recent advances in cim technology - serbian academy of … · recent advances in cim technology b...

11
Science of Sintering, 40 (2008) 185-195 ________________________________________________________________________ _____________________________ *) Corresponding author: [email protected], 185 doi: 10.2298/SOS0802185Z UDK 662.785:621.798.28 Recent Advances in CIM Technology B. S. Zlatkov 1*) , E. Griesmayer 1 , H. Loibl 1 , O.S.Aleksić 2 , H. Danninger 3 , C. Gierl 3 , L.S.Lukić 4 1 FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan-Strasse 2, 2700 Winner Neustadt, Austria 2 Institute for Multidisciplinary Research- IMSI, Kneza Viseslava 1a, 11000 Belgrade, Serbia 3 Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060 Wien, Austria 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In this article the PIM (Powder Injection Moulding) technology is described in brief. After that the benefits and advantages were analyzed and summarized. Ceramic injection moulding (CIM) process was analyzed in more detail: CIM- alumina, CIM-zirconia and CIM ferrites as the most common technical ceramics in CIM ceramic parts production, medical applications and accessories in chemical laboratories, and cores in electronic inductive components. After that our results for CIM barium hexaferrite and piezo ceramics (barium titanate) are given. The main powder characteristics, the shrinkage and density and the main electrical characteristics of the sintered samples were compared for the isostatically pressed PM (powder metallurgy) and CIM formed samples. SEM fractographs of CIM and PM samples are given for CIM green parts, debinded (white) parts and sintered parts, and PM green parts and sintered parts. The results obtained were compared to literature data before they were applied in ceramic components production. Keywords: Powder injection moulding (PIM) technology, Metal injection moulding (MIM), Ceramic injection moulding (CIM), Powder granulation, Feedstock, Debinding, Sintering. 1. Introduction PIM (powder injection moulding) is a net-shaping process, which enables the production of parts of complex shapes in highly automatised production processes. PIM allows the fabrication of unique geometric structures that are difficult to produce with other metal-working technologies. PIM combines the techniques of plastic injection moulding and powder metallurgy, including sintering. The main process consists of four steps: such as feedstock preparation, injection moulding (green samples forming), debinding (binder removing) procedure and the sintering process. PIM is a metal and ceramic shaping procedure, using a feedstock of composite granulate. The feedstock is prepared by mixing metal or ceramic powders with plastificators such as wax, thermoplastics, silicone, agar-agar etc. Melted plastificators enable the powder

Upload: trinhminh

Post on 11-Feb-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

Science of Sintering 40 (2008) 185-195 ________________________________________________________________________

_____________________________

) Corresponding author zlatkovfotecat

185

doi 102298SOS0802185Z UDK 66278562179828 Recent Advances in CIM Technology B S Zlatkov1) E Griesmayer1 H Loibl1 OSAleksić2 H Danninger3 C Gierl3 LSLukić4

1 FOTEC Forschungs- und Technologietransfer GmbH Viktor Kaplan-Strasse 2 2700 Winner Neustadt Austria 2 Institute for Multidisciplinary Research- IMSI Kneza Viseslava 1a 11000 Belgrade Serbia 3 Institute of Chemical Technologies and Analytics Getreidemarkt 9164 1060 Wien Austria 4 IRITEL AD Belgrade Batajnicki put 23 11080 Belgrade Serbia Abstract In this article the PIM (Powder Injection Moulding) technology is described in brief After that the benefits and advantages were analyzed and summarized Ceramic injection moulding (CIM) process was analyzed in more detail CIM- alumina CIM-zirconia and CIM ferrites as the most common technical ceramics in CIM ceramic parts production medical applications and accessories in chemical laboratories and cores in electronic inductive components After that our results for CIM barium hexaferrite and piezo ceramics (barium titanate) are given The main powder characteristics the shrinkage and density and the main electrical characteristics of the sintered samples were compared for the isostatically pressed PM (powder metallurgy) and CIM formed samples SEM fractographs of CIM and PM samples are given for CIM green parts debinded (white) parts and sintered parts and PM green parts and sintered parts The results obtained were compared to literature data before they were applied in ceramic components production Keywords Powder injection moulding (PIM) technology Metal injection moulding (MIM) Ceramic injection moulding (CIM) Powder granulation Feedstock Debinding Sintering

1 Introduction

PIM (powder injection moulding) is a net-shaping process which enables the production of parts of complex shapes in highly automatised production processes PIM allows the fabrication of unique geometric structures that are difficult to produce with other metal-working technologies PIM combines the techniques of plastic injection moulding and powder metallurgy including sintering The main process consists of four steps such as feedstock preparation injection moulding (green samples forming) debinding (binder removing) procedure and the sintering process

PIM is a metal and ceramic shaping procedure using a feedstock of composite granulate The feedstock is prepared by mixing metal or ceramic powders with plastificators such as wax thermoplastics silicone agar-agar etc Melted plastificators enable the powder

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

186

to be injection moulded in the prepared casting tool (green parts) The green parts are then debinded thermally or by a solvent and finally sintered

