rock excavation ppt

15
1 A.V. Dyskin. Geomechanics Group, UWA Slide 1 V. Introduction to the Mechanics of Rock Excavation A.V. Dyskin Assistance of Prof. L.N. Germanovich and Mr. H.C. Khor is acknowledged A.V. Dyskin. Geomechanics Group, UWA Slide 2 Learning objectives To familiarise with the possible methods of rock breakage, both existing and potential To understand the mechanics of production blasting To understand the mechanics of perimeter blasting and the influence of rock mass structure To understand the mechanism of thermal fracturing and spallation

Upload: rushbh-patil

Post on 23-Oct-2015

93 views

Category:

Documents


5 download

DESCRIPTION

rock excavation ppt

TRANSCRIPT

Page 1: Rock Excavation PPT

1

A.V. Dyskin. Geomechanics Group, UWA Slide 1

V. Introduction to the Mechanics of Rock Excavation

A.V. Dyskin

Assistance of Prof. L.N. Germanovich and Mr. H.C. Khor is acknowledged

A.V. Dyskin. Geomechanics Group, UWA Slide 2

Learning objectivesTo familiarise with the possible methods of rock breakage, both existing and potentialTo understand the mechanics of production blastingTo understand the mechanics of perimeter blasting and the influence of rock mass structureTo understand the mechanism of thermal fracturing and spallation

Page 2: Rock Excavation PPT

2

A.V. Dyskin. Geomechanics Group, UWA Slide 3

Methods of rock excavationMechanical• Drilling

– Rotary drilling– Percussive drilling (vibrations)

• CuttingBlasting (drill and blast)Thermal fracturing (spallation)MeltingChemical• Bulk dissolving• Fracturing

Biological

A.V. Dyskin. Geomechanics Group, UWA Slide 4

Methods of rock excavation

Kris Zacnyy, Michael Quayle, Mara McFadden,Adam Neugebauer, Kenji Huang and George Cooper, 2002http://www.lpi.usra.edu/publications/reports/CB-1152/berkeley-2.pdf

Page 3: Rock Excavation PPT

3

A.V. Dyskin. Geomechanics Group, UWA Slide 5

Blasting

Blasting methods• Production blasting• Perimeter blasting

Mechanics of breakage by blastingPerimeter blastingNon-explosive rock breaking systems

A.V. Dyskin. Geomechanics Group, UWA Slide 6

Stage I of blasting. Crushed zone

Blast of energy W per unit length

Blast hole

Com

pres

sive

ph

ase

of p

-wav

e

Crushed zone

Rd

•Plastic crushed zone: W-1σyRd2=const; σy is the yield stress

•Brittle crushed zone: W-1KIcRd3/2=const; KIc is the fracture toughness

Page 4: Rock Excavation PPT

4

A.V. Dyskin. Geomechanics Group, UWA Slide 7

Stage II of blasting. Radial cracks

R

( )

2

2

121

12

d

ddd

dd

d

Rr

Rr

k

⎟⎟⎠

⎞⎜⎜⎝

⎛μμ

−+μμ

+ν−

ν−=

1,22

≅⎟⎟⎠

⎞⎜⎜⎝

⎛π

= CKprkCR

Ic

d

p

r is blast hole radiusp is gas pressureμd, νd Rd are shear modulus, Poisson’s ratio and radius of crushed zoneμ is shear modulus of rockKIc is the fracture toughness

Rd

A.V. Dyskin. Geomechanics Group, UWA Slide 8

Stage III. Wave reflection

p

Compressive phase of p-wave

Tensile phase of p-wave

Discontinuity or boundary

Page 5: Rock Excavation PPT

5

A.V. Dyskin. Geomechanics Group, UWA Slide 9

Stage III. Rock fragmentation

p

Tensile phase of p-wave

Discontinuity or boundary

A.V. Dyskin. Geomechanics Group, UWA Slide 10

Spalling due to wave reflection

Tensile phase of p-wave

p

Compressive phase of p-wave

Page 6: Rock Excavation PPT

6

A.V. Dyskin. Geomechanics Group, UWA Slide 11

Perimeter blasting

Pre-split blasting• Absence of local free

surface

Smooth wall blasting• Near a penultimate surface

Planned surface

Planned surface

Penu

ltim

ate

surf

ace

Blast hole

A.V. Dyskin. Geomechanics Group, UWA Slide 12

Pre-split blasting

Hudson and Harrison (1997)

