review (2 nd order tensors):

26
Review (2 nd order tensors): Tensor – Linear mapping of a vector onto another vector d d u G x e 1 e 2 e 3 a 1 a 2 a 3 Tensor components in a Cartesian basis (3x3 matrix): 11 12 13 21 22 23 31 32 33 U U U U U U U U U () () ik jl ij i j ij kl S Q S Q Q m e m e Basis change formula for tensor components e 1 e 2 e 3 m 1 m 2 m 3 c O P r p Dyadic vector product ij i j S ab S a b ( ) ( ) ( ) ij j ik k i k k Su ab u abu Su a b u abu 3 3 1 1 ij i j j i S S e e General dyadic expansion

Upload: jaafar

Post on 25-Feb-2016

58 views

Category:

Documents


1 download

DESCRIPTION

Review (2 nd order tensors):. Tensor – Linear mapping of a vector onto another vector. Tensor components in a Cartesian basis (3x3 matrix):. Basis change formula for tensor components. Dyadic vector product. General dyadic expansion. Routine tensor operations. Addition. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Review (2 nd  order tensors):

Review (2nd order tensors):

Tensor – Linear mapping of a vector onto another vectord d u G x

e1

e2

e3

a1a2

a3Tensor components in a Cartesian basis (3x3 matrix):

11 12 13

21 22 23

31 32 33

U U UU U UU U U

( ) ( )ik jl ij i jij klS Q S Q Q m e m e

Basis change formula for tensor components

e1

e2

e3

m1

m2

m3

cO

Pr

p

Dyadic vector product

ij i jS a b S a b ( ) ( ) ( )ij j i k k i k kS u a b u a b u S u a b u a b u3 3

1 1ij i j

j iS

S e eGeneral dyadic expansion

Page 2: Review (2 nd  order tensors):

Routine tensor operations

11 12 13 11 11 12 12 13 13

21 22 23 21 21 22 22 23 23

31 32 33 31 31 32 32 33 33

U U U S T S T S TU U U S T S T S TU U U S T S T S T

Addition U S T

Vector/Tensor product v S u1 11 12 13 1 11 1 12 2 13 3

2 21 22 23 2 21 1 22 2 23 3

3 31 32 33 3 31 1 32 2 33 3

v S S S u S u S u S uv S S S u S u S u S uv S S S u S u S u S u

v u S 11 12 13 1 11 2 21 3 31

1 2 3 1 2 3 21 22 23 1 12 2 22 3 32

31 32 33 1 13 2 23 3 33

S S S u S u S u Sv v v u u u S S S u S u S u S

S S S u S u S u S

11 12 13 11 12 13 11 12 13

21 22 23 21 22 23 21 22 23

31 32 33 31 32 33 31 32 33

11 11 12 21 13 31 11 12 12 22 13 32 11 13 12 23 13 33

21 11 22 21 23 31 21 12

U U U T T T S S SU U U T T T S S SU U U T T T S S S

T S T S T S T S T S T S T S T S T ST S T S T S T S

22 22 23 32 21 12 22 22 23 32

31 11 32 21 33 31 31 12 32 22 33 32 31 13 32 23 33 33

T S T S T S T S T ST S T S T S T S T S T S T S T S T S

Tensor product U T S

Page 3: Review (2 nd  order tensors):

Routine tensor operations

Transpose11 21 31

12 22 32

13 23 33

TS S SS S SS S S

ST u S S u T T T A B B ATS

TraceInner productOuter productDeterminant

Inverse

Invariants (remain constant under basis change)

Eigenvalues, Eigenvectors (Characteristic Equation – Cayley-Hamilton Theorem)

11 22 33trace S S S S: ij ijS TS T

ij jiS T S T1det( )6 ijk lmn li mj nkS S S S

1 12det( )ji ipq jkl pk qlS S S

S1 S S I

21 2 3

1 1 1trace( ) (trace( ) ) ( ) det( )2 2 6kk ii jj ij ji ijk pqr ip jq krI S I S S S S I S S S S S S S S

S m m3 2 2

1 2 3 1 2 1 30 ( ), ( ) / 2 det( )I I I I trace I I I S S S S

3 21 2 3I I I S S S 0

Page 4: Review (2 nd  order tensors):

Recipe for computing eigenvalues of symmetric tensor

11

32 1 1 2 3

2 1

21 2 1 3

1 3 3 2( 1)2 cos cos 1,2,33 3 3 2 3

2 9 2713 27

1( ) : det( )2

kI p q k k

p p

I I I Ip I I q

I trace I I I

S S S S

Page 5: Review (2 nd  order tensors):