In this work important factors for PIM applications such as type of material particle size size and sample geometry and tool casting complexity are discussed Additional attention was paid to the sintering of PIM samples linear shrinkage weight loss density microcracks and microstructure development Differences between uni-axial die compacted and PIM shaped samples in the sintering regime were also analysed

Examples from literature and practice are given for metal and ceramic powders used for new PIM shapes Based on the introduced data PIM application and its evolution is analyzed through the introduction of new materials and geometries suitable for technical parts like electronic components and ceramic sensors 2 CIM (Ceramic Injection Moulding)

Ceramic injection moulding (CIM) uses ceramic powders Materials like alumina zirconia titania ferrites yittria etc are used The feedstock is made of fine powders binders and additives as described in the introduction above The debinding process is similar to MIM but the sintering process depends on the type of ceramics and their electronic properties Linear shrinkage reaches 15-20 retaining the complex shape Close tolerances can be obtained with good process control and there is no need for mechanical finishing which is a pronounced advantage in particular for ceramics which are extremely difficult to machine CIM was applied in ceramic ndash mechanical parts sensors and artificial bones in medicine etc Injection moulding of ceramics is a new and innovative process that provides cost effective solutions for design engineers It provides ceramic components with complex geometries for mass production The benefits of CIM can be summarised as

bull Providing unique economic solutions to increasingly stringent material and product design requirements

bull Excellent batch to batch repeatability and process capabilities achieving a tolerance smaller than plusmn03

bull High surface finish quality without the need for additional finishing processes bull Accommodates extremely complex geometric components bull Superior material performance high hardness and mechanical strength wear

corrosion and weathering resistant dimensionally stab high working temperature and good electrical insulation

bull Also used for metallised applications

CIM applications can be found in aerospace (mechanical parts sensors and actuators) communications automotive (mechanical parts) electronic (sensors and actuators) chemical (valves membranes) medical (artificial bones) oil amp gas exploration (sensors valves) etc 21 CIM Alumina

Aluminium oxide and zirconium oxide are ceramics with high mechanical hardness high electrical resistivity and thermal conductivity but low thermal expansion They have good strength and stiffness good wear resistance good corrosion resistance good thermal stability low dielectric constant and loss tangent low weight etc This is very suitable for use

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

187

in technical ceramic products electronic components and medical products CIM alumina and zirconia exhibit properties close to the pressed and sintered samples [123] (see Tab I) Calcined alumina powder was selected for the investigation with purity gt997 green density 397 gcm2 and median particle size lt2 μm (chemical analysis [] Al2O3 997 Na2O 005 SiO2 005 Fe2O3 002 CaO 002 loss on ignition 001) Tab I CIM densities and surface qualities after sintering d50 denotes the median particle size

Ceramics d50 [microm] Density [gcm3] Density [ TD] Rmax [microm] Al2O3 04-06 385 967 3 ZrO2 02-04 605 992 2

Debinding methods include 1 Thermal elimination of organic components 2 Debinding by supercritical carbon dioxide (temperatures above 330 K and pressures near 300 bar) 3 Catalytical debinding process as commonly used for binders Recent investigations on CIM of alumina and zirconia are numerous effect of powder treatment on injection moulded zirconia [4] binder removal from injection moulded zirconia ceramics [5] viscosity of powder injection moulding feedstock and optimization of binder volume concentration [6] differential sintering in ceramic injection moulding particle orientation effect [7] influence of surfactant on rheological behaviours of injectionndashmoulded alumina suspension [8] sintering of nano-sized yttria stabilized zirconia process by powder injection moulding [9] feedstock aids micro PIM parts production [10] and novel aluminacyanoacrylate green ceramic [11]

Typical CIM application of alumina and zirconia includes microgears (Fig 1) [3] and complex shapes used in medical applications (Fig 2) [1]

Fig 1 Microgears of alumina sintered at 1600 degC (left) and zirconia sintered at 1350 degC (right)

Fig 2 CIM alumina products for chemical and medical applications [34]

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

188

22 CIM Ferrites

Soft magnetic ferrites of spinel type AB2O4 (B=Fe Co Ni A= Mn-Zn Ni-Zn and Mg-Zn) are widely used in electronics transformers choke coils EMI filters antennas and microwave waveguides The production of Mn-Zn ferrite ceramics by injection moulding [12] was enabled by using binders such as combinations of polypropylene microcrystalline wax and stearic acid After debinding processes similar to those for MIM described above the ferrite samples were sintered at 1280-1320 degC1-4 h in nitrogen atmosphere The achieved results are given in Tab II [13] Tab II The main properties of injection moulded sintered Mn-Zn ferrites on toroids

Tsinttime [degCh]

Grain size [microm]

Rel density [ TD]

Initial relative permeability

Loss factor [10-6]

13202 583 892 1518 1305 1321 139 13202 480 - 1238 1360 1743 1171 13204 771 - 1463 1463 2352 2160 12802 420 871 9225 9225 2415 2333 12504 450 904 7177 - 3718 - 13202 433 901 1609 1456 90 918 13202 na 851 7334 7163 5094 4206

