rotational & rigid-body mechanics - utrecht university 3-4...kinetics of rotational motion 𝐢...

53
Rotational & Rigid-Body Mechanics Lectures 3+4

Upload: vophuc

Post on 10-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

Rotational & Rigid-Body Mechanics

Lectures 3+4

Page 2: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ So far: point objects moving through a trajectory.

β€’ Next: moving actual dimensional objects and rotating them.

2

Rotational Motion

Page 3: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ 𝐢 is the center of rotation.

β€’ 𝑃 a point on to the object.

β€’ π‘Ÿ is the distance vector 𝑃 βˆ’ 𝐢

β€’ π‘Ÿ = π‘Ÿ the distance between 𝐢 and 𝑃.β€’ Object rotates 𝑃

travels along a circular path

β€’ after βˆ†π‘‘, 𝑃 covered distance 𝑠, and angle πœƒ.

β€’ Unit-length axis of rotation: 𝑒.β€’ In this example, the Z axis going β€œout” from the screen.

β€’ Rotation: counterclockwise (right-hand rule).

3

Circular Motion - Definitions

𝐢𝑃

π‘Ÿ

𝑃

πœƒ

𝑠

Page 4: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ This angle πœƒ represents the rotation of the object:

πœƒ = 𝑠/π‘Ÿ

where 𝑠 is the arc length and π‘Ÿ the radiusβ€’ unit is radian (π‘Ÿπ‘Žπ‘‘)

β€’ 1 radian=angle for arc length 1 at a distance 1.

4

Angular Displacement

𝐢𝑃

π‘Ÿ

𝑃

πœƒ

𝑠

πœ”

𝑣

Page 5: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Angular velocity: the rate of change of the angular displacement:

πœ” =βˆ†πœƒ

βˆ†π‘‘=πœƒ 𝑑 + βˆ†π‘‘ βˆ’ πœƒ(𝑑)

βˆ†π‘‘

β€’ unit is π‘Ÿπ‘Žπ‘‘/𝑠.

β€’ The angular velocity vector is collinear with the rotation axis:

πœ” = πœ”π‘’

5

Angular Velocity

Page 6: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Angular acceleration: the rate of change of the angular velocity:

𝛼 =βˆ†πœ”

βˆ†π‘‘=πœ” 𝑑 + βˆ†π‘‘ βˆ’ πœ”(𝑑)

βˆ†π‘‘

β€’ Exactly like acceleration is to velocity in a trajectory.

β€’ unit is π‘Ÿπ‘Žπ‘‘/𝑠2

6

Angular Acceleration

Page 7: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Deferring velocity from position and acceleration:

πœ”(𝑑 + βˆ†π‘‘) = πœ”(𝑑) + π›Όβˆ†π‘‘

πœ” =πœ”(𝑑 + βˆ†π‘‘) + πœ”(𝑑)

2

βˆ†πœƒ = 1 2 πœ”(𝑑 + βˆ†π‘‘) + πœ”(𝑑) βˆ†π‘‘

βˆ†πœƒ = πœ”(𝑑)βˆ†π‘‘ + 1 2𝛼 βˆ†π‘‘2

πœ”(𝑑 + βˆ†π‘‘)2 = πœ”(𝑑)2 + 2π›Όβˆ†πœƒ

7

Equations of Motion

Page 8: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The centripetal force creates curved motion.

β€’ Orthogonal to the velocity of the object.β€’ Object is in orbit.

β€’ Constant force circular rotation with constant tangential velocity.β€’ Why?

8

Kinetics of Rotational Motion

Page 9: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

𝐢 𝑃(𝑑)

𝑃(𝑑 + βˆ†π‘‘)

𝑇(𝑑)

𝑉(𝑑)

β€’ Every point on a rigid body moves with the same angularvelocity.

β€’ Different points on a rigid body can have different tangential velocities.β€’ Different radii

9

Tangential and Angular Velocities

Page 10: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Angular velocity vector: direction of rotation axis

β€’ Tangential velocity vector: direction of movement direction

β€’ Relation: 𝑣 = πœ” Γ— π‘Ÿ

Or:

πœ” = π‘Ÿ Γ— 𝑣

π‘Ÿ2

β€’ Note that 𝑣 = πœ” βˆ— π‘Ÿ (abs. values), due to 𝑠 = πœƒ βˆ— π‘Ÿ.β€’ Only the tangential part of any velocity matters for rotation!

