clay�and�silt�waste.��

4.2.6� Transport��

Road�haulage� is� a� common� transport�practice� applied� in�Quarrying� (Fig.� 19).�When�the�quarries�operate�within�or�near�nature�protected�areas�or�near�residential�areas,�transportation�may� affect�wildlife� and� communities� due� to� dust� and� noise� genera�

Recommendations:� Try�to�find�a�use�for�waste,�e.g.�landscaping,�remediation,�or�as�backfill�material;�

Landscape�and�vegetate�waste�heaps�as�soon�as�possible;� Investigate�the�possibility�to�treat�calcitic�rock�fines�for�produc�tion�of�useful�marketable�materials,�e.g.�low�grade�fillers,�and�

Management� of�waste� produced� should� be� practised� through�out�the�life�of�the�quarry�operation.�

Page 43: SARMa Manual Resource Efficiency

P a g e |�41�

tion.�Several� interventions�and�measures�should�be�undertaken� in�order�to�a)�mini�mize�impacts�to�wildlife�and�b)�minimise�impacts�to�residential�areas.���

In�Araxos�quarry� in�Greece� for� example,� a�bridge�and�a� road�bypassing� the�nearby�village�were� constructed� to�protect�wildlife� (Lutra� lutra�European�otter)� potentially�threatened� from� the� truck� transport. [Source:� Preparatory� site� report� of� Araxos� quarry;�Activity�3.1.�http://www.sarmaproject.eu/]�

�Fig.�19:��Internal�transport�with�trucks.�Road�is�wet�and�the�material�is�moistened.�

[Source:�Preparatory�site�report�of�Araxos�quarry;�Activity�3.1.�http://www.sarmaproject.eu/]�

Recommendations:� Consider� alternative� routes� and� implement� noise� suppression�and�dust�protection�schemes�to�prevent�and�minimise�impacts;��

Reduce,�where�possible,�transportation�distance;� Transport� aggregates� at� off�peak� or� specific� hours� of� the� day�avoiding�traffic�jams;�

Seek�alternatives� to� longer�distance� road�haulage,� e.g.� rail,� ca�nal,�if�possible;�

Consider�alternatives� to�road�haulage� from�excavation�to�proc�essing�plant,�e.g.�conveyors,�and�

Use�surfaced�road�between�the�wheel�wash�and�the�site�exit�to�make�sweeping�easier�and�ensure�no�mud�pick�up.�

Page 44: SARMa Manual Resource Efficiency

42�|�P a g e �

4.2.7� Water��

Water� is�a�major�component� in�all� surface�mining�operations.�Water� interacts�with�quarrying� either� as� surface� runoff� or� as� part� of� water� body� near� the� operation� or�even�in�the�operation�such�as�in�the�case�of�dredging.�Moreover,�in�areas�where�wa�ter�is�scare,�use�of�it�or�impacts�on�its�availability�by�the�quarry,�are�controversial.�

Water�quality�can�be�degraded�due�to�spills�(related�to�the�operation)�and�to�gradual�leakage�(e.g.�petroleum�products).�The�recommended�good�practice�is�to�avoid�water�contamination�and�to�control�the�quality�of�both�the�surface�and�the�ground�water�related�to�the�operation.��

4.2.8� Good�social�practice�

Identifying� stakeholders’�values,� interests,� goals�and� the� scale� at� which�they� apply,� is� the� first�step� in� resolving� the�complex� situations� that�impact� a� region’s� ability�to� maintain� and� secure�aggregates’�supply.�

Most�of�the�problems�between�an�operator�and�a�local�community�arise�when�there�is�an�attitude�of�confrontation�rather�than�co�operation.�In�some�situations,�particu�larly�in�areas�of�existing�dereliction,�it�can�be�demonstrated�that�there�are�significant�environmental� improvements� as� a� result� of� the�operation� and� subsequent� restora�tion.� An� after�use� which� is� of� benefit� to� the� community� is� also� an� opportunity� to�compensate�the�community�for�any�disturbance�it�suffers�during�the�operation�of�a�

Recommendations:� Monitor�the�quality�of�both�surface�and�ground�waters;��

Set�up�water�quality�measurement�stations�and�run�continuous�measurements;���

Use�water�quality�protection�structures�(e.g.�impermeable�geotex�tiles�to�cover�the�equipment�maintenance�area)�to�avoid�potential�contamination�of�ground�waters,�and

Conduct�hydro�geological�studies�to�monitor�changes�in�water�quality.