Hard ferrites of M type (magnetoplumbite) known as Ba and Sr hexaferrite MFe12O19 (M=PbBaSr) are used as permanent magnets CIM is used currently in manufacturing of complex anisotropic hard ferrite shapes [14] The feedstock was prepared by mixing Ba and Sr ferrite powder with polypropylenepolyethylene-glycol After CIM shaping of hard ferrite samples in the magnetic field for orientation of the particles the binder was removed in two steps ndash extracting and thermal debinding CIM hard ferrite samples were then sintered for 1 h at optimised conditions The results obtained are given in Tab III Tab III Magnetic properties of CIM anisotropic Sr hexaferrite with variation of sintering temperature Tsint BBr denotes the remanent induction Hc the coercive force and BH the hysteresis energy density

Tsint [degC]1h 1220 1240 1260 1280 1300 BBr [mT] 398 402 405 410 399 Hc [kAm] 290 260 250 230 120 BH [kJm3] 288 261 253 235 119

CIM hard ferrite anisotropy was obtained under a magnetic field of 632 kAm [15] The results obtained for magnetocrystalline grain orientation are given in Fig 3 Anisotropy is also investigated for injection moulded and pressed polymer bonded magnets magnetic and structural properties of Ba M-type ferrite composite powders [16] optimization of ceramic magnets anisotrope processing [17] of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite [18] orientation of c-axis of Sr-ferrite particles in rubber magnets [19] CIM soft and hard ferrite products (magnetic cores) for different applications are given in Fig 4

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

189

Fig 3 SEM microstructure of CIM Sr hexaferrite sintered at 1200 degC2h magnification times1000(a) isotropic (b) anisotropic oriented in a magnetic field during injection moulding

Fig 4 CIM soft ferrite bobbin cores (left) and hard ferrite magnets (right) [20] 23 CIM PZT Materials

Piezo ceramics are applied in the industry of electronic components such as chip capacitors filters sensors and actuators The main electrical parameters (resonant frequency and their tolerance) are connected to ceramic device dimensions and electrode surface value and their arrangement [21-24] That is the main reason why piezo devices are planar with thick film electrodes and why they are known as laser trimmed devices Moreover their electrical characteristics depend on chemical composition heat treatment microstructure and dopants [25-31] Furthermore their mechanical and electrical characteristics depend on the ratio of their main constituents (PZT-Pb(Zr Ti)O3 BLT-(Bi La)4Ti3O12 BT- BaTiO3 ) (see Tab IV and V) [32 33] Tab IV Physical characteristics of PZT-BLT piezo ceramics sintered at 1150 degC

Composition Density [gcm3] Grain size [microm]

PZT 761 991 09PZT-01BLT 768 223 07PZT-03BLT 753 220 05PZT-05BLT 737 142 03PZT-07BLT 749 221 01PZT-09BLT 756 223 BLT 744 244

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

190

Tab V Physical characteristics of PZT-BT piezo ceramics with optimised processing condition

Composition Tsint [degC] Density [ TD]

Grain size [microm]

PZT 1100 961 236 09PZT-01BT 1200 968 286 07PZT-03BT 1200 970 197 05PZT-05BT 1250 944 387 03PZT-07BT 1250 861 371 01PZT-09BT 1300 860 572 BT 1350 959 242

Hence the piezo devices are produced by classical procedures such as tape casting isostatic pressing of powder polymer bonded types and very rarely by PIM technology [32] The ratio of PZT-binder for the feedstock was 7426 vol Polymers used for binder aimed for the injection of PZT ceramics are very common paraffin-wax 65 (ethylene vinyl acetate polyvinyl alcohol) 35 PIM green samples of PZT were thermally debinded and sintered from 950-1250 degC depending on chemical composition The green PZT micro components and morphologies of PZT powders are given in Fig V The initial PZT powder was submicronic Investigation of the influence of thermal treatment on the morphologies dielectric and ferroelectric properties of PZT-based ceramics is continued [34]

(a) (b) (c)

Fig 5 Green PZT micro components (a) depth of green PZT micro component (b) and micrograph of PZT powder particles (c) 3 Experimental and Results 31 CIM Ba Hexaferrite (isotropic)

Selected SEM micrographs of PIM and PM Ba hexaferrite are shown in fig 6 The microstructure of PIM Ba hexaferrite green samples made by melt feedstock injected into the mould is shown in fig 6 (a) particles around 16 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same particles can be seen very clearly as shown in fig 6 (b) The sintered microstructure of PIM samples is achieved by sintering at 1250 degC2h in air The fracture surface of sintered PM Ba hexaferrite samples achieved at the same sintering profile as for PIM samples is shown in fig 6 (d) A small gear our first isotropic Magneto-PIM product of Ba hexaferrite is shown in fig 6 (e) green part left and sintered part right Finally the gear was 12 pole lateral magnetized as