10

Tangential Velocity

𝐢𝑃

π‘Ÿ

𝑃

πœƒ

𝑠

πœ”

𝑣

Page 11: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Tangential acceleration defined the same way

π‘Ž = 𝛼 βˆ— π‘Ÿ

where 𝛼 is the angular acceleration.

β€’ Similarly to the velocity equation 𝑣 = πœ” βˆ— π‘Ÿ

11

Tangential Acceleration

Page 12: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The centripetal acceleration, orthogonal to the velocity (=towards the axis of rotation), drives the rotational movement:

π‘Žπ‘› =𝑣𝑑2

π‘Ÿ= π‘Ÿπœ”2

β€’ What is the centrifugal force?

12

Centripetal Acceleration

Page 13: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

Rigid-Body Kinematicsβ€’ Rigid bodies have dimensions, as opposed to single points.

β€’ Relative distances between all points are invariant.

β€’ Movement can be decomposed into two components:β€’ Linear trajectory of any single points

β€’ Relative rotation around the point

β€’ Free body movement: around the center of mass (COM).

Page 14: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The measure of the amount of matter in the volume of an object:

π‘š = 𝑉

𝜌 𝑑𝑉

where 𝜌 is the density at each location in the object volume 𝑉.

β€’ Equivalently: a measure of resistance to motion or change in motion.

14

Mass

Page 15: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ For a 3D object, mass is the integral over its volume:

π‘š = 𝜌(π‘₯, 𝑦, 𝑧) 𝑑π‘₯ 𝑑𝑦 𝑑𝑧

β€’ For uniform density objects (simple rigid bodies):π‘š = 𝜌 βˆ— 𝑉

where 𝜌 is the density of the object and 𝑉 is its volume.

15

Mass

Page 16: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The center of mass (COM) is the point at which all the mass can be considered to be β€˜concentrated’‒ obtained from the first moment, i.e. mass times distance.

β€’ point of β€˜balance’ of the object

β€’ if uniform density, COM is also the centroid

16

Center of Mass

COM

Page 17: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Coordinate of the COM:

𝐢𝑂𝑀 =1

π‘š 𝑉

𝜌 𝑝 βˆ— 𝑝 𝑑𝑉

where 𝑝 is the position at each location in 𝑉.

β€’ For a set of bodies:

𝐢𝑂𝑀 =1

π‘š

𝑖=1

𝑛

π‘šπ‘–π‘π‘–

where π‘šπ‘– is the mass of each COM 𝑝𝑖 in every body.

17

Center of Mass

Page 18: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Example for a body made of two spheres in 1D

π‘₯𝐢𝑂𝑀 =π‘š1π‘₯1 +π‘š2π‘₯2π‘š1 +π‘š2

18

Center of Mass

COMπ’ŽπŸ

π’ŽπŸ

π’™πŸ

π’™πŸ

𝒙π‘ͺ𝑢𝑴

Page 19: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Quite easy to determine for primitive shapes

β€’ But what about complex surface based models?

19

Center of Mass

Page 20: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Remember linear momentum: 𝑝 = π‘š 𝑣.

β€’ Rotational motion also produces angular momentum of a any point on the object about the center of mass (or any relative point):

𝐿 =

𝑉

π‘Ÿ Γ— 𝑝 𝑑𝑉

β€’ unit is 𝑁 βˆ— π‘š βˆ— 𝑠

β€’ Angular momentum is a conserved quantity!β€’ Just like the linear momentum.

β€’ Remember: measured around a point.

20

Angular Momentum

Page 21: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Plugging in angular velocity:

π‘Ÿ Γ— 𝑝 = π‘Ÿ Γ— 𝑣 π‘‘π‘š = π‘Ÿ Γ— πœ” Γ— π‘Ÿ π‘‘π‘š

β€’ Integrating, we get:

𝐿 = 𝑀

π‘Ÿ Γ— πœ” Γ— π‘Ÿ π‘‘π‘š

β€’ Note: The angular momentum and the angular velocity are not generally collinear!

21

Angular Momentum

Page 22: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

Moment of Inertia

β€’ Defining: π‘Ÿ =π‘₯𝑦𝑧

and πœ” =πœ”π‘₯πœ”π‘¦πœ”π‘§

.

β€’ Remember that the angular velocity is constant throughout the body.

