recent progress with lattice regularized diffusion monte … · workshop on recent developments in...

64
Recent progress with Lattice Regularized Diffusion Monte Carlo Sandro Sorella SISSA Democritos Trieste In collaboration with TurboRVB developers (www.sissa.it/~sorella) Claudio Attaccalite University of San Sebastian, Spain Michele Casula University of Illinois at Urbana-Champaign, IL, United States Leonardo Spanu University of California, Davis,  United States  Workshop  on ‘’Recent developments in electronic structure methods’’  June  2008 • Urbana-Chaimpain

Upload: phamdang

Post on 09-May-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

Recent progress with Lattice Regularized

Diffusion Monte Carlo

Sandro SorellaSISSA Democritos Trieste

In collaboration with TurboRVB developers (www.sissa.it/~sorella)

Claudio AttaccaliteUniversity of San Sebastian, Spain

Michele Casula University of Illinois at Urbana­Champaign, IL, United States

Leonardo SpanuUniversity of California, Davis,  United States

 Workshop  on ‘’Recent developments in electronic structure methods’’ June  2008 • Urbana­Chaimpain

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 2

Outline

• Diffusion Monte Carlo (DMC, D.M. Ceperley ‘82) methods:

the algorithm on a lattice (M.Casula et al. ’05)

– Non local pseudopotentials and locality approximation

– Lattice regularization

• Semplification of the algorithm Improved efficiency.

N.B. Opposite path compared to DMC

(improved algorithm Umrigar ’93, quite involved, now standard...).

• Application to some simple test cases (still in progress).

– Water monomer all electron (no pseudo).

– Benzene molecule with pseudo Carbon.

– Bulk Silicon. with pseudo and PBC.

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 3

Motivations• Accurate and efficient methods  for Quantum Monte Carlo (peta­scaling).• Lattice regularization: an approximation that is used in Path integrals. ‘’ Do it with path integrals, they really are discrete’’ R. Feynmann   My interpretation (extrapolated):   Continuous models are sometimes not well  posed mathematically    and only  the a0 of some lattice regularized theory is well defined:   where ‘’a’’  is the minimum cutoff distance in real space.

    e.g. lattice gauge theories or generic field theories.

  They make sense  when and because the a0 limit exists.  The approximation a>0 is  easy to control mathematically. 

Here we want to show that : ‘’ Do it on a lattice, it’s really more efficient …!!!’

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 4

Notations

{ }NrrrrN

Nx

,,,,  :scoordinate 3by  determined 

electrons  ofion configurat Generic   

321

 ⋅⋅⋅

LRDMCfor  space lattice Minimum  aDMCfor  timediffusion  Minimum  τ

1/2). e.g. units ( electrons  for thelaplacian  full        Coulombion ­ion ,ion ­el , el­el  )(

)( of state Ground 

LRDMC..or  DMCfor function  Guiding  

  0

×=∆=

+∆−=

NxV

xVH

g

ψ

ψ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 5

The ‘’DMC’’ algorithm on a lattice

flip)­(spin for    2/ e.g.    

computed becan  andgiven  are elementsmatrix  The 

, xxJxHxH xx ≠′=′=′

                   

 Heisenberg 1D for the  e.g.  1

↑↓↓↑↑↓↑↑↓↓=

⋅= +∑x

SSJH ii

i

0)( such that   )(             

computed) be(can given  isfunction  guidingA 

>→ xx gg ψψ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 6

)(/)()(

:energy local The

, xHxx

xHxe gxx

xg

g

gL ψψ

ψψ

′′

′== ∑

   0s problemsign  no I Case  x,x ≤′

          )(/)(

   matter)not  do (diagonals  0

,,

≠′′=′

=′

′ xxxHxxx

sgxxg

xx ψψ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 7

)(0)(g)(g(x)