Special Tensors

Symmetric tensors TS S

Have real eigenvalues, and orthogonal eigenvectors

Skew tensors T S S

S u w uHave dual vectors satisfying

Proper orthogonal tensors1

T T

T

R R R R I

R Rdet( ) 1R

Represent rotations – have Rodriguez representation

cos (1 cos ) sinij ij i j ijk kR n n n

Polar decomposition theorem T T T A R U V R RR I U U V V

Page 6: Review (2 nd  order tensors):

Polar Coordinates

R

P

i

k

j

sin cos cos cos sinsin sin cos sin cos

cos sin 0

x R

y

z

a aa a

aa

sin cos sin sin coscos cos cos sin sin

sin cos 0

R x

y

z

a aa aa a

Basis change formulas

Page 7: Review (2 nd  order tensors):

0 0

sin cos sin cos

R RR

RR

R R R

e ee ee e e e

eee e e e e

1 1sinR R R R

e e e

1 1sinR R Rv v v

R R R

v e e e e e e

1 1sin

1 1 cotsin

1 1 cotsin

R R R

R

R

vvv v vR R R R R

vv v vvR R R R Rv v v v vR R R R R

v

R

P

i

k

j

Gradient operator

Page 8: Review (2 nd  order tensors):

Review:

Deformation Mapping

Eulerian/Lagrangian descriptions of motion

Deformation Gradient

xu(x)

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

y

1 2 3( , , , )i i iy x u x x x t

const( , ) ( , )

i

i ii i i j i j

x

y uy x u x t v x t

t t

2

2const const

( , ) ( , ) ( , )i

i

i ii i i j i j i j

x x

y yy x u y t v y t a y t

t t

2

2const constconst const

( , ) ( , )i ii i

i k i i i iik i j k j

k ky yx x

u y u y v va y t v y t

y t t t yt

( )

or i ii i ij ij

j j j

y ux u F

x x x

y x u x F

x u(x)

e3

e1

e2

dx dy

u(x+dx)

OriginalConfiguration

DeformedConfiguration

i ik k

d ddy F dx

y F x

Page 9: Review (2 nd  order tensors):

Review

Sequence of deformations

x

u(1)(x)

e3

e1

e2

dx dy

OriginalConfiguration

After firstdeformation

dzu(2)(y)

y z

After seconddeformation

(2) (1)(2) (1)with or i ij j ij ik kjd d dz F dx F F F z F x F F F

Lagrange Strain

e3

e1

e2

l0

OriginalConfiguration

DeformedConfiguration

ml

1 1( ) or ( )2 2

Tij ki kj ijE F F E F F I

22 202 2

00 02 2ij i j

ll l lE m mll l

m E m

Page 10: Review (2 nd  order tensors):

Review

0

detdV JdV

FVolume Changes

dxdy dz dr

dv

dw

e3

e1

e2

Undeformed

Deformed

dVdV0

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

t

dA0 dA

n

n0

xu(x)

dP(n)dP(n)0

Area Elements 1 00 0 0

Ti ki kdA J dA dAn JF n dA n F n

1 1or 2 2

jT iij

j i

uux x

ε u uInfinitesimal Strain

y

x x

y

l0

l0

xx

yy

l0

l0

e1

e2

xy

O A

BC

OA

B C

1 12 2

j ji k k iij ij

j i j i j i

u uu u u uEx x x x x x

Approximates L-strain

Related to ‘Engineering Strains’11

22

12 21 / 2 / 2

xx

yy

xy yx

Page 11: Review (2 nd  order tensors):

Review

Principal values/directions of Infinitesimal Strain

e3

e1

e2

OriginalConfiguration

n(1)

n(2) n(2)

n(1)

( ) ( )

( ) ( )or

i ii

i ikl il l

e

n e n

ε n n

1 1or 2 2

jT iij

j i

uuwx x

w u uInfinitesimal rotation

e3

e1

e2

OriginalConfiguration Deformed

Configuration

n(1)

n(2) I+wn(2)

n(1)

Decomposition of infinitesimal motion

iij ij

j

u wx

Page 12: Review (2 nd  order tensors):

Left and Right stretch tensors, rotation tensor F R U F V R

(1) (1) (2) (2) (3) (3)1 2 3 U u u u u u u

(1) (1) (2) (2) (3) (3)1 2 3 V v v v v v v

U,V symmetric, so

i principal stretches

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

u(1)

u(2) v(2)

v(1)

U Ru(2)

u(1)

u(2)

u(1)

u(3)

u(1)1 1

1

u(2)

u(3)

Review

Left and Right Cauchy-Green Tensors 2

2

T

T

C F F U

B F F V

Page 13: Review (2 nd  order tensors):