β€’ We get:

𝐿 =

𝑦2 + 𝑧2 πœ”π‘₯ βˆ’ π‘₯π‘¦πœ”π‘¦ βˆ’ π‘₯π‘§πœ”π‘§

βˆ’π‘¦π‘₯πœ”π‘₯ + 𝑧2 + π‘₯2 πœ”π‘¦ βˆ’ π‘¦π‘§πœ”π‘§

βˆ’π‘§π‘₯πœ”π‘₯ βˆ’ π‘§π‘¦πœ”π‘¦ + (π‘₯2 + 𝑦2)πœ”π‘§

π‘‘π‘š =

𝐼π‘₯π‘₯ βˆ’πΌπ‘₯𝑦 βˆ’πΌπ‘₯π‘§βˆ’πΌπ‘¦π‘₯ 𝐼𝑦𝑦 βˆ’πΌπ‘¦π‘§βˆ’πΌπ‘§π‘₯ βˆ’πΌπ‘§π‘¦ 𝐼𝑧𝑧

πœ”π‘₯πœ”π‘¦πœ”π‘§

.

Page 23: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The inertia tensor only depends on the geometry of the object and the relative point (often, COM):

𝐼π‘₯π‘₯ = 𝑦2 + 𝑧2 π‘‘π‘š

𝐼𝑦𝑦 = 𝑧2 + π‘₯2 π‘‘π‘š

𝐼𝑧𝑧 = π‘₯2 + 𝑦2 π‘‘π‘š

23

Momentum and Inertia

𝐼π‘₯𝑦 = 𝐼𝑦π‘₯ = π‘₯𝑦 π‘‘π‘š

𝐼π‘₯𝑧 = 𝐼𝑧π‘₯ = π‘₯𝑧 π‘‘π‘š

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = 𝑦𝑧 π‘‘π‘š

Page 24: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Finally the inertia can be expressed as the matrix

𝐼 =

𝑦2 + 𝑧2 π‘‘π‘š βˆ’ π‘₯𝑦 π‘‘π‘š βˆ’ π‘₯𝑧 π‘‘π‘š

βˆ’ π‘₯𝑦 π‘‘π‘š 𝑧2 + π‘₯2 π‘‘π‘š βˆ’ 𝑦𝑧 π‘‘π‘š

βˆ’ π‘₯𝑧 π‘‘π‘š βˆ’ 𝑦𝑧 π‘‘π‘š π‘₯2 + 𝑦2 π‘‘π‘š

β€’ The diagonal elements are called the (principal) moment of inertia

β€’ The off-diagonal elements are called products of inertia

24

The Inertia Tensor

Page 25: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Equivalently, we separate mass elements to density and volume elements:

𝐼 =

𝑉

𝜌 π‘₯, 𝑦, 𝑧

𝑦2 + 𝑧2 βˆ’π‘₯𝑦 βˆ’π‘₯𝑧

βˆ’π‘₯𝑦 𝑧2 + π‘₯2 βˆ’π‘¦π‘§

βˆ’π‘₯𝑧 βˆ’π‘¦π‘§ π‘₯2 + 𝑦2𝑑π‘₯ 𝑑𝑦 𝑑𝑧

β€’ The diagonal elements: distances to the respective principal axes.

β€’ The non-diagonal elements: products of the perpendicular distances to the respective planes.

25

The Inertia Tensor

Page 26: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The moment of inertia of a rigid body is a measure of how much the mass of the body is spread out.

β€’ A measure of the ability to resist change in rotational motion

β€’ Defined with respect to a specific rotation axis 𝑒.β€’ Through the central rotation origin point.

β€’ We have that: 𝐼𝑒 = 𝑉 π‘Ÿπ‘’2π‘‘π‘š

26

Moment of Inertia

Page 27: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

Moment and Tensor

β€’ We have: π‘Ÿπ‘’2 = 𝑒 Γ— π‘Ÿ 2 = 𝑒𝑇𝐼(π‘ž)𝑒 for any point π‘ž. (Remember:

π‘Ÿ is distance to origin).

β€’ Thus:

𝐼𝑒 = 𝑀 𝑒𝑇𝐼(π‘ž)𝑒 π‘‘π‘š=𝑒𝑇𝐼𝑒

β€’ The scalar angular momentum around the axis is then 𝐿𝑒 = πΌπ‘’πœ”.

β€’ Reducible to a planar problem (axis is the new z axis).