Page 7: Rock Excavation PPT

7

A.V. Dyskin. Geomechanics Group, UWA Slide 13

Mechanics of pre-split blasting

d

p p

r

222 ⎟⎟

⎞⎜⎜⎝

⎛=

Ic

dcr K

rpkd

0.2 0.4 0.6 0.8 11

2

3

4

5

6

2l/d

d

I

rpkdK

2

0.5

dl

A.V. Dyskin. Geomechanics Group, UWA Slide 14

Influence of lateral in-situ pressure

d

I

rpkdK

2dl

q

q

2l/d

λ=0

0 0.4 0.80

1

2

3

λ=0.1

λ=0.3 λ=0.7λ=1 λ=0.9

p

2121

tan2sin2

2 ⎟⎠⎞

⎜⎝⎛ π

−⎟⎠⎞

⎜⎝⎛ π

=−

dldq

dldrpKI

dprkqd

2=λ

The lateral pressure severely hampers crack growth

Pre-split blasting is best if sub-parallel to a free surface

Page 8: Rock Excavation PPT

8

A.V. Dyskin. Geomechanics Group, UWA Slide 15

Effect of discontinuities

Hudson and Harrison (1997)

Discontinuities can distort the pre-split crack resulting in very rough surface

A.V. Dyskin. Geomechanics Group, UWA Slide 16

Non-explosive rock breaking

Discharge of gas/fluid pressure• Hydro Fracturing

• “Boulder Buster”: A pressure impulse is generated in the tool by a cartridge filled with a propellant. The pressure impulse is directed through the Boulder Buster barrel into an incompressible fluid column (water or gel) introduced into a pre-drilled hole in the rock (http://www.amquip.com.au/page16.html)

Mechanical systems• Wedges• Expanding grouts

– (“Katrock”: http://www.amquip.com.au/page14.html)

Elimination of the crushed zone

Dunn, P.G. 1992

Page 9: Rock Excavation PPT

9

A.V. Dyskin. Geomechanics Group, UWA Slide 17

Thermal Fracturing (Spallation)

Rock

Rock spalls

Supersonichigh-temperaturegas jet

Fuelburner

Rockspalls

Rock

Laser

Laserbeam

Flame jet spallationEnergy flux spallation

LasersElectron beamsInfra-red radiationMicrowavesPlasma torches

Typical energy intensity is 1-100 MWt/m2

A.V. Dyskin. Geomechanics Group, UWA Slide 18

Mechanism of Thermal Fracturing

Thermal stresses Mechanism of spalling

Rock spalls

Supersonichigh-temperaturegas jet

Fuelburner

Rock

Compression

Tension

(Germanovich, et al.)HEATAPPLIED

HEAT APPLIED-FLAWED REGIONIS LOADED COMPRESSIVELY

HEAT

FLAW BEGINS TO EXTEND INDIRECTION OF STRESS

Page 10: Rock Excavation PPT

10

A.V. Dyskin. Geomechanics Group, UWA Slide 19

Thermal Spallation • Two profile mechanisms of spallation:

–Crack growth in thermally induced compression

–Crack growth due to water vapour pressure

Applications+ Rock and concrete breakage in mining and demolition

- Concrete failure under fire

A.V. Dyskin. Geomechanics Group, UWA Slide 20

Some Observations on Rock Thermal Spallation

Flame jet temperature: 500-5000°CHeat transfer coefficient: κ~100-10,000 Wt/(m2 °C)Jet is supersonic: ~1,000 m/secRock surface temperature at the moment of spallation: 100-1000 °CSurface temperature right after spallation: first tens of °CSpallation time: 0.01-1000 secSpall thicknesses: 0.1 mm-10 cmMosaic character of spallation processThe more intensive heat impact, ie., the higher jet temperature or heat transfer coefficient, the smaller typical spall thickness and spallation timeRock weakening under spallation zone