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

191

shown in picture (f) The main properties of sintered PIM and PM samples are given in tab 6 as follows

(a) (b) (c)

Ferrite core

N

S

NN

N N

N

S S

S S

S

(d) (e) (f)

Fig 6 SEM fractographs of CIM and PM BF samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) sintered PM (d) ferrite gears shaped by CIM BF (e) lateral 12 pole magnetization (f) Tab VI CIM and PM samples sintered in air

Material Particle size

[microm]

Injection pressure (MIM)

Pressure (PM) [MPa]

Tsint

[degC2h] Density [gcm3]

Shrinkage []

Remanent induction

BBr

[mT]

Coercive force

Hc

[kAm]

MIM BF dB 95 le16 80 1250 501 17 195 945 MIM BF dB 95 le16 120 1250 505 17 195 955 PM BF dB 95 le16 200 1250 505 165 205 845 PM BF dB 95 le16 400 1250 511 165 205 865

CIM Ba hexaferrite (isotropic) results (SEM Fig 6 and Tab VI) are quite close to the

best results of known hard ferrite producers [35 36] Our PIM and PM samples (Tab VI) do not differ much in density (505 vs 511 gcm3 respectively) and they have similar magnetic properties We have not yet produced PIM anisotropic samples (PIM shaping in applied magnetic field) to compare the results with anisotropic results given in Tab 3 which is to be done in the near future

32 CIM PZT Piezo Ceramic

Selected SEM micrographs of PIM and PM PZT piezo ceramic are shown in Fig 7 The microstructure of PIM PZT piezo ceramic green samples made by melt feedstock injected into the mould is shown in fig 7 (a) particles around 4 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same

5microm 5microm 5microm

5microm

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

192

particles can be seen very clearly as shown in fig 7 (b) The sintered microstructure of PIM samples is achieved by sintering at 1260 degC2h in air The microstructure of pressed PM green PZT piezo ceramic samples made of the same powder at round 3-4 times higher pressure (200-400 MPa) is shown in fig 7 (d) The fracture surface of sintered PM PZT piezo ceramic samples achieved at the same sintering profile as for PIM samples is shown in fig 7 (e) A small resonant tube with a 03 mm thick wall our second PIM product made of PZT piezo ceramic is shown in fig 7 (f) The main properties of sintered PIM and PM samples are given in tab VII as follows

(a) (b) (c)

(d) (e) (f)

Fig 7 SEM fractographs of CIM and PM PZT samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) green PM part (d) sintered PM part (e) piezo tube resonator shaped by CIM (f) Tab VII CIM and PM samples sintered in air

Material Particle

size [microm]

Injection pressure (MIM) Pressure (PM)

[MPa]

Tsint[degC2h]

Density [gcm3]

Shrinkage []

Piezoelectric charge

constants d33

[pCN] MIM PZT

dB 50 le4 80 1260 754 17 532

MIM PZT

dB 50 le4 120 1260 754 17 530

PM PZT dB 50 le4 200 1260 741 165 505 PM PZT dB 50 le4 400 1260 741 162 502

The CIM PZT results (SEM in Fig 7 Tab VII) are very close to the PZT data given in Fig 5 and Tab IV and available literature data [32 33] The PIM and PM density results (Tab VII) are quite close implying small differences in piezo electric properties as well Our main product micro resonator tube made of PZT ceramics and shaped by micro-PIM emits

5microm 5microm 5microm

5microm 5microm

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

193

acoustic signals in the frequency range of the human ear The piezo properties attained are comparable to those given in the literature [21 2834] Our experiments are continuing 4 Conclusion

Initially our interest in PIM was to develop some metallic mechanical parts with high complexity for industrial applications such as micro gears heat sinks fly wheel lock part cutting tool mechanical parts through using the MIM procedure Later experiments were started with ceramics and then sensor materials ferrites and PZT ceramics using the CIM procedure It was a difficult task to control the functional properties of ceramics by controlling micro-structural development

Comparison between PIM and PM (powder metallurgy) samples is a common method in research of materials which the authors have also applied in their experiments The values to be compared are usually particle average grain size density and porosity shrinkage hardness brittleness and the main functional properties of the materials

Previous results for PM technology was fundamental thus CIM samples were followed by PM samples compacted from powder (dry pressed) Two optimisations in pressures and sintering temperatures were done in parallel to ensure simultaneous analysis of both (PM and PIM) optimum to achieve the optimum mechanical and electrical thermal magnetic and piezo properties In all PIM experiments the feedstock was prepared using a solvent binder system (wax thermoplast and additives)

CIM samples have the same starting powder particle size (16 and 4 microm on average for Ba hexaferrite and PZT piezo ceramics) as such manufactured by PM but differ in pressure applied PM pressures are also several times higher It is well known that pressing (compacting) gives the first significant contacts between particles which enhances subsequent sintering nevertheless the PIM route yields excellent results even without this compacting step

