redundancy analysis and improved parameter estimation for ...redundancy analysis and improved...

22
Redundancy analysis and improved parameter estimation for complex dynamic load modeling: A case study on the WECC CMPLDW Kaiqing Zhang Graduate Research Assistant Power & Energy Systems Group University of Illinois, Urbana-Champaign Feb. 22, 2015

Upload: others

Post on 28-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Redundancy analysis and improved parameter

estimation for complex dynamic load modeling:

A case study on the WECC CMPLDW

Kaiqing Zhang

Graduate Research Assistant

Power & Energy Systems Group

University of Illinois, Urbana-Champaign

Feb. 22, 2015

Page 2: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Motivation

▪ Load modeling traditionally less investigated compared

to G&T

▪ Siemens PSS/E’s dynamic model library has

– > 100 GEN models

– ~40 Transmission models

– Only 9 load models

▪ Several existing dynamic studies attribute the

uncertainty of their solutions to load models adopted

[De Leon et al’06]

▪ Increasing stresses on the grid will exacerbate this

situation

2

Page 3: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Measurement-based load modeling

▪ Wide deployment of digital fault recorders (DFRs)

enables more accurate load modeling via data fitting

[EPRI’06, LNBL ’10]

▪ Fault-induced delayed voltage recovery (FIDVR) typed

disturbance events of particular interest [NERC

report’09, Liu et al’13]

3

Load model

g(𝐕, 𝐟, 𝛉)

Output P &

Q

Mismatch 𝐫

Measurements 𝐲

Voltage

profile 𝐕Frequency 𝐟

▪ Nonlinear least-squares (NLS)

min𝛉

𝐶 𝛉 ≔1

2𝐫 𝛉 2

2 =1

2𝐲 − 𝐠(𝛉) 2

2,

▪ Approach: iterative Levenberg-Marquardt (L-M)∆𝛉 = − 𝐉T𝐉 + λ𝐃T𝐃

−1(𝐉T𝐫)

Page 4: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Composite load models

▪ Aggregated by several load components [Choi et al’09]

▪ Parameter identifiability [Ma et al’08, Kim et al’16]

▪ Numerical issues in data fitting

– Slow convergence

– Parameter evaporation

4

M. K. Transtrum, and J. P. Sethna, “Improvements to the Levenberg-Marquardt

algorithm for nonlinear least-squares minimization,” Preprint submitted to Journal of

Computational Physics, pp. 32, Jan. 2012

0 10 20 30 40 500

10

20

30

40

50

Large Induction Motor %

Co

nst

ant

Po

wer

%

Correctvalues

Figure from Siming

Page 5: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Our focus

▪ Develop a systematic framework to quantify/visualize

redundancy among multiple parameters for any

dynamic load model

– Existing approaches in [Son et al ’14], and [Kim et al ’15]

limited to the CIM6+ZIP model and can only identify

pairwise correlation

▪ Improve the numerical performance of iterative NLS

approaches to be more robust against potential

plateau

– By excluding trivial parameters

– By incorporating a prior knowledge

5

IEEE CIM6+ZIP

Page 6: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

The WECC CMPLDW

▪ An improved load model to better capture load dynamics

during FIDVR

▪ Six load components (4 motors, electronic load, ZIP load)

▪ About 130 parameters in total

▪ Nominal parameter setups [Borden et al’10]6

CMPLDW Block Diagram [Source: Powerworld Block Diagram LoadCharacteristic]

Page 7: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Parameter Sensitivity Analysis ▪ Dynamic characteristics-related parameters

– Loads:

• Fractions: FmA, FmB, FmC, FmD, Fel

• 3-Φ motors: e.g., LFm, Ls, Lp, Lpp, Tpo, Tppo, H, Vtr1, Ttr1, Ftr1, Vrc1,

Trc1

• 1-Φ motors: e.g., CompPF, Vstall, Rstall, Xstall, Tstall, Vrst, Trst, Tth,

Th1t, Tvd

• Electronic load: e.g., PFel, Vd1, Vd2, frcel

• Static load: e.g., PFs, P1e, P1c, Pfrq, Q1e, Q1c, Qfrq

– Feeder: e.g., Rfdr, Xfdr, Fb

– Substations: Xxf

▪ Trajectory sensitivity [Hiskens-Pai’00] approximation

– Data source : PQube dataset provided by Southern California

Edison (SCE)

– Finite-difference derivative approximation

𝐽 𝑡 =𝜕𝑓(θ, 𝑡)

𝜕θ≈𝑓 θ + ε, 𝑡 − 𝑓 θ − ε, 𝑡

2ε7

Page 8: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Parameter Sensitivity Analysis (Cont.)

