reciprocal lattice - · pdf filereciprocal lattice • for every real lattice there is an...

73
Reciprocal Lattice Points to discuss Reciprocal lattice Definition and examples First Brillouin Zone Lattice planes Miller Indices

Upload: lyhanh

Post on 06-Feb-2018

240 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice

• Points to discuss• Reciprocal lattice• Definition and examples

• First Brillouin

Zone

• Lattice planes• Miller Indices

Page 2: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice

• A diffraction pattern is not a direct  representation of the crystal lattice

• The diffraction pattern is a representation  of the reciprocal lattice.

• But what is a reciprocal lattice?

Page 3: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice

• For every real lattice there is an equivalent  reciprocal lattice. A two dimension (2‐D) real 

lattice is defined by two unit cell vectors, say  and 

inclined at an angle. The equivalent 

reciprocal lattice in reciprocal space is defined  by two reciprocal vectors, say

and     . 

• Each point in the reciprocal lattice represents  a set of planes.

Page 4: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice

• The set of all wave vectors     that yield plane  waves with the periodicity of a given Bravais

lattice is known as its reciprocal lattice.

• Analytically,     belongs to the reciprocal lattice  of a Bravais

lattice of points     , provided that 

the relation                                  holds for any      and for all     in the Bravais

lattice.

• Factoring out           we can characterize  the  reciprocal lattice  as the set of wave vectors     

satisfying            =1 for all      in Bravais

lattice. 

Page 5: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice

• The Bravais

lattice that determines a given  reciprocal lattice is often referred to as the  direct lattice when viewed in relation to its  reciprocal lattice.

• Reciprocal lattice is a Bravais

lattice. We shall  prove it in next slides.

• Now question is that how reciprocal lattice  vectors can be chosen.

Page 6: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice vectors in 2D

Real lattice

Reciprocal lattice

a1

a2

b1

b2

Reciprocal lattice vectors can also be denoted by a*,b* etc. or sometime by g1 , g2 etc.

Page 7: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Defining the reciprocal lattice vector

Take two sets of  2D planes:

Draw directions normal:These lines define the orientation but not the length

We use 1d

to define the lengths

These are called reciprocal lattice vectors b1 and b2

b1

b2

Dimensions = 1/length

a1

a2

Page 8: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice vectors• The reciprocal vectors are defined as follows:• is of magnitude 1/d1

where d1

is the spacing of  the vertical planes, and is perpendicular to 

.

• is of magnitude 1/d2

where d2

is the spacing of  the horizontal planes, and is perpendicular to 

• A 

reciprocal 

lattice 

can 

be 

built 

using

reciprocal  vectors. 

Both 

the 

real 

and 

reciprocal 

constructions 

show 

the 

same 

lattice, 

using  different but equivalent descriptions. 

• Consider the following animation.

Page 9: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by
Page 10: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

The animation can be envisaged as  follows:

• The real lattice is described at the left, the  reciprocal lattice is described at the right.

• g is the reciprocal lattice vector.• The absolute value of g

is equal to             and 

the direction is that of the normal N

to the  appropriate set of parallel atomic planes of  the real lattice separated by distance d. 

Page 11: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

The animation can be envisaged as  follows:

• Imagine yourself to be an atom.

• When you fly around the crystal formed from  two parallel 7 x 7 planes, you would see the 

picture at the bottom.

• If someone watches you from above and tries  to figure out what you are seeing, he would 

draw the pictures at the top of the screen.

• One picture is a the real image, the other is an  imaginary picture.

Page 12: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal lattice vectors

• From examples it is obvious that for 3D.

i.e. is perpendicular to both and .

Similarly is perpendicular to both andand is perpendicular to both and

.

Page 13: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal lattice vectors

• The cross product                     defines a vector  parallel to 

with modulus of the area 

defined by  and       .

• The volume of the unit cell is thus given by 

• We can define the reciprocal lattice vectors 

,  and in terms of direct lattice

vectors , and  as follows.

Page 14: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal lattice vectors

Page 15: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice is a Bravais

Lattice

• Reciprocal lattice vectors  satisfy,

can be written as a linear combination of

Where

Page 16: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice is a Bravais

Lattice

• If        is any direct lattice vector, then

and thus,

Since is an integer, are also integers. Thus

is times an integer. Thus reciprocallattice is a Bravais lattice.

Page 17: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

The Reciprocal Of The Reciprocal  Lattice

• Since Reciprocal lattice is itself a Bravais lattice, one can construct its reciprocal lattice.

• Let reciprocal of the reciprocal lattice is the  set of all vectors G satisfying                        for 

all       in the reciprocal lattice. 