Of course direct comparison of products obtained by PIM and PM press-and-sinter techniques respectively is difficult due to the strong effect of the manufacturing process on the final properties but in any case it can be concluded that both for metallic and ceramic materials powder injection moulding is attractive for combining complex 3D geometries with excellent material properties 5 References

1 V Piotter T Gietzelt LMerz Sadhana 28 (2003) 299 2 JE Zorzi CA Perottoni JAH da Jornada Materials Letters 57 (2003) 3784 3 R Zauner Microelectronic Engineering 83 (2006) 1442 4 M Trunec P Dobsk J Cihlaacute J Eur Ceram Soc 20 (2000) 859 5 DM Liu WJ Tseng Ceram Int 25 (1999) 529 6 J Janardhana Reddy N Ravi and M Vijayakumar J Eur Ceram Soc 20 (2000)

2183 7 S Krug JRG Evans JHH Ter Maat J Eur Ceram Soc 22 (2002) 173 8 WJ Tseng Mat Sci Eng A 289 (2000) 116 9 PC Yu QF Li JYH Fuh T Li L Lu J Mater Process Technol 192-193

(2007) 312 10 B Williams Metal Powder Report 58 (2003) 27 11 SH Ng JB Hull JL Henshall J Mater Process Technol 157 (2006) 299 12 Morgan Advanced Ceramics Stourport Ceramics Injection Moulding (catalogue)

2007 13 AJ Pigram R Freer J Mater Sci 29 (1994) 6420 14 S H Lee W Y Jeung J MagnMagn Mater 226-230 (2001) 1400

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 2: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

186

to be injection moulded in the prepared casting tool (green parts) The green parts are then debinded thermally or by a solvent and finally sintered

In this work important factors for PIM applications such as type of material particle size size and sample geometry and tool casting complexity are discussed Additional attention was paid to the sintering of PIM samples linear shrinkage weight loss density microcracks and microstructure development Differences between uni-axial die compacted and PIM shaped samples in the sintering regime were also analysed

Examples from literature and practice are given for metal and ceramic powders used for new PIM shapes Based on the introduced data PIM application and its evolution is analyzed through the introduction of new materials and geometries suitable for technical parts like electronic components and ceramic sensors 2 CIM (Ceramic Injection Moulding)

Ceramic injection moulding (CIM) uses ceramic powders Materials like alumina zirconia titania ferrites yittria etc are used The feedstock is made of fine powders binders and additives as described in the introduction above The debinding process is similar to MIM but the sintering process depends on the type of ceramics and their electronic properties Linear shrinkage reaches 15-20 retaining the complex shape Close tolerances can be obtained with good process control and there is no need for mechanical finishing which is a pronounced advantage in particular for ceramics which are extremely difficult to machine CIM was applied in ceramic ndash mechanical parts sensors and artificial bones in medicine etc Injection moulding of ceramics is a new and innovative process that provides cost effective solutions for design engineers It provides ceramic components with complex geometries for mass production The benefits of CIM can be summarised as

bull Providing unique economic solutions to increasingly stringent material and product design requirements

bull Excellent batch to batch repeatability and process capabilities achieving a tolerance smaller than plusmn03

bull High surface finish quality without the need for additional finishing processes bull Accommodates extremely complex geometric components bull Superior material performance high hardness and mechanical strength wear

corrosion and weathering resistant dimensionally stab high working temperature and good electrical insulation

bull Also used for metallised applications

CIM applications can be found in aerospace (mechanical parts sensors and actuators) communications automotive (mechanical parts) electronic (sensors and actuators) chemical (valves membranes) medical (artificial bones) oil amp gas exploration (sensors valves) etc 21 CIM Alumina

Aluminium oxide and zirconium oxide are ceramics with high mechanical hardness high electrical resistivity and thermal conductivity but low thermal expansion They have good strength and stiffness good wear resistance good corrosion resistance good thermal stability low dielectric constant and loss tangent low weight etc This is very suitable for use

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

187

in technical ceramic products electronic components and medical products CIM alumina and zirconia exhibit properties close to the pressed and sintered samples [123] (see Tab I) Calcined alumina powder was selected for the investigation with purity gt997 green density 397 gcm2 and median particle size lt2 μm (chemical analysis [] Al2O3 997 Na2O 005 SiO2 005 Fe2O3 002 CaO 002 loss on ignition 001) Tab I CIM densities and surface qualities after sintering d50 denotes the median particle size

Ceramics d50 [microm] Density [gcm3] Density [ TD] Rmax [microm] Al2O3 04-06 385 967 3 ZrO2 02-04 605 992 2

Debinding methods include 1 Thermal elimination of organic components 2 Debinding by supercritical carbon dioxide (temperatures above 330 K and pressures near 300 bar) 3 Catalytical debinding process as commonly used for binders Recent investigations on CIM of alumina and zirconia are numerous effect of powder treatment on injection moulded zirconia [4] binder removal from injection moulded zirconia ceramics [5] viscosity of powder injection moulding feedstock and optimization of binder volume concentration [6] differential sintering in ceramic injection moulding particle orientation effect [7] influence of surfactant on rheological behaviours of injectionndashmoulded alumina suspension [8] sintering of nano-sized yttria stabilized zirconia process by powder injection moulding [9] feedstock aids micro PIM parts production [10] and novel aluminacyanoacrylate green ceramic [11]

