response of ocean ecosystems to climate warming

21
esponse of Ocean Ecosystems to Climate Warming 0 2 4 6 8 10 -5 0 5 10 15 20 25 30 Temperature P b max 3 Models: B&F (1997) Carr (2002) Marra (2003) Primary Production = f (biomass, light, physiology)

Upload: dimaia

Post on 11-Jan-2016

38 views

Category:

Documents


1 download

DESCRIPTION

Response of Ocean Ecosystems to Climate Warming. Primary Production = f (biomass, light , physiology). 3 Models: B&F (1997) Carr (2002) Marra (2003). P b max. Temperature. constant P b opt. measured P b opt. Modeled IPP (mgC m -2 h -1 ). r 2 = 0.38. r 2 = 0.86. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Response of Ocean Ecosystems to Climate Warming

Response of Ocean Ecosystems to Climate Warming

0

2

4

6

8

10

-5 0 5 10 15 20 25 30

Temperature

Pb m

ax

3 Models: B&F (1997)Carr (2002)Marra (2003)

Primary Production = f (biomass, light, physiology)

Page 2: Response of Ocean Ecosystems to Climate Warming

0 2000 4000 6000 80000 2000 4000 6000 8000

0

2000

4000

6000

8000

Measured Integral Primary Production (mgC m-2 h-1)

Mod

eled

IP

P(m

gC m

-2 h

-1)

constant Pbopt measured Pb

opt

r2 = 0.38 r2 = 0.86

1 10 100 1000

1 10 100 1000

0.1 1 10 100

Rel

ativ

e F

requ

ency

Euphotic Zone Chlorophyll

(mg m2)

PrimaryProduction

(mg C m2)

Light-saturatedPhotosynthesis

(mgC/mgChl/h)

Product Yields

Page 3: Response of Ocean Ecosystems to Climate Warming

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

This is the assumed temperature dependence of epsilon- star . The decrease at low temperatures is assumed to ref lect low grow th rates and high root biomass and thus high ratio of respiration to

photosynthesis. The decrease at high temperatures is supposedly due to increased respiration at high temperatures.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

These are the temperature dependent curves used in the CASA model for "T-epsilon2". Each curve represents the temperature dependence of epsilon for plant communities

'adapted' to their seasonal temperature range. Such curves should not exist for phytoplankton since species composition can change at the rate of seasonal f luctuations in

temperature.

Ter

rest

rial S

yste

ms:

The

CA

SA

mod

elTemperature??

Ocean?

Page 4: Response of Ocean Ecosystems to Climate Warming

Pbmax =

net carbon fixing capacity

light harvesting capacity

Temperature Enzyme Activity & Concentration

No direct effect on Pbmax

Growth Rate Equal changes incarbon fixation &light harvesting

No direct effect on Pbmax?

Page 5: Response of Ocean Ecosystems to Climate Warming

Rel

ativ

e C

hlor

ophy

ll N

orm

aliz

ed P

hoto

synt

hesi

s

Irradiance

Pbmax-1

Pbmax-2

Pbmax-1

Pbmax-2

Ek-1

Ek-2

" b

" b1 " b

2

'Ek-dependent' variation

'Ek-independent' variationEk

Page 6: Response of Ocean Ecosystems to Climate Warming

0 200 400 600 800 1000 1200 14000.0

0.1

0.2

0.3Myers (1946) Chlorella pyrenoidosa; Eppley and Sloan (1966)Dunaliella tertiolecta; Paasche (1967), Coccolithus huxleyi;Paasche (1968), Ditylum brightwellii, Nitzschia turgidula; Bealeand Appleman (1971) Chlorella vulgaris; Durbin (1974)Thalassiosira nordenskioldii; Beardall and Morris (1976)Phaeodactylum tricornutum; Chan (1978) Chaetoceros sp.,Skeletonema costatum, Cylindrotheca fusiformis, Thalassiosirafloridana, Gymnodinium simplex, Amphidinium carterae; Yoder(1979) Skeletonema costatum; Falkowski and Owens (1980)Skeletonema costatum, Dunaliella tertiolecta; Falkowski et al.(1981) Dunaliella tertiolecta; Verity (1981) Leptocylindrusdanicus; Cosper (1982a) Skeletonema costatum; Cosper (1982b)Skeletonema costatum; Faust et al. (1982) Prorocentrum mariae-lebouriae; Raps et al. (1983) Microcystis aeruginosa; Terry et al(1983) Phaeodactylum tricornutum; Geider et al. (1985)Phaeodactylum tricornutum; Post et al. (1985) Oscillatoriaagardhii; Dubinski et al. (1986) Thalassiosira weisflogii,Isochrysis galbana, Prorocentrum micans; Sukenik et al. (1987)Dunaliella tertiolecta; Fisher (unpublished) Tetraedron minimum,Nannochloropsis sp.