  :yprobabilit   theSampling      0 xexexx E

gH ψψψψ ττ −− →∝Π

 endif    !!! done have     We

else    2 step  togo      

 ii)       

       prob. with   Choose  i)       

 if   

)](exp[   )3

1)( with 10  ;  ),/(ln,0   )2

1       : 0  )1

x    )(walker  :chain Markov    

           

,

,

,

000

t

T

txxtt

T

tLTttt

Tx

ttt

tttN

spxx

tt

xetww

zpztNzMintsN

wxxt

w,wx

txx

T

T

txx

+=

−=′=

<+

−=

=≤<−=>−=

===

′′′

′+

+

′′∑

τ

τ

No error in τ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 8

The picture of the DMC on a lattice

0.0 0.5 1.0 1.5

­7.0

­6.5

­6.0

­5.5

­5.0

­4.5

 

 L

oca

l En

erg

y e L

(x(t

))

τ

2atT ≈

.0 0 .0 5 .1 0 .1 5

­ .7 0

­ .6 5

­ .6 0

­ .5 5

­ .5 0

­ .4 5

 

 L

oca

l En

erg

y e L

(x(t

))

τ

Carlo. MonteDiffusion  :name  that theFrom

process.diffusion  afor y probabilit Transition 

0limit  continuous In the

→′→

∆+ xex

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 9

  

 for    0

0for                      0

0for                

)(,,

,

,,

,

=′>+

><

=

∑≠′′

′′

′′

xxsH

s

sH

H

xxxxxx

xx

xxxx

xxeff

 0)s  some problem,(sign  II Case  x,x >′

!!same! apply thecan   weandn frustratio no    effH

          )(/)(

   matter)not  do (diagonals  0

,,

≠′′=′

=′

′ xxxHxxx

sgxxg

xx ψψ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 10

Fixed node approximation 

II with compatibleenergy  possiblelowest       

 thehas )( 0limit  continuous in the III)

nodes. Fixed why sThat'  0)()(   II)

E  I)

: ofenergy better  a has  of state ground The

0

0

00

00

FN

g0

xa

xx

HH

H

eff

effg

gg

gg

effeff

effeff

effeff

ψ

ψψ

ψψψψ

ψψ

ψψ

ψψ

>

≤=

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 11

)(FN)(G)(G(x)

  :yprobabilit   theSampling      

xexexx MAeff E

GH ψψψψ ττ −− →∝Π

 endif    !!! done have     We

else    2 step  togo      

 iii)       

)1(          prob. with   Choose  ii)       

0)(/)()(

  for    i)       

 if   

)](exp[   )3

)),(/ln(   )2

1      : 0  )1

x    )(walker  :chain Markov    

           

,,

,

000

t

,

T

xtxxtxxtt

tGGt

txxt

T

tLTttt

tT

ttt

ttt

ppxx

xxxV

Hpxx

tt

xetwwtxVzMint

wxxt

w,wx

T

txx

T

+=

=′=

>′−

=≠′

<+

−=−−=

===

∑′

′′+

+

′ ψψ

τ

τ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 12

0 )()()(  Indeed

 :small becan  operator   The

0,

,

=′−= ∑>±′

′+

′ xxsxxxggG HxxVxxO

O

ψψψ

: then'91, PRB al.et  Haaf T. H. definite, negativenon  is O

VMCgg

gg

gg

geff

g

effeff

effeffeff

effg

effeffg E

HHHH==≤==→

ψψψψ

ψψψψ

ψψ

ψψ

ψψ

ψψ

00

00

0

0

MAE 

MAeffeff

effeffeff

effeff

effeffeff

effeff

effeff

EHOHH

=≤−

==→00

00

00

00

00

00

FNE ψψ

ψψ

ψψ

ψψ

ψψ

ψψ

)()( xexEx

LMA ∑Π= Computable

Upper bound property, OHH eff −=  remind

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 13

Why O is positive definite? Just very simple algebra:

[ ]xxxHxs

xxxxsO

gxxgxx

ggsxx

xxxx

≠′′=

′′−=

′′

>′ ≥∑

       )()(        :Remind

)(/)()(/)(

,,

2

0,, 0

,'

ψψ

ψψψψψψ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 14

All this approach can be generalized and extended to Hamiltonian defined in the continuous space

el.~#finite is i.e.evaluated, becan               

 :elementsmatrix  ofnumber         the  for  that is used have  weAll

xHx′

xgiven a

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 15

Can we put the physical Hamiltonian on a lattice?