Typical CIM application of alumina and zirconia includes microgears (Fig 1) [3] and complex shapes used in medical applications (Fig 2) [1]

Fig 1 Microgears of alumina sintered at 1600 degC (left) and zirconia sintered at 1350 degC (right)

Fig 2 CIM alumina products for chemical and medical applications [34]

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

188

22 CIM Ferrites

Soft magnetic ferrites of spinel type AB2O4 (B=Fe Co Ni A= Mn-Zn Ni-Zn and Mg-Zn) are widely used in electronics transformers choke coils EMI filters antennas and microwave waveguides The production of Mn-Zn ferrite ceramics by injection moulding [12] was enabled by using binders such as combinations of polypropylene microcrystalline wax and stearic acid After debinding processes similar to those for MIM described above the ferrite samples were sintered at 1280-1320 degC1-4 h in nitrogen atmosphere The achieved results are given in Tab II [13] Tab II The main properties of injection moulded sintered Mn-Zn ferrites on toroids

Tsinttime [degCh]

Grain size [microm]

Rel density [ TD]

Initial relative permeability

Loss factor [10-6]

13202 583 892 1518 1305 1321 139 13202 480 - 1238 1360 1743 1171 13204 771 - 1463 1463 2352 2160 12802 420 871 9225 9225 2415 2333 12504 450 904 7177 - 3718 - 13202 433 901 1609 1456 90 918 13202 na 851 7334 7163 5094 4206

Hard ferrites of M type (magnetoplumbite) known as Ba and Sr hexaferrite MFe12O19 (M=PbBaSr) are used as permanent magnets CIM is used currently in manufacturing of complex anisotropic hard ferrite shapes [14] The feedstock was prepared by mixing Ba and Sr ferrite powder with polypropylenepolyethylene-glycol After CIM shaping of hard ferrite samples in the magnetic field for orientation of the particles the binder was removed in two steps ndash extracting and thermal debinding CIM hard ferrite samples were then sintered for 1 h at optimised conditions The results obtained are given in Tab III Tab III Magnetic properties of CIM anisotropic Sr hexaferrite with variation of sintering temperature Tsint BBr denotes the remanent induction Hc the coercive force and BH the hysteresis energy density

Tsint [degC]1h 1220 1240 1260 1280 1300 BBr [mT] 398 402 405 410 399 Hc [kAm] 290 260 250 230 120 BH [kJm3] 288 261 253 235 119

CIM hard ferrite anisotropy was obtained under a magnetic field of 632 kAm [15] The results obtained for magnetocrystalline grain orientation are given in Fig 3 Anisotropy is also investigated for injection moulded and pressed polymer bonded magnets magnetic and structural properties of Ba M-type ferrite composite powders [16] optimization of ceramic magnets anisotrope processing [17] of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite [18] orientation of c-axis of Sr-ferrite particles in rubber magnets [19] CIM soft and hard ferrite products (magnetic cores) for different applications are given in Fig 4

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

189

Fig 3 SEM microstructure of CIM Sr hexaferrite sintered at 1200 degC2h magnification times1000(a) isotropic (b) anisotropic oriented in a magnetic field during injection moulding

Fig 4 CIM soft ferrite bobbin cores (left) and hard ferrite magnets (right) [20] 23 CIM PZT Materials

Piezo ceramics are applied in the industry of electronic components such as chip capacitors filters sensors and actuators The main electrical parameters (resonant frequency and their tolerance) are connected to ceramic device dimensions and electrode surface value and their arrangement [21-24] That is the main reason why piezo devices are planar with thick film electrodes and why they are known as laser trimmed devices Moreover their electrical characteristics depend on chemical composition heat treatment microstructure and dopants [25-31] Furthermore their mechanical and electrical characteristics depend on the ratio of their main constituents (PZT-Pb(Zr Ti)O3 BLT-(Bi La)4Ti3O12 BT- BaTiO3 ) (see Tab IV and V) [32 33] Tab IV Physical characteristics of PZT-BLT piezo ceramics sintered at 1150 degC

Composition Density [gcm3] Grain size [microm]

PZT 761 991 09PZT-01BLT 768 223 07PZT-03BLT 753 220 05PZT-05BLT 737 142 03PZT-07BLT 749 221 01PZT-09BLT 756 223 BLT 744 244

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

190

Tab V Physical characteristics of PZT-BT piezo ceramics with optimised processing condition

Composition Tsint [degC] Density [ TD]

Grain size [microm]

PZT 1100 961 236 09PZT-01BT 1200 968 286 07PZT-03BT 1200 970 197 05PZT-05BT 1250 944 387 03PZT-07BT 1250 861 371 01PZT-09BT 1300 860 572 BT 1350 959 242