Page 28: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ For a mass point:𝐼 = π‘š βˆ— π‘Ÿπ‘’

2

β€’ For a collection of mass points:𝐼 = π‘–π‘šπ‘–π‘Ÿπ‘–

2

β€’ For a continuous mass distribution on the plane:𝐼 = 𝑀 π‘Ÿπ‘’

2 π‘‘π‘š

28

Moment of Inertia

π‘Ÿπ‘š

π‘Ÿ1π‘š1

π‘Ÿ2π‘š2

π‘Ÿ3 π‘š3

π‘Ÿπ‘‘π‘š

Page 29: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ For primitive shapes, the inertia can be expressed with the parameters of the shape

β€’ Illustration on a solid sphereβ€’ Calculating inertia by integration of thin discs along

one axis (e.g. 𝑧).

β€’ Surface equation: π‘₯2 + 𝑦2 + 𝑧2 = 𝑅2

29

Inertia of Primitive Shapes

Page 30: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Distance to axis of rotation is the radius of the disc at the cross section along 𝑧: π‘Ÿ2

= π‘₯2 + 𝑦2 = 𝑅2 βˆ’ 𝑧2.

β€’ Summing moments of inertia of small cylinders of inertia 𝐼𝑍 =π‘Ÿ2π‘š

2along the z-axis:

𝑑𝐼𝑍 =1

2π‘Ÿ2π‘‘π‘š =

1

2π‘Ÿ2πœŒπ‘‘π‘‰ =

1

2π‘Ÿ2πœŒπœ‹π‘Ÿ2𝑑𝑧

β€’ We get:

𝐼𝑍 =1

2πœŒπœ‹ βˆ’π‘…π‘…π‘Ÿ4𝑑𝑧 =

1

2πœŒπœ‹ βˆ’π‘…π‘…π‘…2 βˆ’ 𝑧2 2𝑑𝑧 =

1

2πœŒπœ‹ 𝑅4𝑧 βˆ’ 2𝑅2 𝑧3 3 + 𝑧5 5 βˆ’π‘…

𝑅

= πœŒπœ‹ 1 βˆ’ 2 3 + 1 5 𝑅5.

β€’ as π‘š = 𝜌 4 3 πœ‹π‘…3, we finally obtain: 𝐼𝑍 =2

5π‘šπ‘…2.

30

Inertia of Primitive Shapes

Page 31: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Solid sphere, radius π‘Ÿ and mass π‘š:

β€’ Hollow sphere, radius π‘Ÿ and mass π‘š:

31

Inertia of Primitive Shapes

𝐼 =

2

5π‘šπ‘Ÿ2 0 0

02

5π‘šπ‘Ÿ2 0

0 02

5π‘šπ‘Ÿ2

𝐼 =

2

3π‘šπ‘Ÿ2 0 0

02

3π‘šπ‘Ÿ2 0

0 02

3π‘šπ‘Ÿ2

xz

y

Page 32: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Solid ellipsoid, semi-axes π‘Ž, 𝑏, 𝑐 and mass π‘š:

β€’ Solid box, width 𝑀, height β„Ž, depth 𝑑 and mass π‘š:

32

Inertia of Primitive Shapes

𝐼 =

1

5π‘š(𝑏2+𝑐2) 0 0

01

5π‘š(π‘Ž2+𝑐2) 0

0 01

5π‘š(π‘Ž2+𝑏2)

𝐼 =

1

12π‘š(β„Ž2+𝑑2) 0 0

01

12π‘š(𝑀2+𝑑2) 0

0 01

12π‘š(𝑀2+β„Ž2)

xz

y

wd

h

Page 33: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Solid cylinder, radius π‘Ÿ, height β„Ž and mass π‘š:

β€’ Hollow cylinder, radius π‘Ÿ, height β„Ž and mass π‘š:

33

Inertia of Primitive Shapes

𝐼 =

1

12π‘š(3π‘Ÿ2+β„Ž2) 0 0

01

12π‘š(3π‘Ÿ2+β„Ž2) 0

0 01

2π‘šπ‘Ÿ2

𝐼 =

1

12π‘š(6π‘Ÿ2+β„Ž2) 0 0

01

12π‘š(6π‘Ÿ2+β„Ž2) 0

0 0 π‘šπ‘Ÿ2

h

h

Page 34: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The object does not necessarily rotate around the center of mass.β€’ Some point can be fixed!