Rel

ativ

e C

hlor

ophy

ll C

once

ntra

tion

Growth Irradiance (mol quanta / m2 / s)

Ek-dependent variability

0 200 400 600 800 10000.0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 1000.0

0.2

0.4

0.6

0.8

1.0 >

<

Nutrient ‘Charged’ Nutrient ‘Depleted’

Growth Irradiance (umol quanta m-2 s-1)

Chl

orop

hyll

(

) C

alvi

n C

ycle

C

apac

ity

(

) &

Pbm

ax (

)

:

< MLD

> MLD

Page 7: Response of Ocean Ecosystems to Climate Warming

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8

Optical Mixing Depth

Rel

ativ

e C

hlor

ophy

llR

elat

ive

Sub

surf

ace

Lig

ht

Photoacclimation

300

Ein

30 Ein

equalconcentration

Photoacclimation – average or median?

Average MixedLayer Light

Median Mixed Layer Light

Page 8: Response of Ocean Ecosystems to Climate Warming

-50 -40 -30 -20 -10 0 10 20 30 40 50

-200

-150

-100

-50

0

-50 -40 -30 -20 -10 0 10 20 30 40 50

-200

-150

-100

-50

0

Nut

ricl

ine

& T

herm

ocli

ne

Dep

th (

m)

LatitudeLatitudeNorth South North South

AMT-2AMT-3

Chlorophyll-a Concentration (mg/m3)

.01 1 5 5010.02 .05 .1 .2 .5

Atlantic Meridional Transect

0

5

10

15

20

25

30

-50 -30 -10 10 30 500

2

4

6

8

10

Latitude

Mea

sure

d &

Mod

eled

Mix

ed L

ayer

Pb m

ax

Page 9: Response of Ocean Ecosystems to Climate Warming

0 200 400 600 800 1000 1200 1400 1600 1800 2000 22000

3

6

9

12

15

18

Mea

sure

d &

Mod

eled

Pb m

ax

Progressive Days

BATS 6-year Time Series

Page 10: Response of Ocean Ecosystems to Climate Warming

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 180

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

M Ryther 1957F Cullen 1990

Megard 1972

Balch 1992 Eppley 1972 m/b Antoine 1996

Behrenfeld &Falkowski 1997

PhotoAcc 2000

Mod

el li

ght-

satu

rate

d ph

otos

ynth

esis

Measured light-saturated photosynthesis

-- requires MLD --

Page 11: Response of Ocean Ecosystems to Climate Warming

Pbmax-1

Pbmax-2

" b1 " b

2

'Ek-independent' variationEk

0.0 0.2 0.4 0.60

5

10

15

20

0.00 0.10 0.20 0.300

2

4

6

8

10

0.0 0.1 0.2 0.30

5

10

15

20

25

0.0 0.2 0.4 0.6 0.80

30

60

90

0.00 0.04 0.08 0.120

5

10

15

20

0.00 0.01 0.020

1

2

3

4

5

0.00 0.04 0.08 0.12 0.160

3

6

9

12

0.0 0.1 0.2 0.30

3

6

9

12

15

Light-limited Slope

Ligh

t-sa

tura

ted

Pho

tosy

nthe

tic R

ate

Ek-independent variability

LightC

hlor

ophy

ll-s

peci

fic

phot

osyn

thes

is

Field Data

Page 12: Response of Ocean Ecosystems to Climate Warming

Stroma

Lumen

PSI

Cytb6 f

AT

Pas

e

aa3-

type

C

yt. O

xid.PTOX

c553H20

O212

PQ

PQH2

Ndh

PSII

e

+

e

e

e e

ATPADP + Pi

Fdx

H202H20

Cell Metabolism NADPH

O2H20

12 O2

H2012

A

B

Chloroplast

AminoAcid

Biosynthesis

GAP

Storage

Rubisco

CO2

Calvin-BensenCycle

GAP RuBP

NO3-

GOGAT

GSgln

NO2-

NH4+

e

eOAA

MalateMalate

OAA

MalateOAA

OAAMalate

GAP

PEP

NADP+

NADH NAD+

Cytosol

ETC

H20 O2

12

e

ATP

ADP + Pi

OAA

citrateCitric Acid

Cycle

NADH

NAD+

Mitochondria

NADH glu

e

e

e

e

PGA

BPGA

GAP/DHAP

PGA

BPGA

GAP/DHAP NADH

NAD+

e e

2 H 2 H

2 H H

NADPH

Page 13: Response of Ocean Ecosystems to Climate Warming

Photosystem II

Photosystem I

Sum =Remote Sensing

Chlorophyll

Nitrogen Reduction& Amino AcidBiosynthesis

Medium Pathway3-C product to

Citric Acid Cycle& Mitochondria

Fast Pathwayto Mitochondriato generate ATP

CalvinCycle

Carbon Fixation

Carbon Storage

O2

Carbon Growth

Page 14: Response of Ocean Ecosystems to Climate Warming

Growth Irradiance0 1 2 3

Pho

tosy

nthe

sis

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ligh

t-sa

tura

ted

Pho

tosy

nthe

sis

(P* m

ax )

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.01 0.03 0.05 0.07

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Light-limited Photosynthesis (Nmax)0.01 0.03 0.05 0.07 0.01 0.03 0.05 0.07