Vm

H +∆−=2

2�

Namely to find a minimum length cutoff ‘’a’’ such that:

HuaaH

aHHa

a

  to'close''' is ..~ reasonablefor  

 and   0for     →→

Motivations:• The exact Green function can be sampled for lattice hamiltonians: no approximations, no time discretization.• No restriction to non local operators appearing in H.

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 16

Non local pseudopotentials

 For heavy atoms pseudopotentials are necessary to

reduce the computational time

Usually they are non local

In QMC angular momentum projection is calculated by using a quadrature rule for the integrationS. Fahy, X. W. Wang and Steven G. Louie, PRB 42, 3503 (1990)

Discretization of the projection Lattice Hamiltonian term

∑∑=−m

jil

ljiP lmlmrvRrV )()( ,

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 17

The pseudo potential acts on single particle wavefunctionswith a reference centered on the pseudoatom we have:

∑∫

∫ ∑

−−=

′′⋅+

≅′′⋅′+

=

′′′=

+=

knkkll

ml

l

lmlm

ll

l

llocP

nrnnPl

nrnnPndl

nrnYnYndrvnrV

VrvV

),()(1

4),()(

14

),()()()(),(

)(

,

ψπψπ

ψψ

nr

⋅kn′

Directions are randomized and discretized : 6 ‘’lattice’’ points are usually enough great idea !!! Borrowed

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 18

Locality approximation 

)(

)()(

,

x

xVxV

g

xg

Pxx

LA

ψ

ψ ′=

∑′

Locality approximation in DMC Mitas et al. J. Chem. Phys. 95, 3467 (1991)

Effective Hamiltonian HLA containing the localized potential:

• the mixed estimate is not variational since

• (locality is exact only if is exact)

ττ

ττ

τ

τ

ψψψψ

ψψψψ HH

g

g ≠ 

0for  of GSLALA

LA

VVH

H

++∆−=

→= τψ τ

gψLA

g Vx in  sDivergence0)( →=ψ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 19

Locality approximation drawbacks

•non variational results:The energy may be good but we do not really know if it corresponds to a good wavefunction close to the ground state.

•simulations less stable when pseudo are included divergencies appear in the localized potential close to the nodal surface: 0)( =xgψ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 20

But what about the Laplacian?

Within Lattice Regularized Hamiltonians we can avoid the locality approximation!

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 21

Lattice regularizationKinetic term: discretization of the laplacian

hopping term t→1/a2 where a is the discretization mesh

22

2 2

( ) ( ) 2 ( )( ) ( )

d f x a f x a f xf x O a

dx a

Laplacian with finite differences in the 1D case:

3 dimensional case:

)](2)()([1

,,2 rfarfarf

a zyx

a

−−++=∆→∆ ∑

=

ννυ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 22

In order to sample the continuous space we use randomized reference frames for the three orthogonal directions.

This is exactly the same trick to compute angular integrals with pseudopotentials and allows to sample the continuous space

in a very simple and efficient way.

The simplification: the simple LRDMC

x�y�

z�

Use of randomized directions (no real lattice) necessary for Coulomb potential: for a real lattice there is a finite

probability that two electrons occupy the same site.We simply do not know what to do in this case (yet).

Further simplification?

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 23

Previous approach:Lattice discretization with two meshes

Separation of core and valence dynamics for heavy nuclei by means of two hopping terms in the kinetic part

),()( )1()( )( 22 aaOxpxpx aa ′+Ψ∆−+Ψ∆≈∆ Ψ ′

a finest mesh, a’ largestp is a function which sets the relative weight of the two meshes.

