ros and rns: key factors in goiter and thyroiditis. · ros : definition reactive oxygen species :...

38
ROS and RNS: key factors in ROS and RNS: key factors in goiter and goiter and thyroiditis thyroiditis . . A-C Gérard, Ph.D. Unité de Morphologie Expérimentale (MOEX) UCL Faculté de Médecine Bruxelles, Belgique

Upload: phamhanh

Post on 30-Aug-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

ROS and RNS: key factors in ROS and RNS: key factors in

goiter and goiter and thyroiditisthyroiditis..

A-C Gérard, Ph.D.

Unité de Morphologie Expérimentale (MOEX)UCL Faculté de MédecineBruxelles, Belgique

IntroductionIntroduction

Thyroid cell

ROS : definition

Reactive oxygen species : ROSReactive oxygen species : ROS

Superoxide anion O2�-

Hydrogen peroxide H2O2

Hydroxyl radical OH-

Reactive nitrogen species : RNSReactive nitrogen species : RNS

Nitric oxide NOProduced by NOSsMultiple functions

Peroxinitrite NOO-

Oxidative stress : OSOxidative stress : OS

Impaired balance between pro-and antioxidant

ROS in thyroid cells

In vitro

Basal ROS inhibition by NAC Basal ROS inhibition by NAC

Minimal oxidative load is required to maintain thyroid cell function

Minimal oxidative load is required to maintain thyroid cell function

Control NAC 0.0

0.5

1.0

1.5

2.0

2.5

*

Rel

ativ

e m

RN

Aex

pres

sion

DU

OX

/ ββ ββact

in

DUOXDUOX

Control NAC 0.0

0.5

1.0

*

Rel

ativ

e m

RN

Aex

pres

sion

TP

O/ ββ ββ

actin

TPOTPO

In vivo

DUOXDUOX

NACctrl

Basal ROS production Basal ROS production

Poncin et al, 2009, J Endocrinol 201:161-167

Protective mechanisms

Antioxidant systems present in thyroid cells:

- glutathione peroxidase

- SOD

- catalase

- thioredoxins, peroxiredoxins

CatalaseCatalase MnSODMnSOD PRDX5PRDX5

Gerard et al, 2005, Thyroid 15:205-209

Poncin et al, 2009, J Endocrinol 201:161-167

Goiter

Humans : multinodular goiterHumans : multinodular goiter

Iodine deficiency =

a global problem concerning large geographical areas

Euthyroid goiter not associated with thyroid autoimmunity or malignancy

Could result from an alternance of hyperplasia (iodine deficiency) and involution (iodine intake).

Animal models (rats and mice)Animal models (rats and mice) low iodine diet + goitrigen

Control Goiter

Imada et al, 1986, Cell Tissue Res 245:291-296

Oxidative stress in goiters

Increased oxidative stress in goiter: Likely due to H2O2 (not used for thyroid hormone synthesis)

HNEHNE

Not lethal : overproduced H2O2 may be reduced by intracellular defence mechanisms :

- Associated with increased anti-oxidant defences

0

10

20

30

40

*

*+

Cyc

linD

1 po

sitiv

e nu

clei

(%)

Ctrl

NAC 4d

ClO4

-

ClO4

-

+ NAC 4d

12d goiterctrl

ROS inhibition by NAC ROS inhibition by NAC

Oxidative load is absolutely required for thyroid cell

proliferation

Oxidative load is absolutely required for thyroid cell

proliferation

1. Goitrogenesis1. Goitrogenesis

2.Thyroiditis2.Thyroiditis

Thyroid heterogeneity : an adaptativemechanism

Important role for ROS in adaptation to iodine deficiency

Role of the immune context on thyroidcell function

Thyroid heterogeneity :

an adaptative mechanism

Thyroid heterogeneity :

an adaptative mechanism

Thyroid heterogenity

Echography

Clinical and anatomopathological aspectsClinical and anatomopathological aspects

Scintigraphy Surgical specimen

Microscopic aspectsMicroscopic aspects

Human Human Mice, autoradiography Mice, autoradiography

Active Hypofunctioning

Hot

Cold

Active

Active

Hypofunctioning

Active

HypofunctioningActive

hypofunctioning

TPOTPO DUOXDUOX PendrinPendrin

NISNIS rTSHrTSH

TgTgTg-ITg-I

Hypofunctioning

Active Active

Active

Active

Active

Hypofunctioning Hypofunctioning

Gerard et al, 2002 J Clin endocrinol Metab, 87:1291-1299

NOSIIINOSIII VEGFVEGF

Human, normal Human, normal

Mice, normal Mice, normal

hot

Relative volume of capillaries

Relative volume of capillaries

***

0

0.1

0.2

cold

A close relation exists between the thyroid cell function, the microcirculation and the expression of vasoactive factors, especially