Rock spalls

Supersonic high-temperature gas jet

Fuelburner

Rock

Page 11: Rock Excavation PPT

11

A.V. Dyskin. Geomechanics Group, UWA Slide 21

Flame Jet Test Apparatus

A.V. Dyskin. Geomechanics Group, UWA Slide 22

Page 12: Rock Excavation PPT

12

A.V. Dyskin. Geomechanics Group, UWA Slide 23

A.V. Dyskin. Geomechanics Group, UWA Slide 24

Cracking

Page 13: Rock Excavation PPT

13

A.V. Dyskin. Geomechanics Group, UWA Slide 25

Cracking vs. SpallationRole of water

Region in compression: spallation formation

Region in tension: crack formation

•High tensile strength is a necessary condition for spallation

•Water vapour plays an important role in spallation for materials with low permeability.

•The higher temperature the deeper and smaller the spalling area

A.V. Dyskin. Geomechanics Group, UWA Slide 26

Flame Drilling of Blast-Holes

(after Williams et al., 1988)

Page 14: Rock Excavation PPT

14

A.V. Dyskin. Geomechanics Group, UWA Slide 27

Flame Expansion of Blast-Holes

FuelburnerRock

Supersonicgas jet

A.V. Dyskin. Geomechanics Group, UWA Slide 28

SummaryMethods of rock breakage• Major: Mechanical and Blasting• Potential: Thermal and Chemical/Biological

Production blasting• Damaged zone new the blasthole• Radial cracks• Fragmentation by the tensile component of the wave reflected from a

discontinuity• The role of the reflecting discontinuities can be played by radial cracks produced

by neighbouring blastholes. Hence the importance of correct blast sequencingPerimeter blasting• Relatively smooth surface• The distance between the blastholes should be small enough to ensure the

formation of splitting crack• The charge has little influence on the distance between the blastholes• Lateral pressure is detrimental (free surface is needed)

Thermal spallation• Caused by compression created in the surface layers by heating• Temperature should be below the melting point• Water affects fracture propagation

Page 15: Rock Excavation PPT

15

A.V. Dyskin. Geomechanics Group, UWA Slide 29

TextbooksCherepanov, G.P., 1979. Mechanics of Brittle Fracture. New York, McGraw-Hill.Hudson, J.A. and J.P Harrison, 1997. Engineering Rock Mechanics: Rock Mechanics Principles and Applications. Elsevier Science LTD. Butterworths. London, Boston, Singapore, Sydney, Toronto, Wellington, 1989. Brady, B.H.G. & E.T. Brown. Rock Mechanics for Underground Mining. George Allen & Unwin. London, Boston, Sydney, 1985.

Literature

A.V. Dyskin. Geomechanics Group, UWA Slide 30

PapersDunn, P.G. 1992. Applications of non-explosive (NONEX) rock breaking methods to the underground metalliferous mining industry. Proc. of Western Australian Conference of Mining Geomechanics, T. Szwedziki, G.R. Baird and T.N. Little (Eds.), Curtin University, WASM, Kalgoorlie, Western Australia, 385-398.Kutter, H.K. and C. Fairhurst, 1971. On the fracture process in blasting. Int. J. Rock Mech. Min. Sci. 8, 181-202.Langefors, U. and B. Kihlström, 1963. The Modern Technique of Rock Blasting. John Wiley & Sons, New-York-London-Sydney, Almqvist & Wiksell, Stockholm-Göteborg-Uppsala.Worsey, P.N., I.W. Farmer and G.D. Matheson. 1981. The mechanics of pre-splitting in discontinuous rock. Proc. 22nd U.S. Symposium on Rock Mechanics. Massachussetts Institute of Technology 218-223.