It can depend on the distance from the nucleus:     0)(    and    1)0(    , if =∞=′< ppaa

Moreover, if a’ is not a multiple of a, the random walk can sample the space more densely!

Our choice: 2 11

)(r

rpγ+

=

Double mesh for the discretized laplacian

2 / 4Z

14// 2 +=′ Zaa

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 24

Lattice regularization (main idea):how to work with a~1 (a.u.)?

For a better continuous limit: for a0, HaH choose:

Local energy of Ha = local energy of H

Definition of the lattice regularized Hamiltonian

Much faster convergence in the lattice space a!

)( 2aOVVH aaa ++∆−=+∆−=

M. Casula, C. Filippi, S. Sorella, PRL 95, 100201 (2005)

( )

)()(      

)(

)()(

2aOxV

xx

xVVg

ga

a

+=

∆−∆+=

ψψ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 25

Why  this is a much better choice?

...

:on theoryperturbati simpleby Then 

 allfor    xx  

:condition LRDMC  thefrom coming

(I)      0with 

   GS ingcorrespond with  of 

:energy state ground  thecompute  we0any  For 

002

0

a2

+∆+=

=

=∆

∆+=>

ψψ

ψψ

ψ

ψ

HaEE

xHH

H

HaHHE

a

a

gga

g

aa

)|(|  :(I) usingBut  2g0g0g000 ψψψψψψψψ −=−∆−=∆ OHH

)(error  LRDMC Thus2

02

0 ga aOEE ψψ −=−

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 26

DMC vs LRDMC

extrapolation properties

Same Error with same efficiencybut different prefactor…

Error Error (my guess)

Efficiency ~1/a2Efficiency   ~ 1/τ

For each awell defined Hamiltonian

Trotter approximation

LRDMCDMC

2

02 ψψ −ga

0ψψτ −g

2a≈τ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 27

But there is a subtle point….

( )

=+∆−=→<∆

∆−=

∆−∆+=

=

­

  ­

 ofenergy  GS #12

||But 

surface nodal on the becan   Namely 

)(

)()(

)(

)()(

:potential  theback tolook  sLet'

0)(                          surface nodal  theexists  therefermionsFor 

2

g

aaaa

a

g

ga

Lg

ga

a

VHa

el

V

xx

xex

xxVV

x

ψψ

ψψ

ψ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 28

( ))(

)()(

)(

)()(

OK.  wasnode fixed   theonly 

LRDMC original in the correctly  definednot    was

xx

xex

xxVV

H

H

g

ga

Lg

ga

a

effa

a

ψψ

ψψ ∆

−=∆−∆

+=

0  distanceion ­el and el­elfor  finite becan 

)( conditions cusp  theall satisfyingBy 

→xeL

∆−

′>

∆−

=′

otherwise                                      )(

)()(

  somefor  0 if )(

)()(),( ,

xx

xe

xsxx

xexVMax

V

g

ga

L

xxg

ga

L

a

ψψ

ψψ

N.B.        No  ad hoc parameter has been used         in this simple LRDMC.

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 29

32 )( Thus

employed. ision approximat node Fixed ifa~ esion vanish wavefunctregion the In this S a~region    nodal  thearound  volumeThe

S. area has surface nodal The

axaSENODALa ≈≈∆ ψ

Estimation of the error due to the nodal surface

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 30

21 Kaa +=η

S. Sorella, M. Casula, D. Rocca, J. Chem. Phys. 127, 014105 (2007)

0.0 0.1 0.2 0.3

­5.44

­5.43

­5.42

­5.41

 

 

En

erg

y (H

)

a2

  LRDMC K=0,(a '/a)2=10    LRDMC PRL

  LRDMC K=7.37 (a '/a)2=10

  LRDMC K=3.2  (a '/a)2=5 

Convergence for C

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 31

Nodal error contr. in LRDMC ~a^3

0.00 0.05 0.100.00

0.01

0.02

 

 

<H

a >­<

H>

a30.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

0.01

0.02

 

 

<H

a >­<

H>

a2

aa

aa

ag

ag

ag

aa

ga

HH

HH

HH

ψψ

ψψψψ

ψψψψ

=

==

                    

         

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 32

The new approachCarbon pseudoatom

0.0 0.1 0.2 0.3­5.46

­5.45

­5.44

­5.43

­5.42

­5.41

 

 

En

erg

y (H

)

a2

  The simple LRDMC  The PRL'05 choice

. because ionalantivariat It was surface. nodal thefrom coming  term  the wasproblem The 3

−∞→V(x)a

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 33

What about locality approximation?