Page 45: SARMa Manual Resource Efficiency

P a g e |�43�

site.�Social�acceptance�is�decisive�for�the�smooth�operation�of�quarrying�activities�and�should�be�acquired�as�early�as�possible�during�the�planning�stage.�

4.2.9� Restoration��The� restoration� of� the�affected� area� and� its�rehabilitation� is� a� proce�dure� that� starts� even�before� opening� of� a�quarry� and� extends� to�the� post�closure� period.��This� is� a� very� important�phase� since� public� per�

ception�of�the�quarry�operation�usually�focuses�on�the�restoration�plans.�The�success�of�any�restoration�scheme�depends�on�good�planning,�consultation�with�all�relevant�stakeholders� and� realistic�objectives� and�goals.� It� is� a� complex�operation�which� re�quires�multidisciplinary�skills,�flexibility�and�creativity.�

The�restoration�of�a�quarry/mine�in�the�past�was�based�on�the�traditional�approach:�“First�we�mine�and�then�we�restore”.�Today�an�integrated�approach�is�applied:�“First�we�develop�the�restoration�plan�and�then�we�mine”.�

Restoration�plans�should�be�designed�so�as�to�return�the�sites,�after�closure�into�an�aesthetic�balance�with�the�surrounding�area.�In�addition,�properly�restored�quarries�have� an� added� value� compared� to� quarries� left�without� restoration.� In� Croatia� for�example,�an�operating�company�has�prepared�a�closure�plan�for�the�transition�from�

Recommendations:� Ensure�social�acceptance�even�from�the�planning�stage;�

Consider�and�respect�the�local�communities’�needs.�Inform�and�educate� local�stakeholders.�Engage�them�in�a�constructive�dia�logue;�

Increase� and� sustain� communication� with� local� stakeholders�through,�e.g.�a�series�of�meetings,�workshops,�leaflets,�listening�sessions�and�posters;�

Understand� the� prior� use� of� footpaths� by� people� and�wildlife�and�retain�existing�facilities�as�far�as�possible,�and�

Offer/provide�compensatory�measures�where�the�impact�is�ex�cessive.�

Page 46: SARMa Manual Resource Efficiency

44�|�P a g e �

quarrying�activities�towards�an�ornithological�reserve�which�will�be�part�of�the�Natura�2000� network.� [Source:� Activity� 3.2�SSM� model� sites:� Sava� River� (Trstenik)� case� study�the�Zagreba�ka�county��Croatia]�

Habitat� creation� and� enhancement� can� never� compensate� for� the� loss� of� valuable�semi�natural�habitats.��However,�by�creating�a�range�of�habitats�on�properly�restored�quarries,� the� industry� can�make�a� significant� contribution� to�national,� regional� and�most�importantly�local�good�practice�targets.�

��

Recommendations:�

Adopt� a� balanced� approach� between� nature� conservation� and�extraction�activities;�

Start�restoration�from�the�beginning�of�an�operation�because�it�makes�the�process�easier�and�more�effective;��

Discuss�restoration�plans�prior�implementation�with�local�stake�holders�and�follow�the�plans;�

Adjust� the� restoration�plan� in�advance�according� to� the�poten�tial�subsequent�use�of�the�quarry�site�after�closure�(if�specified�in�the�local�development�plans,�in�cooperation�with�the�local�au�thorities�and�communities);�

Create�new�facilities,�when�restoration�plan�is�related�to�change�in� land� use� (lakes� in� cases� of� deep� quarries�with� impermeable�bottoms�or�sports�facilities�or�recreational�parks�or�wetlands);�

Restore�the�natural�features�(e.g.�streams,�etc);�

Restore� the� degraded� land� by� utilizing� either� the� topsoil� re�moved�and�stored�during�the�initial�development�of�the�quarry�or�even�topsoil�from�other�areas;�

Develop�plant�nurseries�during�the�life�time�of�the�quarry�to�fa�cilitate�the�restoration�phase�with�local�species;�

Ensure�that�plantation�of�suitable�species�is�applied,�and�

Do�not�allow�any�residual�contamination.�

Page 47: SARMa Manual Resource Efficiency

P a g e |�45�

��������

5.� Key�recommendations�to�local�authorities�and�communities�

Determination� of� local� aggregate� needs� and� early�land�planning�by�the�local�authorities�is�of�great�im�portance� in� order� to� achieve� sustainable�manage�ment� of� the� potential� resources and� sustainable�supply�mix.� Raising� awareness� on� the� potential� of�recycling�will�also�enhance�aggregates�resource�ef�ficiency.� The� local� community� can�exercise� consid�erable� influence� over� decision�making� authorities,�if�knowledge�and�awareness�of�public�on�effects�of�Quarrying� is� increased.� Use� of� Life� Cycle� Assess�ment�based�tools�are�recommended�to�be�used�by�local�authorities’�technical�experts�in�order�to�iden�tify�and�quantify� the�environmental� loads� involved�in�aggregates�production.

Page 48: SARMa Manual Resource Efficiency

46�|�P a g e �

5.1� Develop�local�plans��

A�set�of�laws�regulating�Quarrying�exists�in�all�SEE�countries.�However,�national/�re�gional�mineral�planning�policy� is�not�equally�developed� in�these�countries�and�gen�eral�strategy�documents�are�rather�the�case�than�a�specific�policy.�The�planning�re�sponsibility�may�be�accomplished�at�state�level�or�local�level,�depending�on�the�rate�of�decentralisation�of�each�country.�[Source:�Synthesis�Report,�Work�Package�4,�Action�2�–�Providing� a� Sustainable� Supply� Mix� of� Aggregates:� State�of�the�art� in� South�East� Europe.�http://www.sarmaproject.eu/]��

In�any�case,�state�level�authorities�should�take�into�account�the�opinions�of�local�au�thorities�when�aggregates�extraction�priority�zones�are�planned.�

Access�to�land�is�of�utmost�importance�for�the�aggregates�sector.�Access�is�a�matter�of�land�use�planning�and�management�policy/legislation.�In�some�SEE�countries�pub�lic�hearing�is�prescribed�in�their�mining�acts,�and/or�during�the�discussions�of�land�use�plans.� Almost� all� countries� keep� a� national� or� regional� inventory� on� aggregate� re�serves�and�resources,�usually�as�a�segment�of�the�national/regional�minerals� inven�tory.�However,�the�resources�inventories�are�not�always�updated�regularly�or�in�digi�tal� format� in� many� countries.� The� resource� inventory� is� strong� in� those� countries�where�land�use�planning�takes�aggregates�into�account.�Inventories�on�mining�waste�volumes�are�rather�rare.�[Source:�“Synthesis�report�on�legislation�and�regulatory�framework�related� to� sustainable� aggregate� resources� management� in� selected� South� East� European�countries”,�SARMa�]�

The�planning�process�at�the�local�level�concerning�aggregate�resources�management�and�supply�is�immature�to�varying�degrees�in�many�SEE�countries,�though�the�estima�tion�of�local�/�regional�needs�for�aggregates�by�local�authorities�is�necessary�in�order�to�plan�well�in�advance�how�to�cover�these�needs.�The�compilation�of�land�use�maps�including�the�existing�and�potential�aggregate�resources�may�constitute�a�sound�basis�for� the� sustainable�management� of� these� resources.� Therefore,� local� communities�should�be�involved�from�the�beginning�in�the�land�use�planning�processes.�

Recommendations:� Determine�and�estimate�local�needs�for�aggregates�and�develop�timely�plans�on�how�to�meet�these�needs;�

Prepare�land�use�maps�and�schedules�to�inform�local�communi�ties� in�order� to� avoid�unjustified�opposition� and� to�ensure� the�required�aggregates�supply,�and�

Ensure� the�communities�are�aware�of� the� local�minerals�plans,�and�the�availability�of�and�requirement�for�mineral�resources.�

Page 49: SARMa Manual Resource Efficiency

P a g e |�47�

5.2� Increase�knowledge�and�awareness���Local�communities�can�be�affected�by�all�the�potential�impacts�discussed�in�chapter�3�of�the�Manual.�The�cumulative�effect�of�a�number�of�impacts�on�a�person�or�commu�nity�can�be�very�significant.��

Increased�public�knowledge�and�awareness�of�the�environmental,�economic�and�so�cial� effects� of�mineral� development�means� that:� the� local� community� can� exercise�considerable�influence�over�decision�making�authorities�in�various�ways.�

Further�to�the�above,�local�authorities�and�communities�should�be�prepared�for�the�post�closure�phase�of�quarries.�This�means�that�they�must�examine�and�compare�al�ternative�choices�for�the�future�use�of�the�exhausted�quarries’�area,�at�an�early�stage.�They�should�also�request�from�the�quarry�operators�to�develop�comprehensive�resto�ration�plans�and�communicate�these�plans�to�local�communities.�

5.3� Prevent�illegal�quarrying�

The� state� controlling� systems� need� to� be� improved� and� the� permitting� processes�need� to� be� simplified� in� order� to� prevent� illegal� quarrying� activities.� In� some� SEE�countries�the�enforcement�of�very�high�penalties�for�illegal�operators,�in�combination�with�intensified�inspections�by�the�competent�authorities,�has�resulted�in�a�rapid�de�

Recommendations:� Examine� the� overall� interests� of� the� area� such� as� employment�aspects�and�balance�the�benefits�carefully�with�the�adverse�ef�fects�from�the�quarry�activity;�

Bridge� communication� gap� between� quarry� operators� and�community;�sustain�and�facilitate�communication;�

Encourage�community�consultation�and�involvement;�

Consider� the� need� to� discuss� with� the� operator� the� planning�conditions� regarding:� i)� limit� levels�of�vibration,�noise�and�dust�emissions;�ii)�routes�of�transport,�and�iii)�monitoring�measures;�

Discuss�with�local�communities�and�determine,�at�an�early�stage,�the�subsequent�use�of�the�quarry�site�after�closure.��

Try�to�be�objectively�informed�before�making�judgments,�or�ex�pressing�vigorously�complaints;�

Try�to�co�operate�and�not�be�biased,�and� Examine�the�potential�for�compensation�measures.�

Page 50: SARMa Manual Resource Efficiency

48�|�P a g e �

crease�in�the�production�of�aggregates�from�illegal�sources.�Illegal�quarrying�may�also�be�discouraged� if�a�certificate�on�the�origin�of�the�mineral�raw�material�used�by�ei�ther� public� beneficiaries� or� private� constructors� is� needed.� [Source:� Activity� 3.2�SSM�model�sites:�Sava�River�(Trstenik)�case�study�the�Zagreba�ka�county�–Croatia]

Given�the�fact�that�there�are�inadequate�registries�of�quarry�operations�in�many�SEE�countries,�it�is�foreseen�that�the�compilation�of�relevant�dynamic�data�bases,�that�are�regularly�updated,�could�contribute�to�the�prevention�of�the�illegal�activities.�

The�national,�regional�and�local�authorities�should�combine�efforts�towards�the�pre�vention� of� illegal� activities.� These� efforts� can� be�more� effective� if� the� appropriate�monitoring�tools�are�established.��

The�application�of�modern�airborne�techniques�for�surveillance�(accompanied�by�on�site�inspections)�may�offer�to�authorities�a�valuable�tool�for�monitoring�legal�and�ille�gal�quarrying�activities.�Such�a�technique�was�demonstrated�within�the�SARMa�pro�ject,�through�the�Taro�River�case�study�(Italy),�which�is�based�on�a�Laser�Imaging�De�tection� and� Ranging� system� (LIDAR).� The� method� allows� checking� both� small� and�wide� areas� and� is� carried� out� by� a� plane� flight� over� the� areas� under� inspection.�[Source:� Pilot� site� report� –� Illegal� quarrying.� Case� study:� Taro� River� alluvial� fan� (Province� of�Parma,�Italy)]��

Local�communities�can�and�should�play�an�important�role�in�the�prevention�of�illegal�quarrying,�by�contributing�in�the�monitoring�of�illegal�operations.���

5.4� Promote�recycling�

One�of�the�main�challenges�of�SARMa�project�was�to�promote�recycling�and�encour�age�Sustainable�Supply�Mix�(SSM)�policies.�From�the�survey�conducted,� it�was�dem�onstrated�that,�the�majority�of�SEE�countries�haven’t�started�yet�considering�all�po�

Recommendations:� Develop,� sustain� and� use� efficient� monitoring� processes� and�tools�to�control�illegal�activities;��

Develop� and� sustain� the� social� dialogue� and� communication�channels�to�facilitate�the�efficient�monitoring�of�illegal�activities;��

Simplify�and�speed�up�permitting�processes;��

Enforce�high�penalties�to�illegal�operators;� Restore�abandoned�quarries;��� Establish�a�certificate�on�the�origin�of�the�sold�aggregates,�and� Contribute�to�the�compilation�of�registries�on�Quarrying.�

Page 51: SARMa Manual Resource Efficiency

P a g e |�49�

tential�sources,�as�far�as�the�production�of�aggregates�from�recycling�activities�is�con�cerned.�Also�the�data�required�for�the�management�of�the�relevant�resources�are�not�adequate.���

5.5� Introduce�new�tools�in�decision�making�

Life� Cycle� Thinking� (LCT)� and� Life� Cycle� Assessment� (LCA)� are� the� scientific� ap�proaches� behind�modern� environmental� policies� and� business� decision� support� re�lated�to�Sustainable�Consumption�and�Production�(SCP).�Life�Cycle�Assessment�is�in�creasingly� being� used�worldwide� as� a� comprehensive� tool� to� understand� the� envi�ronmental�implications�of�products/goods�from�the�extraction�of�resources,�through�the�production,�use,�and�recycling,�up�to�the�disposal�of�waste.�[Source:�Life�Cycle�As�sessment�(LCA)�Guidelines;�Activity�3.3�(Recycling).�http://www.sarmaproject.eu/]�

LCA�studies�help� to�avoid� resolving�one�environmental�problem�while�creating�oth�ers.� It� is�therefore�a�vital�and�powerful�decision�support�tool,�complementing�other�methods.�

Recommendations:� Consider�recycling�activities�as�potential�sources�for�aggregates�production;�

Increase�knowledge�on�the�potential�of�recycling�mining�and�in�dustrial�waste�for�the�production�of�aggregates;�

Take�into�account�recycling�of�aggregates�from�Construction�and�Demolition�Waste�(C&DW) to�complement�the�local�aggregates�supply,�and�

Consider� installing� recycling� plants� in� nearby� abandoned� quar�ries,�when�assessing�their�post�–�closure�use.�

Recommendations:� Adopt� a� Life�Cycle� Thinking� and�approach� for�decision�making,�and�

Consider�the�use�of�LCA�tools�to�enhance�sustainable�production�and�recycling�of�aggregates.�

Page 52: SARMa Manual Resource Efficiency

50�|�P a g e �

6.�� Selected�terms�and�definitions��Aggregate:�Granular� or� particulate� material,� either� naturally� occurring� (sand� and� gravel)� or�produced�by�crushing�(crushed�rock)�which,�when�brought�together�in�a�bound�(with�cement,�lime� or� bitumen)� or� unbound� condition,� is� used� in� construction� to� form� part� or�whole� of� a�building�or�civil�engineering�structure�[Source:�SARM��glossary]�

Best�practices:�Methods�and�techniques�that�have�consistently�shown�results�superior�to�those�achieved�with�other�means,�and�which�are�used�as�benchmarks,�i.e.,�standards�against�which�actions�are�judged.�There�is,�however,�no�practice�that�is�best�for�everyone�or�in�every�situa�tion,�and�no�best�practice�remains�best�for�very�long�as�people�keep�on�finding�better�ways�of�doing�things.�[Source:�SARM��glossary]�

Extraction:�Extraction� involves�removing�material� from�the�ground�and�delivering� it�to�a�pro�duction�plant�in�a�form�suitable�for�processing;�it�is�also�referred�to�mining�as�well�as�quarrying�[Source:�SARM��glossary]�

Extractive�waste� (or�mining�waste):�Waste� resulting� from�the�prospecting,�extraction,� treat�ment�and�storage�of�mineral�resources�and�the�working�of�quarries�[Source:�SARM��glossary]�

Illegal�quarrying:�Illegal�quarrying�are�all�activities�related�to�quarry�extraction�that�are�carried�out�without�all�mandatory�permissions�or�outside�of�national�financial�or�taxation�regulations.�[Source:�SARM��glossary]��

Land�use�planning:�An�activity�generally�conducted�by�a�local�government,�that�provides�public�and�private�land�use�recommendations�consistent�with�community�policies�and�public�prefer�ences.�Generally�is�used�to�guide�decisions�on�zoning.�[Source:�SARM��glossary]�

Life� cycle� analysis:� Life�cycle� assessment� (LCA)� is� a� process� of� evaluating� the� effects� that� a�product�has�on�the�environment�over�the�entire�period�of�its�life�thereby�increasing�resource�use�efficiency�and�decreasing� liabilities.� It�can�be�used�to�study�the�environmental� impact�of�either�a�product�or�the�function�the�product�is�designed�to�perform.�LCA�is�commonly�referred�to�as�a�"cradle�to�grave"�analysis.�LCA's�key�elements�are:�(1)� identify�/�quantify�the�environ�mental�loads�involved;�e.g.�the�energy�and�raw�materials�consumed,�the�emissions�and�wastes�generated;�(2)�evaluate�the�potential�environmental�impacts�of�these�loads;�and�(3)�assess�the�options�available�for�reducing�these�environmental�impacts.�[Source:�SARM��glossary]�

Manufactured� aggregate:� Aggregate� produced� from� industrial� activities� as� processing� or� re�processing�of�waste,�by�products�and�residues�[Source:�SARM��glossary]�

Mitigation:�Measures�aimed�at�minimising�or�even�cancelling�the�negative�impact�of�a�plan�or�project,�during�or�after�its�completion�[Source:�EC�Guidance,�2010]�

Monitoring:� Collection� and� analysis� of� repeated�observations�or�measurements,� to� evaluate�changes�in�condition�and�progress�toward�meeting�a�management�objective�[Source:�EC�Guid�ance,�2010]�

Natural�resource:�Asset�or�material�that�constitutes�the�natural�capital�(inorganic�and�organic�material)�of�a�nation.�Some�types�of�natural�resources,�such�as�minerals,�require�application�of�capital�and�human�resources�(mental�and�physical�labor)�to�be�exploited�(extracted,�processed,�refined)� for� the� realization�of� their� economic� value.�Other�natural� resources,� such�as� a� cave�system,�may�be�assigned�economic�or�non�economic�value�based�on�their�existence,�without�the�application�of�human�and�physical�capital.�[Source:�SARM��glossary]�

Pit:�An�open�surface�working�area�from�which�a�mineral�resource�is�extracted,�in�this�case�sand�and�gravel�[Source:�SARM��glossary]�

Page 53: SARMa Manual Resource Efficiency

P a g e |�51�

Quarry:�A�quarry�is�any�surface�working�where�aggregates�[minerals]�are�extracted.�It�may�also�be�referred�to�as�a�surface�mine,�open�pit�or�opencast�mine;�as�opposed�to�a�mine,�which� is�defined�in�the�UK�as�an�underground�working.�[Source:�SARM��glossary]�

Rehabilitation:�The�process�of�converting�derelict� land� to�usable� land�and�may� include�engi�neering�as�well�as�ecological�solutions.�The�restoration�of�natural�habitats�is�often�included�as�part�of�the�site�closure�and�rehabilitation�process.�[Source:�EC�Guidance,�2010]��

Resource�efficiency:�A�practice�in�which�the�primary�consideration�of�material�use�begins�with�the� concept� of� "Reduce� �� Reuse� �� Recycle� �� Repair"� stated� in� descending� order� of� priority�[Source:�SARM��glossary]�

Resource:�A� ‘Mineral�Resource’� is�a�concentration�or�occurrence�of�material�of�economic� in�terest� in�or�on�the�Earth’s�crust� in�such�form,�quality�and�quantity�that�there�are�reasonable�prospects� for� eventual� economic� extraction.� The� location,� quantity,� grade,� continuity� and�other� geological� characteristics� of� a�Mineral� Resource� are� known,� estimated� or� interpreted�from�specific�geological�evidence�and�knowledge.�Mineral�Resources�are�subdivided,� in�order�of� increasing� geological� confidence,� into� Inferred,� Indicated� and�Measured� categories� (Pan�European�Code�for�Reporting�of�Exploration�Results,�Mineral�Resources�and�Reserves,�2008).�[Source:�EC�Guidance,�2010]�

Restoration:�Action� taken�at�a� site� following�anthropogenic�degradation�or�deterioration,� to�restore�or�enhance�its�ecological�value.�In�this�guidance�document�is�often�used�for�rehabilita�tion�that� is�guided�by�ecological�principles�and�promotes�the�recovery�of�ecological� integrity;�reinstatement� of� the� original� (pre�mining)� ecosystem� in� all� its� structural� and� functional� as�pects.�[Source:�EC�Guidance,�2010]�

Re�use:�The� use� of� unwanted�materials� in� another� application�without� significant� additional�processing.�It�also�applies�to�reuse�of�water�in�quarry�plant.�[Source:�EC�Guidance,�2010]�

SARM� (Sustainable� Aggregates� Resource� Management):� Sustainable� Aggregates� Resource�Management� is�efficient,� low�socio�environmental� impact�quarrying�and�waste�management�[Source:�SARM��glossary]�

Secondary�aggregates:�Aggregates�which�originates�as�a�waste�of�[other�quarrying�and]�mining�operations,�or�from�industrial�processes�(e.g.�colliery�waste�or�mine�stone,�blast�furnace�slag,�power�station�ash,�china�clay�sand,�slate�waste,�demolition/construction�wastes�including�road�planning’s),� but� excluding� chalk� and� clay/shale� worked� primarily� for� aggregate� purposes.�[Source:�SARM��glossary]��

SSM�–�Sustainable�Supply�Mix:�Sustainable�Supply�Mix�uses�multiple�sources,� including�recy�cled�wastes�and�industrial�by�products�(slag)�that�together�maximize�net�benefits�of�aggregate�supply�across�generations�[Source:�SARM��glossary]��

Stakeholders:�People�or�organisations�that�will�be�affected�by,�or�will�influence�a�programme,�project�or�action�[Source:�EC�Guidance,�2010]�

Sustainable�Development:�A�key�objective�of�sustainable�development� is�the�need�to�secure�an�adequate�supply�of�minerals�to�meet�economic�needs,�whilst�minimising�the�potential�ad�verse�effects�of�mineral�extraction�on�the�environment.�[Source:�SARM��glossary]�

Waste:�Waste�refers�to�materials�that�are�not�prime�products�(that�is,�products�produced�for�the�market)� for�which�the�generator�has�no�further�use� in�terms�of�his/her�own�purposes�of��production,� transformation�or�consumption,�and�of�which�he/she�wants� to�dispose.� [Source:�SARM��glossary]� �

Page 54: SARMa Manual Resource Efficiency

52�|�P a g e �

7.�� References��Agioutantis,� Z.,� Maurigiannakis,� S.,� Athousaki,� A.,� 2011:� “Synthesis� report� of� baseline� study�

reports�of�SARMa�model�sites;�Activity�3.1.”,�http://www.sarmaproject.eu/;�

Blengini,�G.�A.,�Garbarino,�E.,�2011:�“Synthesis�report�of�baseline�study�reports�of�SARMa�mo�del�sites;�Activity�3.3�(Recycling)”.�http://www.sarmaproject.eu/;�

Blengini,�G.�A.,�Garbarino,�E.,�2011:�“Life�Cycle�Assessment�(LCA)�Guidelines�to�be�used�in�the�SARMa�Project.�Definition�of� a� common�methodology� to�boost� use�of� LCA� tools� in� sus�tainable�production�and� recycling�of� aggregates”,�Romania�Emilia�Region,� Politecnico�di�Torino,�http://www.sarmaproject.eu/;�

Bruntland,�G.�(ed.),�(1987):�"Our�common�future:�The�World�Commission�on�Environment�and�Development",�Oxford,�Oxford�University�Press;�

Cibin,�U.,�Furin�S.,�Ricciarelli�F.,�Rizzati�A.R.,�Romagnoli�M.,�Scappini�S.,�Segadelli�S.,�Boggio�P.,�Corradi� A.,� Pelosio� A.,� Ruffini� A.,� 2010:� “Pilot� site� report� of� Lanca� dei� Francesi,� Activity�3.1”,�http://www.sarmaproject.eu/;�

Cibin,�U.,�Cera,�M.C.,�Spotorno,�C.,�Furin,�S.,�Pelosio,�A.,�Romagnoli,�M.,�Rizzati,�A.R.,�Marasmi,�C.,�2011:�“Synthesis�Report,�Work�Package�4,�Action�2�–�Providing�a�Sustainable�Supply�Mix�of�Aggregates:�State�of�the�art�in�South�East�Europe”,�http://www.sarmaproject.eu/;�

Department� of� Mineral� Resources� and� Petroleum� Engineering,� University� of� Leoben,� 2010:�“Planning�policies�and�permitting�procedures�to�ensure�the�sustainable�supply�of�aggre�gates�in�Europe”,�Commissioned�by�UEPG;�

European� Commission,� 2010:� “Non�energy� mineral� extraction� and� Natura� 2000”� GUIDANCE�DOCUMENT� (EC�Guidance�on�undertaking�new�non�energy�extractive�activities� in�accor�dance�with�Natura�2000�requirements);�

Hamor,�T.,�2011:�“Synthesis�report�on�legislation�and�regulatory�framework�related�to�sustain�able� aggregate� resources� management� in� selected� South� East� European� countries”;�SARMa�report;�

Hatzilazaridou� K.,� Chalkiopoulou� F.,� Papantoni� H.,� 2010:� “Preparatory� site� report� of� Araxos�quarry;�Activity�3.1”,�http://www.sarmaproject.eu/;�

Langer,�W.�H.,� 2002:� “Managing�and�Protecting�Aggregate�Resources”,�Open�File�Report�02�415,�U.S.�Geological�Survey;�

Lekaj,�G.,�Mati,�S.,�Moisiu,�L..,�Plaku,�E.�“Study�report�of�SARM��case�study Bulqiza�Albania�(3.3�Recycling)”,�SARMa�report;�

Marinescu�M.,�2010:�Case�study�baseline�study�report�of�Revarsarea�quarry;�Activity�3.1� (Envi�ronmentally�Friendly�Practices).�http://www.sarmaproject.eu/;�

M�run�iu�M.,� Bindea,� G.,�Marica,� G.�S.,� Col�oi,� O.,�Munteanu,�M.,� 2011:� � “Synthesis� report� of�baseline�study�reports;�Activity�3.2�(Illegal�quarrying)”,�http://www.sarmaproject.eu/;�

Miko� S.,� Hasan� O.,� Kruk� B.,� 2010:� “Activity� 3.2�SSM�model� sites:� Sava� River� (Trstenik)� case�study�the�Zagreba�ka�county�–Croatia”,�SARMa�report;�

Simi�� V.,� Živanovi�� J.,� Belji�� �,� Životi�� D.,� Radivojevi� M.,� 2010:� “Preparatory� site� report� of�Kovilova�a�quarry;�Activity�3.1”,�http://www.sarmaproject.eu/;�

http://www.goodquarry.com/�

http://www.sarmaproject.eu/

Page 55: SARMa Manual Resource Efficiency
Page 56: SARMa Manual Resource Efficiency

SustainableAggregates ResourceM�nagementhttp://www.sarmaproject.eu�

� Limited�and�ineffective�communication�between�producers�and�relevant�stakeholders;�

� Extended�landscape�impact�and�limited�restoration;�

� Time�consuming�and�complicated�permitting�processes;�

� Deficient�and�inconsistent�monitoring�of�illegal�operations,�and�

� Incomplete�exploitation�of�potential�aggregates�resources�and�limited�recycling.�

KEY�ISSUES�

The�application�of�Sustainable�Aggregates�Resource�Management� ������������������������������and�Sustainable�Supply�Mix�practices�can�significantly�contribute�to� ����������������������������

the�sustainable�development�of�South�East�Europe