Hence the piezo devices are produced by classical procedures such as tape casting isostatic pressing of powder polymer bonded types and very rarely by PIM technology [32] The ratio of PZT-binder for the feedstock was 7426 vol Polymers used for binder aimed for the injection of PZT ceramics are very common paraffin-wax 65 (ethylene vinyl acetate polyvinyl alcohol) 35 PIM green samples of PZT were thermally debinded and sintered from 950-1250 degC depending on chemical composition The green PZT micro components and morphologies of PZT powders are given in Fig V The initial PZT powder was submicronic Investigation of the influence of thermal treatment on the morphologies dielectric and ferroelectric properties of PZT-based ceramics is continued [34]

(a) (b) (c)

Fig 5 Green PZT micro components (a) depth of green PZT micro component (b) and micrograph of PZT powder particles (c) 3 Experimental and Results 31 CIM Ba Hexaferrite (isotropic)

Selected SEM micrographs of PIM and PM Ba hexaferrite are shown in fig 6 The microstructure of PIM Ba hexaferrite green samples made by melt feedstock injected into the mould is shown in fig 6 (a) particles around 16 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same particles can be seen very clearly as shown in fig 6 (b) The sintered microstructure of PIM samples is achieved by sintering at 1250 degC2h in air The fracture surface of sintered PM Ba hexaferrite samples achieved at the same sintering profile as for PIM samples is shown in fig 6 (d) A small gear our first isotropic Magneto-PIM product of Ba hexaferrite is shown in fig 6 (e) green part left and sintered part right Finally the gear was 12 pole lateral magnetized as

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

191

shown in picture (f) The main properties of sintered PIM and PM samples are given in tab 6 as follows

(a) (b) (c)

Ferrite core

N

S

NN

N N

N

S S

S S

S

(d) (e) (f)

Fig 6 SEM fractographs of CIM and PM BF samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) sintered PM (d) ferrite gears shaped by CIM BF (e) lateral 12 pole magnetization (f) Tab VI CIM and PM samples sintered in air

Material Particle size

[microm]

Injection pressure (MIM)

Pressure (PM) [MPa]

Tsint

[degC2h] Density [gcm3]

Shrinkage []

Remanent induction

BBr

[mT]

Coercive force

Hc

[kAm]

MIM BF dB 95 le16 80 1250 501 17 195 945 MIM BF dB 95 le16 120 1250 505 17 195 955 PM BF dB 95 le16 200 1250 505 165 205 845 PM BF dB 95 le16 400 1250 511 165 205 865

CIM Ba hexaferrite (isotropic) results (SEM Fig 6 and Tab VI) are quite close to the

best results of known hard ferrite producers [35 36] Our PIM and PM samples (Tab VI) do not differ much in density (505 vs 511 gcm3 respectively) and they have similar magnetic properties We have not yet produced PIM anisotropic samples (PIM shaping in applied magnetic field) to compare the results with anisotropic results given in Tab 3 which is to be done in the near future

32 CIM PZT Piezo Ceramic

Selected SEM micrographs of PIM and PM PZT piezo ceramic are shown in Fig 7 The microstructure of PIM PZT piezo ceramic green samples made by melt feedstock injected into the mould is shown in fig 7 (a) particles around 4 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same

5microm 5microm 5microm

5microm

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

192

particles can be seen very clearly as shown in fig 7 (b) The sintered microstructure of PIM samples is achieved by sintering at 1260 degC2h in air The microstructure of pressed PM green PZT piezo ceramic samples made of the same powder at round 3-4 times higher pressure (200-400 MPa) is shown in fig 7 (d) The fracture surface of sintered PM PZT piezo ceramic samples achieved at the same sintering profile as for PIM samples is shown in fig 7 (e) A small resonant tube with a 03 mm thick wall our second PIM product made of PZT piezo ceramic is shown in fig 7 (f) The main properties of sintered PIM and PM samples are given in tab VII as follows

(a) (b) (c)

(d) (e) (f)

Fig 7 SEM fractographs of CIM and PM PZT samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) green PM part (d) sintered PM part (e) piezo tube resonator shaped by CIM (f) Tab VII CIM and PM samples sintered in air

Material Particle

size [microm]

Injection pressure (MIM) Pressure (PM)

[MPa]

Tsint[degC2h]

Density [gcm3]

Shrinkage []

Piezoelectric charge

constants d33

[pCN] MIM PZT

dB 50 le4 80 1260 754 17 532

MIM PZT

dB 50 le4 120 1260 754 17 530

PM PZT dB 50 le4 200 1260 741 165 505 PM PZT dB 50 le4 400 1260 741 162 502

The CIM PZT results (SEM in Fig 7 Tab VII) are very close to the PZT data given in Fig 5 and Tab IV and available literature data [32 33] The PIM and PM density results (Tab VII) are quite close implying small differences in piezo electric properties as well Our main product micro resonator tube made of PZT ceramics and shaped by micro-PIM emits

5microm 5microm 5microm

5microm 5microm

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

193

acoustic signals in the frequency range of the human ear The piezo properties attained are comparable to those given in the literature [21 2834] Our experiments are continuing 4 Conclusion