Review

Generalized strain measures3

( ) ( )

i=13

( ) ( )

i=1

Lagrangian Nominal strain: ( 1)

Lagrangian Logarithmic strain: log( )

i ii

i ii

u u

u u

3( ) ( )

i=13

( ) ( )

i=1

Eulerian Nominal strain: ( 1)

Eulerian Logarithmic strain: log( )

i ii

i ii

v v

v v

* 1 * 1 11 1( ) or ( )2 2

Tij ij ki kjE F F E I F FEulerian strain

Page 14: Review (2 nd  order tensors):

Review

iij

j

vL

y

yL vVelocity Gradient

( ) ( ) ii i i j

j

vdv v d v dyy

y y y

xu(x)

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

y

1i ij jk kdv F F dy i i ij j ij j

d ddv dy F dx F dxdt dt

1d

dt

FL F

Stretch rate and spin tensors 1 1( ) ( )2 2

T T D L L W L L

e3

e1

e2 l0

OriginalConfiguration

DeformedConfiguration

n

l1

i ij jdl n D nl dt

n D n

Page 15: Review (2 nd  order tensors):

Vorticity vector ( ) ki ijk

j

vcurl w

y

w v 2 ( ) i ijk jkdual W ω W

1 ( ) 22

k k

i ii k k ik k

ix const y const

v va v v W v

t t y

1 ( )2

k k

i ii k k ijk j k

ix const y const

v va v v v

t t y

k i kijk ij j i

j kconst

a vD

y t y

x

Spin-acceleration-vorticity relations

Review

Page 16: Review (2 nd  order tensors):

dA

dP

0limdA

ddA

Pt

dV

dP

0limdV

ddV

Pb

t

R

t

e3

e2

e1

n T(n)

T(-n)-n( )

0( ) lim

dA

ddA

nPT n

dA

dP

Review: Kinetics

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

S

R

R0

S0 b

t

Surface traction Body Force

Internal Traction

( )A V

dA dV P T n b

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

S

R

R0

S0b

t

n

V T(n)

Resultant force on a volume

Page 17: Review (2 nd  order tensors):

Restrictions on internal traction vector

e1

e3

e2

T(n)

n

T(-e1)

-e1

dA1

dA(n)

dA1 dA(n)

Review: Kinetics

n-n

T(n)

T(-n)( ) ( ) T n T nNewton II

( ) or ( )i j jiT n T n n σ n

Newton II&III

Cauchy Stress Tensor

e1

e3

e2

11

12

13

21

22

23

31

32

33

Page 18: Review (2 nd  order tensors):

Other Stress Measures

ij ijJ J τ σ

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

S

R

R0

S0 b

tiij ij

j

uF

x

F I u

det( )J F

Kirchhoff

Nominal/ 1st Piola-Kirchhoff

Material/2nd Piola-Kirchhoff

1 1ij ik kjJ JFS S F σ

1 1 1Tij ik kl jlJ JF F Σ F Fσ

( ) 00 i ijjdP dA n Sn

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

t

dA0 dA

n

n0

xu(x)

dP(n)dP(n)0

( 0) ( )ij j iF dP dPn n ( 0) 0

0 j jiidP dA n n

Page 19: Review (2 nd  order tensors):

Review – Reynolds Transport Relation

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

R

R0n

S

yx

u(x)S0

C0

C

i i

j jconst constV V V

v vd dV dV dVdt t y t y

x y

Page 20: Review (2 nd  order tensors):

Review –

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

S

R

R0S0b

t

n

V T(n)yx

u(x)

or ijj j

ib a

y

y σ b a

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

S

R

R0S0n

V

yx

u(x)V0

Mass Conservation

Linear Momentum Conservation

0 0i i

i iconst constV

v vdV

t y t y

x x

0 ( ) 0i

iconst const

vt y t

yy y

v

Angular Momentum Conservation ij ji

Page 21: Review (2 nd  order tensors):

( ) 12i i i ij ij i ii

A V V V

dr T v dA b v dV D dV v v dVdt

n

Rate of mechanical work done ona material volume

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

S

R

R0S0b

t

n

V T(n)yx

u(x)

Conservation laws in terms of other stresses

0 0 0 0ij

j ji

Sb a

x

S b a

0 0 0 0ik jk

j ji

Fb a

x

TF b a

Mechanical work in terms of other stresses

0 0

( )0 0 0

12i i i ij ji i ii

A V V V

dr T v dA b v dV S F dV v v dVdt

n

0 0

( )0 0 0

12i i i ij ij i ii

A V V V

dr T v dA b v dV E dV v v dVdt

n

Page 22: Review (2 nd  order tensors):