)(

)()(

,

x

xVxV

g

xg

Pxx

LA

ψ

ψ ′=

∑′

0)(  when ­ becan  )(Again  0g0 →∞ xxV LA ψ

The locality approximation is simply not defined in LRDMC as:

ED   UNBOUND)(

)()(

0 −∞==

++∆−=

xVE

xVxVHLAa

LAaaa

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 34

The problem of UNBOUNDED ground state energy was overlooked

0 2000 4000 6000 8000 10000

­5.5

 

 

Lo

cal e

ner

gy 

(H)

Iterations

 With vanishing guiding

The exact LRDMC energy with locality approx. should be –INFTY!!!

No big sign of instability seen

0 200 400 600­1000

­800

­600

­400

­200

 

 

En

erg

y (H

)

Iterations

 With non zero guiding 

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 35

Instead without Locality everything is well defined within LRDMC

0 2000 4000 6000 8000 10000

­6.5

­6.0

­5.5

­5.0

­4.5

 

 

En

erg

y (H

)

Iterations

 With non zero guiding With guiding vanishing at the nodes

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 36

Summary

below. from bounded if  )(     if

)(

: withdefined  wellis  0 LRDMC The

xV

xVH

a

a

aaa +∆−=

This is possible if:

3) The guiding function satisfies the cusp conditions.4) No type of locality approximation is employed or

use a ‘’bosonized’’ guiding function that never vanishes for fermions with large a0 error.

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 37

Standard DMC is based on the discretization in time e.g. Trotter approximation.

Even in this formalism the problem of infinitely negative potentials exists.

.­)(even when sense makes  if   seigenvalue bounded has

)(  ,

:matrixfunction Green  The

0

 ,

∞=∞+<+∆−=′= −

xVH

xVHxexG Hxx

τ

+∞→=→

′=∆+−

−∆+′−′

02/ 

0 )(

,

2/ )(2/ 2/ )(,

0

00

:(Trotter) in timetion discretiza naiveA 

xexeG

xeeexGxV

xx

xVxVxx

ττ

τττ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 38

I just note here that: 1) There is no proof in the literature that the Green function

used with the locality approximation has a bounded spectrumonce the discretization in time is employed.

By simple inspection it should be like that in the Umrigar ’93 DMCbecause there is a cutoff in the local energy

2) Even if the simulation is stable, this does not mean that the

numbers make sense (see LRDMC example). So some care should be used before trusting a DMC energy if you do not know

what the algorithm does to avoid divergences close to the nodal surface.

 1τ

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 39

Neverheless even Umrigar ’93 may failCarbon pseudoatom (He core, SBK pseudo)

LRDMC with no locality

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 40

This is easily understood

)(

)()(

,

x

xVxV

g

xg

Pxx

LA

ψ

ψ ′=

∑′

)()()(

)(

, nYnYndrvV

VrvV

ml

l

lmlm

ll

l

llocP

′′=

+=

−−=

∫ ∑

21 /1~)(SBK  But the rrv +

3g ||/1~)(   |~|)( nodes  the toclose Thus ssVsx LA

±ψ32 / sVVVH s

LALA −−∂≈++∆−=

NO calculation needed the GS energy of HLA is simply See e.g. Landau, ‘’collapse of a particle in an attractive centre’’

∞−

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 41

Stability

locality approximation large and negative attractive potential close to the nodal surface. It works for finite non local pseudo but depends strongly on the way the algorithm allow (or not) the crossing of the nodal surface. LRDMC works always as long as the non local pseudo has a bounded spectrum from below (no matter if it is infinitely positive).