NOSIII

A close relation exists between the thyroid cell function, the microcirculation and the expression of vasoactive factors, especially

NOSIII

Gerard et al, 2000 Eur J Endocrinol, 642:651-660

Gerard et al, 2002 J Clin endocrinol Metab, 87:1291-1299

TPOThOXspendrin

TSHr

NIS

TPO

pendrin

TSHr

NIS

TPO

pendrinThOXs

TSH+

trophic factors(paracrine/autocrine)

In case of increased needs?

Functional reserve?Functional reserve?

When stimulated by TSH, hypofunctioning follicles are re-activated:- Epithelium becomes thicker- Tg globules disappear- NOSIII is expressed- microcirculation is increased

When stimulated by TSH, hypofunctioning follicles are re-activated:- Epithelium becomes thicker- Tg globules disappear- NOSIII is expressed- microcirculation is increased

12d goiterctrl

NOSIIINOSIII

Gerard et al, 2000 Eur J Endocrinol, 642:651-660

Tg globulesTg globules

Gérard et al, 2004, Eur J Endocrinol150:73-80

Mechanisms underlying goiterdevelopment as an adaptation to environmental changes are

better understood

Mechanisms underlying goiterdevelopment as an adaptation to environmental changes are

better understood

Conclusion

Increase in thyroid vasculature and

thyroid blood flow

Increase in thyroid vasculature and

thyroid blood flowIodine deficiency : TSH-controlled growth

ECMECM

CrinopexyCrinopexy releaserelease

ECMECM

CrinopexyCrinopexy releaserelease

CrinopexyCrinopexy releaserelease

TGFTGFββ

FGFFGF

dilationdilation

ETETBB

ETETAA

constrictionconstriction

ETET

NOSIII

NOSIII

NONOdilationdilation

VEGFVEGF++

TPOThOXspendrin

TSHr

NIS

TPO

pendrin

VEGFR1VEGFR1

VEGFVEGF

++

VEGFR2VEGFR2

TSHr

NIS NONO

dilationdilation

NOSIII

Independentangiofollicular unitsIndependent

angiofollicular units

Close relationship between endothelial and follicular

cells

Close relationship between endothelial and follicular

cells

Control of OS Control of OS NO

ROS

NO

ROS

H2O2

Gerard et al, 2002 J Clin endocrinol Metab, 87:1291-1299 ; 2000 Eur J Endocrinol, 642:651-660; 2004, Eur J Endocrinol 150:73-80; 2003, J. Endocrinol. 177:269-277;2005, Thyroid 15:205-209

Important role for ROS in

adaptation to iodine

deficiency

Important role for ROS in

adaptation to iodine

deficiency

What happens during the early stages of goiter development?

What role is played by iodine deficiency?

2) Endothelial cell proliferation occurs very early, before epithelial cells

1) Increase in the thyroid blood flow and enlargement of the thyroid gland may occur without any changes in TSH levels

**

TP

O/ ββ ββ-actin1

2

3

0

Function

Goitrigen treatmentDay 0 Day 6 Day 12 Day 24

Tg-I

Until day 6 : no change

From day 12 :stimulation by TSH

Until day 6 : no change

From day 12 :stimulation by TSH

*

*

0.5

1.0

1.5

2.0

TS

H (

ng)

0

Goitrigen treatment (days)0 1 2 3 4 6 0 6 12 24

Gerard et al, 2008, Am J Pathol178:748-760

Day 0

31P

127I

Day 24Day 1

127I Detection by Nano-SIMS127I Detection by Nano-SIMS

Gerard et al, 2008, Am J Pathol 178:748-760

Thy

roid

blo

od fl

ow (

% o

f day

0)

0 4 8 12 16 20 24

75

100

125

150

175

200

225

Goitrigen treatment (days)

*

**

+

+

+

Vascularisation

2

2 TSH dependentTSH dependent

11 TSH independentTSH independent

Gerard et al, 2008, Am J Pathol 178:748-760

6 days

Day 12 Day 24

ctrl 6 12 24

*

*

*

+

Day 6Day 3 Day 4

Day 0 Day 1 Day 2

2

2

1

1

VEGF

0 1 2 3 4 6

1

2

3

4

5

6

7

8

9

10

**

*

Rel

ativ

e m

RN

Aex

pres

sion

VE

GF

/GA

PD

H

Goitrigen treatment (days)