Ek = 146

r2 = 0.63n = 17

o.d. = 0.2 - 0.5

Ek = 138

r2 = 0.73n = 14

o.d. = 0.7 - 1.0

Ek = 118

r2 = 0.95n = 16

o.d. = 1.4 - 1.9

Ek = 95

r2 = 0.91n = 16

o.d. = 2.1 - 2.6

Ek = 59

r2 = 0.79n = 20

o.d. = 2.7 - 3.3

Ek = 42

r2 = 0.80n = 19

o.d. = 3.6 - 4.3

Ek = 27

r2 = 0.75n = 17o.d. = 4.5 - 5.0

Ek = 21

r2 = 0.50n = 14o.d. = 5.3 - 5.8

Ek = 12

r2 = 0.77n = 25o.d. = 6.2 - 10.6

Optical Depth0 1 2 3 4 5 6 7

Ek

0

40

80

120

160

Observed

Calculated

Pmax

"

Tropical Pacific Data – 16oS to 1oN

Page 15: Response of Ocean Ecosystems to Climate Warming

High Nutrients Low NutrientsLo

w L

ight

Hig

h Li

ght

<

>

?

<

ATPN

C

ATPN

C

PigmentsPigments

PigmentsPigments

Reductants

Reductants Reductants

ReductantsN

CC

ATP ATPN

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000

Light Growth Rate(+nutrients) (+light)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.2 0.4 0.6 0.8 1

Growth Irradiance Relative Growth Rate

Chl

orop

hyll

: C

arbo

nIn a single species, light & nutrients can cause C:Chl to vary from < 10 to > 800

Page 16: Response of Ocean Ecosystems to Climate Warming

0

2

4

6

8

10

-5 0 5 10 15 20 25 30

Temperature

Pb max

Lig

ht li

mit

atio

n do

min

ates

Lig

ht-N

utri

ent

inte

ract

ions

Lig

ht v

ersu

s N

utri

ent

as d

omin

ant c

ontr

ol

BOTTOM LINE: Temperature not a good model for current production & worse for future. Best approach is direct attack on light and growth rate

Page 17: Response of Ocean Ecosystems to Climate Warming

c p

POC

J. Bishop 1999 Deep Sea Research

April May June

NABE Time Series

Pb

op

t (m

g C

mg

Chl

-1 h

-1 )

0

2

4

6

8 cp

* (m2 m

g Chl -1

)

0.0

0.2

0.4

0.6

0.8

1.0Leg 4 Leg 5

653 4130 2 272523201886 312927 292625

BATS

HOT

NABE

cp*

14C-based photosyntheticefficiency

0 10 20 30 40 50

Pb

op

t (m

g C

mg

Ch

l-1 h

-1 )

0

3

6

9

12

15

18

cp * (m

2 mg C

hl -1 )

0.0

0.3

0.6

0.9

1.2

1.5

1.8

Sequential Observation0 10 20 30 40 50 60 70

0

3

6

9

12

15

18

0.0

0.3

0.6

0.9

1.2

1.5

1.81992 1993 1994 1995 1996 1997

1994199319921991 19961995

Page 18: Response of Ocean Ecosystems to Climate Warming

0.02

0.03

0.04

0.05

0.06

0.5

1.0

1.5

2.0

0.08

0.10

0.12

0.14

0.5

1.0

1.5

2.0

0.02

0.05

0.08

0.11

0.14

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.5

1.0

1.5

1998 1999 2000 2001 2002

B

C

D

E

F

Year

Ch

loro

ph

yll c

on

cen

tra

tion

(

),

bbp

(

)

Satellite C

hl:C R

atio ( )

75o

0o

15o

30o

90o

60o

45o

60o

75o90o

15o

30o

45o

75o

0o

15o

30o

90o

60o

45o

60o

75o90o

15o

30o

45o

NP

SP SA

NANP

SP

CPCA

SA

NA

SI

NICA

B

C

D

E

F

Page 19: Response of Ocean Ecosystems to Climate Warming

Asym

ptote

0.000

0.002

0.004

0.006

0.008

0.010

Temperature

5 10 15 20 25 30

Slope

0.000

0.004

0.008

0.012

0.016

0.020

Satellite Chl:C Ratio

0.000 0.005 0.010 0.015

Mod

el C

hl:C

Rat

io

0.000

0.005

0.010

0.015

0.000

0.005

0.010

0.015

C

BA

XXXXXX

XX

X X

X

X

D

bbp-based Chl:C = a + b exp -3 Ig

InteractionGrowth rate

Light

Page 20: Response of Ocean Ecosystems to Climate Warming

Current Limitation…

0.0 0.2 0.4 0.6 0.80.000

0.001

0.002

0.003

0.004

0.0005

0.001

0.01

0.05

0.01 0.1 1 10

Inve

rsio

n b bp

0.001 0.01 0.1 1 100.001

0.01

0.1

1

10

Sea

WiF

S c

hlor

ophy

ll

Inversion chlorophyll

Page 21: Response of Ocean Ecosystems to Climate Warming

The Physiology Lidar-

Multispectral Mission

Exploring complex ecosystems of our global oceans