Review: Thermodynamics

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

S

R

R0

S0 b

tSpecific Internal EnergySpecific Helmholtz free energy s

Temperature

Heat flux vector qExternal heat flux q

First Law of Thermodynamics ( )d KE Q Wdt

iij ij

iconst

qD q

t y

x

Second Law of Thermodynamics 0dS ddt dt

Specific entropy s

( / )0i

i

qs qt y

1 0ij ij ii

D q sy t t

Page 23: Review (2 nd  order tensors):

Conservation Laws for a Control Volume

R is a fixed spatial region –material flows across boundary B

e3

e1

e2

DeformedConfiguration

B

b

n

R T(n)

y

0R B

d dV dAdt

v nMass Conservation

Linear Momentum Conservation ( )B R R B

ddA dV dV dAdt

n σ b v v v n

Angular Momentum Conservation ( ) ( ) ( )B R R B

ddA dA dV dAdt

y n σ y b y v y v v n

1 1( ) : ( ) ( )2 2

B R R R B

ddA dV dV dV dAdt

n σ v b v σ D v v v v v nMechanical Power Balance

First Law1 1( )2 2

B R B V R B

ddA dV dA qdV dV dAdt

n σ v b v q n v v v v v n

Second Law ( ) 0R B B R

d qsdV s dA dA dVdt

q nv n

Page 24: Review (2 nd  order tensors):

Review: Transformations under observer changesTransformation of space under a change of observer

e3

e1

e2

DeformedConfiguration

b

n

y

DeformedConfiguration

b*

n*

y*

e2*

e3*

e2*

Inertial frame

Observer frame

* *0 0( ) ( )( )t t y y Q y y

All physically measurable vectors can be regarded as connecting two points in the inertial frame

These must therefore transform like vectors connecting two points under a change of observer

* * * * b Qb n Qn v Qv a Qa

Note that time derivatives in the observer’s reference frame have to account for rotation of the reference frame

*** * * * *0

0 0

2 * *2 2 2 * ** * * 2 * *0 0

0 02 2 2 2

( ( )) ( ( ))

( )( ( )) ( ( )) 2 ( )

T

T

dd d dt tdt dt dt dt

d d td d d d dt tdt dt dtdt dt dt dt

yy yv Qv Q Q Q y y Ω y y

y yy y Ω ya Qa Q Q Q y y Ω y y Ω

Tddt

QΩ Q

Page 25: Review (2 nd  order tensors):

The deformation mapping transforms as * *0 0( , ) ( ) ( ) ( , )t t t t y X y Q y X y

The deformation gradient transforms as *

*

y yF Q QFX X

The right Cauchy Green strain Lagrange strain, the right stretch tensor are invariant * * * * *T T T C F F F Q QF C E E U U

The left Cauchy Green strain, Eulerian strain, left stretch tensor are frame indifferent * * * *T T T T T B F F QFF Q QCQ V QVQ

The velocity gradient and spin tensor transform as

* * * 1 1

* * *( ) / 2

T T

T T

L F F QF QF F Q QLQ Ω

W L L QWQ Ω

The velocity and acceleration vectors transform as **

* * * * *00 0

2 * *2 2 2 * ** * * 2 * *0 0

0 02 2 2 2

( ( )) ( ( ))

( )( ( )) ( ( )) 2 ( )

T

T

dd d dt tdt dt dt dt

d d td d d d dt tdt dt dtdt dt dt dt

yy yv Qv Q Q Q y y Ω y y

y yy y Ω ya Qa Q Q Q y y Ω y y Ω

(the additional terms in the acceleration can be interpreted as the centripetal and coriolis accelerations) The Cauchy stress is frame indifferent * Tσ QσQ (you can see this from the formal definition, or use

the fact that the virtual power must be invariant under a frame change) The material stress is frame invariant * Σ Σ The nominal stress transforms as * 1 1( ) T T TJ J S QF Q Q F Q SQσ σ (note that this

transformation rule will differ if the nominal stress is defined as the transpose of the measure used here…)

Some Transformations under observer changes

Page 26: Review (2 nd  order tensors):

Constitutive Laws

General Assumptions:1.Local homogeneity of deformation (a deformation gradient can always be calculated)2.Principle of local action (stress at a point depends on deformation in a vanishingly small material element surrounding the point)

Restrictions on constitutive relations: 1. Material Frame Indifference – stress-strain relations must transform consistently under a change of observer 2. Constitutive law must always satisfy the second law of thermodynamics for any possible deformation/temperature history.

Equations relating internal force measures to deformation measures are knownas Constitutive Relations

e3

e1

e2

OriginalConfiguration

DeformedConfiguration

1 0ij ij ii

D q sy t t