β€’ parallel axis theorem:

𝐼𝑣 = 𝐼𝐢𝑂𝑀 +π‘šπ‘‘2

Where:

𝐼𝑣: inertia around axis 𝑒.

𝐼𝐢𝑂𝑀 inertia about a parallel axis through the COM.

𝑑 is the distance between the axes.

34

Parallel-Axis Theorem

Page 35: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ More generally, for point displacements: 𝑑π‘₯ , 𝑑𝑦 , 𝑑𝑧

35

Parallel-Axis Theorem

𝐼π‘₯π‘₯ = 𝑦2 + 𝑧2 π‘‘π‘š +π‘šπ‘‘π‘₯

2

𝐼𝑦𝑦 = 𝑧2 + π‘₯2 π‘‘π‘š +π‘šπ‘‘π‘¦

2

𝐼𝑧𝑧 = π‘₯2 + 𝑦2 π‘‘π‘š +π‘šπ‘‘π‘§

2

𝐼π‘₯𝑦 = π‘₯𝑦 π‘‘π‘š +π‘šπ‘‘π‘₯𝑑𝑦

𝐼π‘₯𝑧 = π‘₯𝑧 π‘‘π‘š +π‘šπ‘‘π‘₯𝑑𝑧

𝐼𝑦𝑧 = 𝑦𝑧 π‘‘π‘š +π‘šπ‘‘π‘¦π‘‘π‘§

Page 36: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ For a planar 2D object, the moment of inertia about an axis perpendicular to the plane is the sum of the moments of inertia of two perpendicular axes through the same point in the plane:

36

Perpendicular-Axis Theorem

π‘₯

𝑦𝑧

𝐼𝑧 = 𝐼π‘₯ + 𝐼𝑦for any planar object

π‘₯

𝑦𝑧

𝐼𝑧 = 2𝐼π‘₯ = 2𝐼𝑦for symmetrical objects

Page 37: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The inertia tensor is coordinate dependent.

β€’ If 𝑅 changes bases from body to world coordinate, the inertia tensor in world space is:

πΌπ‘€π‘œπ‘Ÿπ‘™π‘‘ = 𝑅 βˆ— πΌπ‘π‘œπ‘‘π‘¦ βˆ— 𝑅𝑇

37

Reference Frame

Page 38: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

Rigid-Body Dynamics

Page 39: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The torque is a force F applied at a distance r from a (held) center of mass.

β€’ Tangential part causes tangential acceleration:

𝐹𝑑 = π‘š βˆ— π‘Žπ‘‘β€’ Multiplying by the distance, the torque is:

𝜏 = 𝐹𝑑 βˆ— π‘Ÿ = π‘š βˆ— π‘Žπ‘‘ βˆ— π‘Ÿ

β€’ We know that π‘Žπ‘‘ = π‘Ÿ βˆ— 𝛼

β€’ So we have 𝜏 = π‘š βˆ— π‘Ÿ βˆ— 𝛼 βˆ— π‘Ÿ = π‘š βˆ— π‘Ÿ2 βˆ— 𝛼‒ unit is 𝑁 βˆ— π‘šβ€’ rotates an object about its axis of rotation through the center of mass.

39

Torque

Page 40: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ A force in general is not applied in the direction of the tangent.

β€’ The torque 𝜏 is then defined as: 𝜏 = π‘Ÿ Γ— 𝐹

β€’ The direction of the torque is perpendicular to both 𝐹 and π‘Ÿ.

40

Torque

Page 41: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ The law 𝐹 = π‘š βˆ— π‘Ž has an equivalent with inertia tensor and torque:

𝜏 = 𝐼 𝛼

β€’ Force linear acceleration

β€’ Torque angular acceleration

41

Newton’s Second Law

Page 42: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Translating energy formulas to rotational motion.

β€’ The rotational kinetic energy is defined as:

πΈπΎπ‘Ÿ =1

2πœ”π‘‡ βˆ— 𝐼 βˆ— πœ”

42

Rotational Kinetic Energy

Page 43: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Adding rotational kinetic energy

𝐸𝐾𝑑 𝑑 + βˆ†π‘‘ + 𝐸𝑃 𝑑 + βˆ†π‘‘ + πΈπΎπ‘Ÿ 𝑑 + βˆ†π‘‘= 𝐸𝐾𝑑 𝑑 + 𝐸𝑃 𝑑 + πΈπΎπ‘Ÿ(𝑑) + 𝐸𝑂

β€’ 𝐸𝐾𝑑 is the translational kinetic energy.