Gerard et al, 2008, Am J Pathol178:748-760

2 TSH dependentTSH dependent

1 TSH independentTSH independent

Two phases of angiogenesis:

1

2

TSH independentTSH independent

TSH dependentTSH dependent

During goiter development:During goiter development:

mR

NA

exp

ress

ion

VE

GF

/act

in

ctrl 2 h 4 h 6 h0.0

0.5

1.0

1.5

2.0 *

ctrl 2 h 4 h 6 h0.00

0.05

0.10

0.15

0.20 *

*

Pro

tein

exp

ress

ion

VE

GF

/act

in

VEGF

actin

43 kDa

42 kDa

Role of iodide

Iodide deprivation is associated with increased VEGF-A synthesis and secretion

Iodide deprivation is associated with increased VEGF-A synthesis and secretion

Gerard et al, Am J Physiol EndocrinolMetab, 2009

VE

GF

(pg

/ml)

2h 4h 6h0

30

60

90

120

150

180

*+

*+

+

Control Without NaI5.0 µµµµm

ControlWithout NaI

5.0 µµµµm

5.0 µµµµm

5.0 µµµµm

131P 127I131P 127I

In vitro

What is the pathway linking iodide deficiency and VEGF-A synthesis?

What is the pathway linking iodide deficiency and VEGF-A synthesis?

HIF-1αααα protein detectionHIF-1αααα protein detection

120 kDa

42 kDa

HIF-1αααα

Actin

ctrl 2 h 4 h 6 h CoCl20

2

4

6

8

**

Pro

tein

exp

ress

ion

HIF

-1αα αα/

actin

ctrl 2 h 4 h 6 h CoCl20

2

4

6

8

**

ctrl 2 h 4 h 6 h CoCl20

2

4

6

8

**

Gerard et al, Am J Physiol EndocrionlMetab, 2009

Control 2h

10 µm

Without NaI 2h

25 µm

25 µm 25 µm

25 µm

ctrl 1h 2h 4h 6h DFO0

25

50

75

100

125

HIF

-1αα αα

cc (

pg/m

l)

*

*

*

HIF-1αααα mRNA detection HIF-1αααα mRNA detection

mR

NA

exp

ress

ion

HIF

-1αα αα/

actin

ctrl 2 h 4 h 6 h0.00.20.40.60.81.01.21.4

HIF-1αααα protein is stabilized by iodide

deficiency.

HIF-1αααα protein is stabilized by iodide

deficiency.

ROS production (DCFH-DA) ROS production (DCFH-DA)

Ctrl 2h

20 µm

20 µm

Ctrl 1h Without NaI1 h

20 µm

Without NaI2 h

20 µm

NAC - NAC +0.0

0.2

0.4

0.6

Pro

tein

exp

ress

ion

VE

GF

/act

in

*

NAC - NAC +0

2

4

6

8

Pro

tein

exp

ress

ion

HIF

-1αα αα/

actin

*

ROS inhibition by NAC ROS inhibition by NAC

Control Without NaI

NAC – NAC +0.00.51.01.52.02.5

mR

NA

exp

ress

ion

VE

GF

/act

in

*

ROS production is involved in the activation of the HIF-1/VEGF-A

pathway

ROS production is involved in the activation of the HIF-1/VEGF-A

pathway

Gerard et al, Am J PhysiolEndocrinolMetab, 2009

2 Na+

I-

HIF-1ββββ

HRE

DUOX

ROS

I-

VEGFmRNA

NIS

Endothelial cells

Thyrocyte

TPO

HIF-1αααα

Na+

II--

VEGF

angiogenesis

HIF-1ββββ

HIF-1αααα

1. Goitrogenesis1. Goitrogenesis

2.Thyroiditis2.Thyroiditis

Thyroid heterogeneity : an adaptativemechanism

Important role for ROS in adaptation to iodine deficiency

Role of the immune context on thyroidcell function

Role of immune context

on thyroid cell function

Role of immune context

on thyroid cell function

Hashimoto’s thyroiditis

Autoimmune disease characterized by:

- Inflammatory infiltration

- Progressive thyroid cell destruction

HypothyroidismHypothyroidism

Cytokine profile is highly variable:

- Prevalence of Th1 cytokines (IFNγγγγ, TNF-αααα,ββββ, IL-1αααα,ββββ, IL-2, PDGF)

- But also Th2 and Th3 cytokines

Highly variable outcomes:

- patients can recover from hypothyroidism towards euthyroidism

- alternating hypo- and hyperthyroidism

1) Are Th1 cytokines lethal for thyroid cells ?