▪ Root-mean-squares (RMS) of trajectory sensitivities

▪ Parameter sensitivity depends on both the fault and

the initial parameter values

▪ About 60 sensitive parameters are included for further

analysis

8

RMS of sensitivities using SCE Data 5 RMS of sensitivities using SCE Data 6

Page 9: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Singular Value Decomposition

▪ Center and normalize the Jacobian J𝑠 of sensitive

parameters

▪ Singular value decomposition (SVD)

J𝑠 = U ∙ Σ ∙ VT

▪ J𝑠 is of low-rank, indicating parameter dependencies

▪ Truncated J𝑀𝑠 = U𝑀Σ𝑀V𝑀

T

▪ Define the scaled particip-

ation feature (SPF)

‒ F𝑖 sign flipping

F𝑖 = Σ𝑀V𝑀Te𝑖

9

principal

components

singular

values

participation

loadings

Page 10: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Dependency Detection and Visualization

▪ Clustering based parameter dependency detection

▪ K-Medoids [Kaufman ’09]

‒ Choose a data point instead of the average as the center

‒ Minimize the sum of pairwise dissimilarities

‒ More robust to noises and outliers

▪ Clustering evaluation index : e.g., Silhouette

[Rousseeuw ’87]

𝑠 𝑖 =𝑏 𝑖 − 𝑎(𝑖)

max{𝑎 𝑖 , 𝑏(𝑖)}

▪ Multidimensional scaling (MDS) [Borg-Groenen ’03]

‒ A lower-dimensional representation that preserves pair-

wise distances

‒ For dependency visualization

‒ For clustering results validation10

Page 11: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Choosing Optimal 𝑘▪ Silhouette across clusters when 𝑘 = 10, 𝑘 = 20, 𝑘 = 30

11

𝑘 = 10 𝑘 = 20 𝑘 = 30

Page 12: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Clustering Results Validation

12

▪ Trajectory sensitivities and clustering results visualized

by MDS when 𝑘 = 203Φ B&C 2nd low voltage trip delay time

3Φ B&C 2nd low voltage reconnection delay time

3Φ B&C 1st low voltage reconnection level

3Φ B&C synchronous reactance

1Φ D stall reactance

1Φ D thermal protection trip level

1Φ D thermal time constant

Page 13: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Improved Parameter Estimation

13

▪ Regularized NLS

– Slow convergence v.s. Parameter evaporation

– Objective regularization

min𝛉

𝐶 𝛉 =1

2‖𝐫 𝛉 ‖2

2 +1

2μ‖𝚪 ∙ (𝛉 − 𝛉𝟎)‖2

2,

– A prior knowledge of parameters 𝛉0 from previous tests

or load survey

– Regularization coefficient μ > 0 and weighting matrix 𝚪

– Levenberg-Marquardt step

∆𝛉 = − 𝐉T𝐉 + μ𝚪 + λ𝐃T𝐃−1

𝐉T𝐫 + μ𝚪 ∙ (𝛉 − 𝛉0)

Page 14: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Simulation on Synthetic Measurements

14

Output fitting results for the SCE Data 5, using synthetic P and Q data

with no noises

Page 15: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Comparison of Parameter Values

15

'Rstalld' 'Rfdr' 'Xfdr' 'FmD' 'Xxf' 'TTr1d' 'Vrc2a'

Synthetic 0.5 0.04 0.05 0.2 0.01 0.02 0.8

L-M 0.1916583 0.0503820

4

0.0569938

7

0.1359223 0.072381

0

0.0197794 0.6553204

Reg-L-M 0.4631009 0.0730058

4

0.0510472

9

0.1297006 0.020114

7

0.0207914 0.646751'Vrc1c' 'Ttr2c' 'Ttr1c' 'Lpa' 'FmB' 'Th1td' 'Ftr1b'

Synthetic 0.65 0.02 0.02 0.1 0.2 0.3 0.2

L-M 0.6875355 0.0196519

4

0.0195235

1

0.1874902

5

0.2563025 0.01 0.0407743

7

Reg-L-M 0.687564 0.0201532

4

0.0200005

1

0.1718149 0.18208 0.2847848 0.1117401

'Th2td' 'FmA' 'Vd1' 'Trc2a' 'Rsb' 'Tpoc' 'Tpoa'

Synthetic 1.7 0.05 0.75 0.73 0.03 0.1 0.092

L-M 1.092873 0.2185689 1.150139 1.11035 0.0158193

6

0.0667506

4

0.1974019

Reg-L-M 1.974133 0.0650879

6

0.8327271 0.976271 0.0493635

9

0.1306721 0.1001608'Trc1b' 'Hc' 'Lsc' 'P2e' 'Q2c' 'Pfrq 'Qfrq'

Synthetic 0.6 0.1 1.8 1 1.5 -1 -1

L-M 0.8753621 0.01 1.281682 4.144712 2.672409 -62.43499 -7.97859

Reg-L-M 0.6016281 0.0798483

1

1.845069 1.018427 1.502463 -0.9999593 -0.9999132

Page 16: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Simulation on Noisy Measurements