++

Dangerous attraction!

nodal surface

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 42

Error in the discretization

Discretized Laplacian

Discretized non local pseudopotential

e

e

Z

discretization error reduced by the randomization of the quadrature mesh

discretization error reduced by the introduction of a double mesh

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 43

The metal insulator transition within LRDMC

15 20 25

­107.0

­106.5

LRDMC

P transition~19.2Gpa

64 Si  Γ­point

 

 

En

erg

y (

eV

)

V/A3

 β­tin  Diamond

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 44

Relative efficiency for carbon atomwith SBK pseudopotentials

0.162.03.40.0256

0.111.31.50.0120

0.0830.81.00.0068

Lattice spaceLRDMC

Non local DMC

Time step

T  12σ

η ∝ Variance σ 2

CPU time T

Z effective = 4

LRDMC is slightly less efficient than the non local DMC

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 45

Relative efficiency for iron dimer with Dolg pseudopotentials

0.062515.05.20.0039

0.03907.01.80.0015

0.02845.21.00.0008

Lattice spaceLRDMC

Non local DMC

Time step

LRDMC is 3-5 times faster than the non local DMC

When stable, the standard DMC is 1.25 faster than the non local DMC

Z effective = 16

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 46

Water monomer (no pseudo)

0.00 0.01 0.02 0.03 0.04­76.426

­76.425

­76.424

­76.4234xDt   (H ­1)

 

 

En

erg

y (H

)

<Ha>­<H>

 <H>

 <Ha> DMC

2)(  )( tbtaEtE DMCDMC ∆+∆+=∆

0.0 0.1 0.2 0.3 0.4­76.5

­76.4

­76.3

­76.2

­76.1a­>   <H0

a>=<H>=­ . ( ) 76 4245 1

 

 

En

erg

y (H

)<Ha>­<H>

 <Ha> <H>

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 47

(*) I. G. Gurtubay and R. Needs JCP, 127, 124306 (2007).

Similar non linear DMC extrapolation in a recent paper

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 48

Water monomer

3/2)(  )( tbtaEtE DMCDMC ∆+∆+=∆

.0 00 .0 01 .0 02 .0 03 .0 04­ .76 426

­ .76 425

­ .76 424

­ .76 4234xDt   (H ­1)

 

 E

ner

gy 

(H)

<Ha>­<H>

 <H>

 <Ha> DMC

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 49

Water monomer

­76.42830(5)DMC with few par.(*)

HF+ Backflow

  ­76.4219(1)   GAUSSIAN      No QMC

   Hartree­Fock 

  DMC energy    (Hartree)

   Optimization        method 

Wavefunction nodes

 ­76.438(1)     CCSDT….   EXACT       

 ­76.4257(1) AGP+J2+J3+J4         AGP (+)

 ­76.4245(1)HF+J2+J3+J4(2­3­4 bodies)

   Hartree­Fock 

 ­76.42376(5)  DMC with few  parameters(*)      

   Hartree­Fock 

  ­76.4230(2)   HF+J2+J3 (2­and 3­bodies)  

   Hartree­Fock    

(*) I. G. Gurtubay and R. Needs JCP, 127, 124306 (2007). (+) M. Casula et al. JCP, 121, …(2004), with small basis -76.4175(4).

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 50

The benzene molecule

.0 00 .0 05 .0 10.59 2

.59 3

.59 4

.59 5

.59 6

Exp.