2) Why is thyroiditis so fluctuating ?

Is it in relation with a variation in the production of pro- and anti inflammatory cytokines ?

1) Are Th1 cytokines lethal for thyroid cells ?

2) Why is thyroiditis so fluctuating ?

Is it in relation with a variation in the production of pro- and anti inflammatory cytokines ?

0

10

20

30

40

50

% r

ed

TSH - + +IL-1α/IFNγ - - +

Cell viability

The Th1 cytokines IL-1αααα and IFNγγγγ are not lethal for thyroid cells.

The Th1 cytokines IL-1αααα and IFNγγγγ are not lethal for thyroid cells.

TPOTPO DUOXDUOX

+ §+

Normal tissues

Gérard et al, 2006, Am J Physiol Endocrinol Metab291:E242-E253

TPOTPO

110 kDa

NS

0

1000

2000

3000

*����

°

Arb

itrar

y un

its/µ

g pr

ot

Graves’ disease

110 kDa

0

1500

3000

4500

6000

7500

9000

Arb

itary

units

/µgp

rot

Hot nodules

TSH - + + +IL-1α/IFNγ - - + +L-NAME - - - +

Gérard et al, 2006, Am J Physiol Endocrinol Metab291:E242-E253

TSH - + + +IL-1α/IFNγ - - + +L-NAME - - - +

Th1 Th2

TPOTPO

110 kDa

02468

1012

TP

O p

rote

inex

pres

sion

(arb

itrar

yun

its/µ

g pr

otei

n)

*+

IL-1αααα/IFNγγγγ - + +IL-4 - - +

ThyroglobulinThyroglobulin

01234

*

+

Tg

(ng

/ml)

5

IL-1αααα/IFNγ γ γ γ - + +IL-4 - - +

IL-10Th1 Th3

TPOTPO

IL-1αααα/IFNγγγγ - + +IL-10 - - +

0

5

10

15

20

**

TP

O p

rote

inex

pres

sion

(arb

itrar

yun

its/µ

g pr

otei

ns)

110 kDa

ThyroglobulinThyroglobulin

0102030405060

* *+T

g (n

g/m

l)

IL-1αααα/IFNγ γ γ γ - + +IL-10 - - +

IL-1αααα/IFNγγγγ - -IL-10 - +

Poncin et al, 2008, Endocrinology 149:1534-1542

IL-4

DUOXDUOX

Conclusions

- Do not induce cell death

- Alter TPO and DUOX expression

IL-1αααα/IFNγγγγ (Th1) cytokinesIL-1αααα/IFNγγγγ (Th1) cytokines

- Mediates partially the Th1 cytokine effects

NONO

- Blocks Th1 cytokine-induced inhibitory effects on TPO, DUOX and Tg

IL-4 (Th2) cytokineIL-4 (Th2) cytokine

- Inhibit thyroid cell function

- Do not prevent inhibitory effects of Th1 cytokines

IL-10, TGF-ββββ (Th3) cytokinesIL-10, TGF-ββββ (Th3) cytokines

Immune context may explain the clinical

variability of Hashimoto’s thyroiditis

Immune context may explain the clinical

variability of Hashimoto’s thyroiditis

Direct action of Th1 cytokines could impair

thyroid hormone synthesis

Direct action of Th1 cytokines could impair

thyroid hormone synthesis

General conclusions

- Oxidative stress/load is strictly required for thyroid cell function and

proliferation.

- Mechanisms underlying goiter development are better understood.

- The link between iodine deficiency and hypervascularisation occurs

through a ROS - HIF-1 – VEGF pathway.

ROS are physiologically required for thyroid cell

function and adaptation to environmental changes

ROS are physiologically required for thyroid cell

function and adaptation to environmental changes

- Functional variability in thyroiditis outcomes may occur through changes in the Th1 – Th2 – Th3 cytokine balance

Acknowledgments

M.F. van den Hove (Cell Biology Unit, UCL)

Ch. Daumerie (Endocrinology Unit, UCL)

J. Rahier, M.C. Nolleveaux (Anatomopathology unit, UCL)

C. Mestdagh (clinique Saint Jean, Brussels)

F. Miot, S. Costagliola(IRIBHN, ULB)

J.J.M. deVijlder(Academic Medical Center, University of Amsterdam)

J.N Audinot (Centre Gabriel Lippmann, Luxembourg)

P. Sonveaux (Pharmacotherapy unit, UCL)

F. Soncin (Institut de Biologie de Lille, IBL)

Acknowledgments

MOEX, unité de Morphologie Expérimentale

Prof. B. Lengelé