• Since any direct lattice vector       has this  property, all direct lattice vectors are in the 

lattice reciprocal to the reciprocal lattice. 

Page 18: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

The Reciprocal Of The Reciprocal  Lattice

• No other vectors can be, for a vector not in  the direct lattice has the form,

with at least one non-integral for that value of , and the above condition is violated for the reciprocal lattice vectors .

Page 19: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice Of Simple Cubic  Bravais

Lattice

• The simple cubic Bravais

lattice with cubic  primitive cell of side         has as its reciprocal 

lattice a simple cubic lattice with cubic  primitive cell of side            .  Where           is 

the crystallographer's definition. 

• The cubic lattice is therefore said to be self‐ dual, having the same symmetry in reciprocal 

space as in real space.

Page 20: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice Of SC Bravais

Lattice

If

then

Page 21: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice Of fcc

Bravais

Lattice

• The reciprocal lattice to a fcc

lattice is the bcc  lattice.

• Consider a fcc

compound unit cell.

• Locate a primitive unit cell of the fcc, i.e., a  unit cell with one lattice point.

• Take one of the vertices of the primitive unit  cell as the origin.

• Give the basis vectors of the real lattice.

Page 22: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice Of fcc

Bravais

Lattice• Then from the known formulae you can 

calculate the basis vectors of the reciprocal  lattice.

• These reciprocal lattice vectors of the fcc represent the basis vectors of a bcc real 

lattice.

• Note that the basis vectors of a real bcc lattice  and the reciprocal lattice of an fcc

resemble 

each other in direction but not in magnitude.

Page 23: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice Of fcc

Bravais

Lattice• The fcc

Bravais

lattice with conventional cubic 

cell of side         has as its reciprocal a bcc  lattice with conventional cubic cell of side   

. i.e.

This has precisely the form of the bcc primitive vectors provided that the side of the cubic cell is taken to be .

Page 24: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice Of bcc Bravais Lattice

• The reciprocal lattice to a bcc lattice is the fcc lattice.

• Only the Bravais

lattices which have 90  degrees between                         (cubic, 

tetragonal, orthorhombic) have                        parallel to their real‐space vectors.

Page 25: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattice Of bcc Bravais Lattice

• The bcc Bravais

lattice with conventional cubic  cell of side         has as its reciprocal a fcc

lattice with conventional cubic cell of side   

. i.e.

• Reciprocal of bcc is fcc

and reciprocal of fcc

is  bcc this proves that the reciprocal of the 

reciprocal is the original lattice.

Page 26: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Of Simple Hexagonal  Bravais

lattice

• A simple Hexagonal Bravais

lattice with lattice  constants c and a has its reciprocal another 

simple Hexagonal lattice with lattice constants and rotated through

about the c-axis with respect to the direct lattice.

Page 27: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Of Simple Hexagonal  Bravais

lattice

Page 28: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattices to SC

Direct lattice Volume

3/2 a

Reciprocal lattice

Page 29: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattices to fcc

Direct lattice Reciprocal lattice

Volume

3/22 a

Page 30: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Reciprocal Lattices to bcc

Direct lattice Reciprocal lattice

Volume

3/24 a

Page 31: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Volume Of The Reciprocal Lattice  Primitive Cell

• If      is the volume of the primitive cell with  side      in the direct lattice the primitive cell of 

the reciprocal lattice has a volume                 .

• The simple cubic Bravais

lattice, with cubic  primitive cell of side a, has for its reciprocal a 

simple cubic lattice with a cubic primitive cell  of side ( in the crystallographer's definition). 

The cubic lattice is therefore said to be self‐ dual, having the same symmetry in reciprocal 

space as in real space.

Page 32: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Brillouin

zone

• In the propagation of any type of wave  motion through a crystal lattice, the 

frequency is a periodic function of wave  vector k.

• In order to simplify the treatment of wave  motion in a crystal, a zone in k‐space is 

defined which forms the fundamental periodic  region, such that the frequency or energy for 

a k

outside this region may be determined  from one of those in it.

Page 33: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Brillouin

zone

• This region is known as the Brillouin

zone  sometimes called the first or the central 

Brillouin

zone.

• It is usually possible to restrict attention to k values inside the zone.

• Discontinuities occur only on the boundaries.• The central Brillouin

zone for a particular solid 

type is a solid which has the same volume as  the primitive unit cell in reciprocal space.

Page 34: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Construction of first Brillouin

zone

Draw lines connecting the origin point to its nearest neighbors.

Draw perpendicular bisectors to these lines. These perpendicular bisectors are Bragg Planes.