β€’ 𝐸𝑃 is the potential energy.

β€’ πΈπΎπ‘Ÿ is the rotational kinetic energy.

β€’ 𝐸𝑂 the β€œlost” energies (surface friction, air resistance etc.).

43

Conservation of Mechanical Energy

Page 44: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

Torque and Angular Momentum

β€’ Remember, in the linear case: 𝐹 =𝑑 𝑝

𝑑𝑑( 𝑝 is the linear momentum).

β€’ Similarly with torque and angular momentum:𝑑𝐿

𝑑𝑑=𝑑 π‘Ÿ

𝑑𝑑× 𝑝 + π‘Ÿ Γ—

𝑑 𝑝

𝑑𝑑= 𝑣 Γ— π‘š 𝑣 + π‘Ÿ Γ— 𝐹 = 0 + 𝜏

β€’ Force derivative of linear momentum.

β€’ Torque derivative of angular momentum.

Page 45: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ We may apply off-center forces for a very short amount of time.

β€’ Such β€˜angular’ impulse results in a change in angular momentum, i.e.in angular velocity:

πœβˆ†π‘‘ = βˆ†πΏ

45

Impulse

Page 46: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ A force can be applied anywhere on the object, producing also a rotational motion.

46

Rigid Body Forces

𝑭

π‘ͺ𝑢𝑴

𝒂

𝜢

Page 47: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Remember: the object moves linearly as the COM moves.

β€’ Rotation: the movement for all points relatively to the COM.

β€’ Total motion: sum of the two motions.

47

Position of An Object

𝑭

Page 48: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Most simple instance of a physics systemβ€’ Each object (body) is a particle

β€’ Each particle have forces acting upon itβ€’ Constant, e.g. gravity

β€’ Position dependent, e.g. force fields

β€’ Velocity dependent, e.g. drag forces

β€’ Event based, e.g. collision forces

β€’ Restrictive, e.g. joint constraint

β€’ So net force is a function 𝐹 π‘π‘œ, 𝑣, π‘Ž,π‘š, 𝑑, …

β€’ Discretization: e.g., 𝑉 𝑓 π‘ž π‘‘π‘š becomes a sum: 𝑖=1𝑛 𝑓 π‘žπ‘– π‘šπ‘–

48

Particle System

Page 49: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ Use the equations of motion to find the position of each particle at each frame.

β€’ At the start of each frame:β€’ Sum up all of the forces for each particle.

β€’ From these forces compute the acceleration.

β€’ Integrate into velocity and position.

β€’ Rigid body: all particles receive the same rotation and translation.

49

Particle System

Page 50: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ When an object consists of multiple primitive shapes:β€’ Calculate the individual inertia of each shape.β€’ Use parallel axis theorem to transform to inertia about an

axis through the COM of the object.β€’ Add the inertia matrices together.

50

Complex Objects

Page 51: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ A rigid body may not be free to move β€˜on its own’.

β€’ We wish to constrain its movement:β€’ wheels on a chair

β€’ human body parts

β€’ trigger of a gun

β€’ opening door

β€’ actually almost anything you can think of in a game...

51

Motion Constraints

Page 52: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ To describe how a body can move in space, specify its degrees of freedom (DOF):β€’ Translational

β€’ Rotational

52

Degree of freedom

Page 53: Rotational & Rigid-Body Mechanics - Utrecht University 3-4...Kinetics of Rotational Motion 𝐢 ( ) ( +βˆ† ) 𝑇( ) 𝑉( ) β€’Every point on a rigid body moves with the same angular

β€’ A kinematic pair is a connection between two bodies that imposes constraints on their relative movementβ€’ Lower pair, constraint on a point, line or plane:

β€’ Revolute pair, or hinged joint: 1 rotational DOF.

β€’ Prismatic joint, or slider: 1 translational DOF.

β€’ Screw pair: 1 coordinated rotation/translation DOF.

β€’ Cylindrical pair: 1 translational + 1 rotational DOF.

β€’ Spherical pair, or ball-and-socket joint: 3 rotational DOF.

β€’ Planar pair: 3 translational DOF.

β€’ Higher pair, constraint on a curve or surface.

53

Kinematic pair