16

Output fitting results for the SCE Data 5, using synthetic P and Q data

with noises

Page 17: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Simulation on Real Measurements

17

Output fitting results for the SCE Data 6, using real P and Q

measurements data

Page 18: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Comparison of Parameter Values

18

'Ttr2c' 'Rfdr' 'Xfdr' 'Xxf' 'FmC' 'Vtr2c' 'FmA'

L-M 0.01974704 0.0384908

90.05377107 0.09259105 0.09772088 0.7266558 0.0876438

Reg-L-M 0.01973941 0.0483073 0.0522862

9

0.0689083

9

0.1114887 0.7237592 0.1163153

'FmD' 'Vtr2b' 'Vd2' 'PFs' 'Ftr2b' 'Vd1' 'CompPFd'

L-M 0.1981026 0.7381233 0.6281592 -0.9013258 0.2674962 0.7036738 1.0

Reg-L-M 0.2605251 0.6911023 0.6698054 -0.6526318 0.2970149 0.7066146 1.0

'Fb' 'LFmd' 'Lpa' 'Fel' 'Tpoc' 'PFel' 'Lpc'

L-M 0.7473184 1.0 0.1153315 0.2395047 0.09024712 1.0 0.1811523

Reg-L-M 0.7292499 1.0 0.04 0.0340158

4

0.1443441 1.0 0.4486523

'Rsb' 'Rsa' 'Hc' 'LFmc' 'P1c' 'P1e' ‘Q1c'

L-M 0.07069106 0.05025693 0.06846003 0.4044096 0.5738456 2.247874 0.7583346

Reg-L-M 0.4131136 0.2395168 0.01 0.4327505 0.6512989 2.071328 0.02354476

‘Q1e' 'Lsb' 'Tpob' 'Tpoa' 'Etrqb' 'Pfrq' 'Qfrq'

L-M 8.432362 1.918263 0.04610666 0.01302225-

4.223569-46.39091 85.85966

Reg-L-M 2.005963 1.771487 0.2009874 0.0091385 1.98918 -0.999848 -0.999829

Page 19: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Summary of Simulation Results

19

▪ A prior knowledge of parameters can help achieve

unique and reasonable parameter values

▪ Regularized L-M outperforms L-M in terms of

mismatches while effectively avoiding erroneous cases

when noisy measurements are applied

▪ The more sensitive a parameter is, the more

consistently it can be estimated

Page 20: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Conclusions

20

▪ There exists a high degree of redundancy in the WECC

CMPLDW parameters, challenging measurement-

based load modeling

▪ Quantifying and visualizing the redundancy suggests

it is difficult to estimate all parameters solely based on

measurement data

▪ Regularization can help achieve better parameter

identification performance by incorporating a prior

knowledge

▪ Future work

– Selection of μ and 𝚪

– Incorporating known feasibility constraints

– Real data based testing and validation

Page 21: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

Acknowledgement

Professor Hao Zhu

Siming Guo

21

Questions

Page 22: Redundancy analysis and improved parameter estimation for ...Redundancy analysis and improved parameter estimation for complex dynamic load modeling: ... when noisy measurements are

References

22

1. J. Ma et al., “Reducing identified parameters of measurement-based composite load

model,” IEEE Trans. Power Syst., vol. 23, no. 1, pp. 76–83, Feb. 2008.

2. D. Kosterev, A. Meklin, J. Undrill, B. Lesieutre, W. Price, D. Chassin, R. Bravo, and S.

Yang, “Load modeling in powersystem studies: WECC progress update,” in IEEE Power

Energy Soc. 2008 Gen. Meet. Convers. Deliv. Electr. Energy 21st Century, PES, no. point

3, 2008, pp. 1–8.

3. A. Borden and B. Lesieutre, “Model Validation: FIDVR Event Prepared for: Bonneville

Power Administration.”, 2010.

4. L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction to cluster

analysis. vol. 344, John Wiley & Sons, 2009.

5. P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis,” Journal of computational and applied mathematics, vol. 20, no. 1, pp.

53–65, 1987.

6. I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and Applications.

Springer, 2003.

7. D. Karlsson, and D. J. Hill. “Modelling and identification of nonlinear dynamic loads in

power systems,” IEEE Trans. Power Syst., vol. 9, no. 1, pp. 157–166, Feb. 1994.

8. J. More, “The Levenberg-Marquardt Algorithm, Implementation, and Theory,”

Numerical Analysis, G.A. Watson, ed., Springer-Verlag, 1977.

9. M. Steinbach, L. Ertoz, and V. Kumar, “The Challenges of Clustering High Dimensional

Data,” in New Dir. Stat. Phys., 2004, pp. 273–309.

10. J. Eriksson, “Optimization and Regularization of Nonlinear Least Squares Problems,”

Ph.D. dissertation, 1996.