Taking the smallest polyhedron containing the point bounded by these planes is first Brillouin zone..

Page 35: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

First Brillouin

Zone

Page 36: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Higher Brillouin

Zones• The second Brillouin

zone is the set of points 

that can be reached from the first zone by  crossing only one Bragg plane.

• The (n

+ 1)th Brillouin

zone is the set of points  not in the (n

1)th zone that can be reached 

from the nth zone by crossing n

1 Bragg  planes. 

• The nth Brillouin

zone can be defined as the  set of points that can be reached from the 

origin by crossing n

1 Bragg planes, but no  fewer.

Page 37: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

The locus of points in 

reciprocal space that 

have no Bragg Planes 

between them and 

the origin defines the 

first Brillouin

Zone. It 

is equivalent to the 

Wigner‐Seitz unit cell 

of the reciprocal 

lattice. Small black 

dots represent point of intersection of 

Bragg planes

Page 38: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

The second Brillouin

Zone is the region of 

reciprocal space in 

which a point has one 

Bragg Plane between 

it and the origin. This 

area is shaded yellow 

in the picture below. 

Note that the areas of 

the first and second 

Brillouin

Zones are 

the same.Small black dots 

represent point of intersection of 

Bragg planes

Page 39: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

The construction can 

quite rapidly become 

complicated as you 

move beyond the 

first few zones, and it 

is important to be 

systematic so as to 

avoid missing out 

important Bragg 

Planes.

Page 40: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Small black dots  represent point 

of intersection of  Bragg planes

Page 41: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

http://www.doitpoms.ac.uk/tlplib/brillouin_zones/printall.php

Page 42: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

First Brillouin

zone of bcc lattice• The reciprocal of the bcc lattice is the fcc

lattice. The first Brillouin

zone of the bcc  lattice is just the fcc

Wigner Seitz cell.

Page 43: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

First Brillouin

zone of bcc lattice

Page 44: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

First Brillouin

zone of fcc

lattice

• The first Brillouin

zone of the fcc

lattice is just  the bcc Wigner Seitz cell.

Page 45: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

First Three Brillouin Zones Of bcc and fcc lattices

Page 46: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Lattice planes

• Any plane containing at least three non‐ collinear Bravais

lattice points.

• Because of the translational symmetry of the  Bravais

lattice, any such plane will actually 

contain infinitely many lattice points which  form a 2D Bravais

lattice within the plane.

Page 47: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Lattice Planes Of simple Cubic Bravais Lattice

Page 48: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Family Of Lattice Planes

• A set of parallel equally spaced lattice planes,  which together contains all the points of the 

three dimensional Bravais

lattice.

• Any lattice plane is a member of such family.

• Resolution of a Bravais

lattice into a family of  lattice planes is not unique.

Page 49: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Theorem of possible families of lattice  planes

• For any family of lattice planes separated by a  distance d, there are reciprocal lattice vectors  perpendicular to the planes the shortest of 

which have a length of             .

• Conversely, for any reciprocal lattice vector      there is a family of lattice planes normal to      

and separated by a distance d, where            

is the length of the shortest reciprocal lattice  vector parallel to      . 

Page 50: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Proof Of First Part Of Theorem• Given a family of lattice planes.

• be a unit vector normal to the planes.

• is a reciprocal lattice vector.

• The plane wave            is constant in planes  perpendicular to      and has the same value in 

planes separated by                               .

• One of the lattice planes contains the Bravais lattice point             ,              must be unity for  any point r in any of the planes. 

Page 51: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Proof Of First Part Of Theorem• The planes contain all Bravais

lattice points

=1 for all      , so that      is indeed a reciprocal  lattice vector.

is the shortest reciprocal lattice vector normal to  the planes.

• For any wave vector shorter than      will give a plane  wave with wave length greater than                          .

• Such a plane wave cannot have the same value on all  planes in the family, and cannot give a plane wave 

that is unity at all Bravais

lattice points.

Page 52: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Proof Of Second Part Of Theorem• Given a reciprocal lattice vector.• Let       be the shortest parallel reciprocal 

lattice vector.

• Consider a set of real space planes on which  the plane wave            has the value unity.

• These planes are perpendicular to      and  separated by a distance                       .

• All Bravais

lattice vectors       satisfy                    

for any reciprocal lattice vector       they must  all lie within these planes.

Page 53: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Proof Of Second Part Of Theorem• The spacing between the lattice planes is also 

d but not an integral multiple of d, for if only  every nth plane in the family contained 

Bravais

lattice points.

• Then according to the first part of the  theorem, the vector normal to the planes of 

length                i.e. the vector           , would be  a reciprocal lattice vector.