 

 

Dis

sosi

atio

n E

ner

gy 

(eV

)

a2

 <H>

 <Ha>

.0 00 .0 02 .0 04

­ .37 72

­ .37 70

­ .37 68

­ .37 66

­ .37 64

 

 

En

erg

y (H

)

<Ha>­<H>

 <H>

 <Ha>

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 51

 Non local DMC (Casula ’06)

( , )DMCG x y �( ) exp ( ) ( , )DMC loc

y

w x K V x V y x � �� �� � � �� �� �� ��

( ) exp ( , )Ty

w x V y x � � � �

� �¥

( ( ) )( ) LE xw x e

diffusion + drift (with rejection)

non local move (heat bath)

weight with local energy (it includes the contribution from both diffusion and non local move)

Three steps in the evolution of the walkers: the non local move is the new one introduced in the non local DMC scheme

p(x →y)=T FN (y, x) /wT (x)

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 52

8 Silicon diamond 

0.000 0.001 0.002 0.003 0.004 0.005­31.24

­31.22

­31.20

­31.18

 

 E

ner

gy 

(H)

/Tcpu~a12~∆ t

 DMC NL

 DMC NL+

 LRDMC

The CPU time to have a given error bar is proportional to Tcpu:the number of accepted single electron moves per unit time.

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 53

LRDMC: summary

•Simple and robust method to make reliable calculations.•Simplification of the approach makes possible: to have a very good extrapolation of the energy for a0. In all cases studied very accurate numbers even compared with the standard state of the art DMC methods.• double mesh in the laplacian can help to decorrelate faster the electrons (core-valence separation). Not treated here. • Locality approximation can be avoided and variational and more stable results can be obtained with QMC.

•It is simple to control the a0 limit and compute energy Derivatives (e.g. forces) or energy differences.

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 54

Iron dimer

PHOTOELECTRON SPECTROSCOPY

GS anion: 

GS neutral:

Leopold and Lineberger, J. Chem. Phys. 85, 51(1986)

13 2 * 2 8(3 ) (4 ) (4 ) ud s s � 13 2 * 1 9(3 ) (4 ) (4 ) gd s s �

previous NUMERICAL STUDIES on the neutral iron dimer

DFT methods:

more correlated methods (CC, MRCI, DFT+U):

electron affinity very hard to compute 

7u

9g

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 55

Calculation details

Dolg pseudopotentialsDolg pseudopotentials neon core

spd non local componentsscalar relativistic corrections included

Gaussian basis set for JAGP wave function Gaussian basis set for JAGP wave function (8s5p6d)/[2s1p1d] contracted for AGPTotal independent parameters: 227 

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 56

Dispersion curves

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 57

Neutral ground state

LRDMC gives for neutral dimer9

g

7 9( ) ( ) 0.52 (10) eVu gE E

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 58

Neutral ground state

LRDMC DFT­PP86Physical Review B, 66 (2002) 155425

The lack of correlation leads to underestimate the “on-site” repulsion in the d orbitals, and overestimate the 4σ splitting.

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 59

Iron dimer: structural properties9

g

LRDMC equilibrium distance: 3.818(11)Experimental value: ~ 4.093(19)Harmonic frequency: 301 (15) cm­1

Experimental value: ~ 300 (15) cm­1

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 60

Iron dimer: photoelectron spectrumExperiment

LRDMCIncoming photon: 2.540 eVTemperature 300K

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 61

Benzene dimer

Binding energy (kcal/mol)

0.5(3) parallel

2.2(3) slipped parallel

0.37 ZPE

1.6(2) experiment

S. Sorella, M. Casula, D. Rocca, J. Chem. Phys. 127, 014105 (2007)

Van der Waals + interactions

Important for DNA

and protein structures 

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 62

Conclusions 

• The pseudopotentials can be “safely” included in the DMC,

with the possibility to perform accurate simulations for large or

extended systems, in solid state physics or quantum chemistry.

• The fixed node approximation is still the major problem for

this zero temperature technique.

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 63

15 20 25

­107.0

­106.5

LRDMC

P transition~ . Gpa19 2

 Si  64 Γ­point

 

 

En

erg

y (e

V)

V/A3

 β­tin  Diamond

Workshop  on Recent developments in electronic structure methodsJune­2008    Recent progress with Lattice Regularized Diffusion Monte Carlo  (S.Sorella) 64

The LRDMC upper bound theorem