• This would contradict our original assumption  that no reciprocal lattice vector parallel to      

is shorter than     .

Page 54: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Miller Indices Of lattice Planes• The correspondence between reciprocal 

lattice vectors and families of lattice planes  provides a convenient way to specify the 

orientation of a lattice plane.• In general we describe the orientation of a 

lattice plane by giving a vector normal to that  plane.

• There are reciprocal lattice vectors normal to  any family of planes, we pick a reciprocal 

lattice vector to represent the normal.

Page 55: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Miller Indices Of lattice Planes• To make the choice we should use the shortest such 

reciprocal lattice vector. In this way we arrive at the  Miller indices of the plane.

• Miller indices of a lattice plane are the coordinates of  the shortest reciprocal lattice vectors normal to that 

plane, with respect to the specified set of primitive  reciprocal lattice vectors.

• A plane with Miller indices             is normal to the  reciprocal lattice vector                            .

• are integers.• They have no common factor.• They depend on particular choice of primitive 

vectors.

Page 56: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Miller Indices Of lattice Planes• A set of three integers that designate 

crystallographic planes, as determined from  reciprocals of fractional axial intercepts.

• In any kind of repeating pattern, it is useful to  have a convenient way of specifying the 

orientation of elements relative to the unit  cell. This is done by assigning to each such 

element a set of integer numbers known as its  Miller index. 

Page 57: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Miller Indices Of Cubic Bravais

Lattice• In simple cubic Bravais

lattice the reciprocal 

lattice is also simple cubic and the Miller  indices are the coordinates of a vector normal 

to the plane in the obvious cubic coordinate  system.

• Fcc

and bcc Bravais

lattices are described in  terms of a conventional cubic cell .Any lattice 

plane in a fcc

or bcc lattice is also a lattice  plane in the underlying simple cubic lattice, 

the same elementary cubic indexing can be  used to specify lattice planes. 

Page 58: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Miller Indices Of Cubic Bravais

Lattice• It is only in the description of non‐cubic crystal 

that we must remember that the Miller  indices are the coordinates of the normal in a 

system given by the reciprocal lattice, rather  than the direct lattice.

• A lattice plane with Miller indices           is  perpendicular to the reciprocal lattice vector 

=                         , it will be contained in the   continuous plane                      for suitable 

choice of the constant A.

Page 59: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Miller Indices• This plane intersects the axis determined by 

the direct lattice primitive vectors      , at the  points                        and           , where the        are determined by the coordination that          

indeed satisfy the equation of the plane        

.

• Since                                                           

and  

, it follows that, 

Page 60: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Miller Indices• Intercepts with the crystal axes of a lattice plane are 

inversely proportional to the Miller indices of the  plane.

• Miller indices is a set of integers with no common  factors, inversely proportional to the intercepts of the 

crystal plane along the crystal axes.

Figure shows Miller indices of a lattice plane. The shaded plane can be a portion of the continuous planes in which the points of the lattice plane lie. The Miller indices are inversely proportional to the xi.

Page 61: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Examples of Miller Indices

Page 62: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Indexing planes in three‐dimensions• We proceed in exactly the same way, except 

that we now have 3‐digit Miller indices  corresponding to the axes a, b

and c.

The indices may denote a single plane or a set of parallel planes.

Page 63: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by
Page 64: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by
Page 65: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Some examples of planes

Page 66: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Some More Examples

Page 67: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Some More Examples

Lattice planes are usually specified by giving their Miller indices in parentheses (h,k,l). In cubic system a plane with a normal (4,-2,1) is called a (4,-2,1) plane. The commas are eliminated without confusion by writing n instead of –n, simplifying the description to (421)

Page 68: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by
Page 69: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Conventions For Specifying Directions• A similar convention is used to specify 

directions in the direct lattice, but to avoid  confusion with the Miller indices (directions in 

the reciprocal lattice) square brackets are  used instead of parenthesis. 

Page 71: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Notation of specifying family of planes

• (100), (010) and (001) planes are equivalent in  a cubic crystal.

• We refer to them collectively as the {100}  planes, and in general we use {hkl} to refer to 

the (hkl) planes and all those that are  equivalent to them by virtue of the crystal 

symmetry.

Page 72: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Notation of specifying family of  directions

• The [100], [010], [001], [100], [010] and [001]  directions in the cubic crystal are referred to ,  collectively, as the <100> directions.

Page 73: Reciprocal Lattice -   · PDF fileReciprocal Lattice • For every real lattice there is an equivalent reciprocal lattice. A two dimension (2‐D) real lattice is defined by

Symmetry Operations

3-tetrad axes 4-triad axes

6-diad axes