Initially our interest in PIM was to develop some metallic mechanical parts with high complexity for industrial applications such as micro gears heat sinks fly wheel lock part cutting tool mechanical parts through using the MIM procedure Later experiments were started with ceramics and then sensor materials ferrites and PZT ceramics using the CIM procedure It was a difficult task to control the functional properties of ceramics by controlling micro-structural development

Comparison between PIM and PM (powder metallurgy) samples is a common method in research of materials which the authors have also applied in their experiments The values to be compared are usually particle average grain size density and porosity shrinkage hardness brittleness and the main functional properties of the materials

Previous results for PM technology was fundamental thus CIM samples were followed by PM samples compacted from powder (dry pressed) Two optimisations in pressures and sintering temperatures were done in parallel to ensure simultaneous analysis of both (PM and PIM) optimum to achieve the optimum mechanical and electrical thermal magnetic and piezo properties In all PIM experiments the feedstock was prepared using a solvent binder system (wax thermoplast and additives)

CIM samples have the same starting powder particle size (16 and 4 microm on average for Ba hexaferrite and PZT piezo ceramics) as such manufactured by PM but differ in pressure applied PM pressures are also several times higher It is well known that pressing (compacting) gives the first significant contacts between particles which enhances subsequent sintering nevertheless the PIM route yields excellent results even without this compacting step

Of course direct comparison of products obtained by PIM and PM press-and-sinter techniques respectively is difficult due to the strong effect of the manufacturing process on the final properties but in any case it can be concluded that both for metallic and ceramic materials powder injection moulding is attractive for combining complex 3D geometries with excellent material properties 5 References

1 V Piotter T Gietzelt LMerz Sadhana 28 (2003) 299 2 JE Zorzi CA Perottoni JAH da Jornada Materials Letters 57 (2003) 3784 3 R Zauner Microelectronic Engineering 83 (2006) 1442 4 M Trunec P Dobsk J Cihlaacute J Eur Ceram Soc 20 (2000) 859 5 DM Liu WJ Tseng Ceram Int 25 (1999) 529 6 J Janardhana Reddy N Ravi and M Vijayakumar J Eur Ceram Soc 20 (2000)

2183 7 S Krug JRG Evans JHH Ter Maat J Eur Ceram Soc 22 (2002) 173 8 WJ Tseng Mat Sci Eng A 289 (2000) 116 9 PC Yu QF Li JYH Fuh T Li L Lu J Mater Process Technol 192-193

(2007) 312 10 B Williams Metal Powder Report 58 (2003) 27 11 SH Ng JB Hull JL Henshall J Mater Process Technol 157 (2006) 299 12 Morgan Advanced Ceramics Stourport Ceramics Injection Moulding (catalogue)

2007 13 AJ Pigram R Freer J Mater Sci 29 (1994) 6420 14 S H Lee W Y Jeung J MagnMagn Mater 226-230 (2001) 1400

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 3: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

187

in technical ceramic products electronic components and medical products CIM alumina and zirconia exhibit properties close to the pressed and sintered samples [123] (see Tab I) Calcined alumina powder was selected for the investigation with purity gt997 green density 397 gcm2 and median particle size lt2 μm (chemical analysis [] Al2O3 997 Na2O 005 SiO2 005 Fe2O3 002 CaO 002 loss on ignition 001) Tab I CIM densities and surface qualities after sintering d50 denotes the median particle size

Ceramics d50 [microm] Density [gcm3] Density [ TD] Rmax [microm] Al2O3 04-06 385 967 3 ZrO2 02-04 605 992 2

Debinding methods include 1 Thermal elimination of organic components 2 Debinding by supercritical carbon dioxide (temperatures above 330 K and pressures near 300 bar) 3 Catalytical debinding process as commonly used for binders Recent investigations on CIM of alumina and zirconia are numerous effect of powder treatment on injection moulded zirconia [4] binder removal from injection moulded zirconia ceramics [5] viscosity of powder injection moulding feedstock and optimization of binder volume concentration [6] differential sintering in ceramic injection moulding particle orientation effect [7] influence of surfactant on rheological behaviours of injectionndashmoulded alumina suspension [8] sintering of nano-sized yttria stabilized zirconia process by powder injection moulding [9] feedstock aids micro PIM parts production [10] and novel aluminacyanoacrylate green ceramic [11]

Typical CIM application of alumina and zirconia includes microgears (Fig 1) [3] and complex shapes used in medical applications (Fig 2) [1]

Fig 1 Microgears of alumina sintered at 1600 degC (left) and zirconia sintered at 1350 degC (right)

Fig 2 CIM alumina products for chemical and medical applications [34]

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

188

22 CIM Ferrites

Soft magnetic ferrites of spinel type AB2O4 (B=Fe Co Ni A= Mn-Zn Ni-Zn and Mg-Zn) are widely used in electronics transformers choke coils EMI filters antennas and microwave waveguides The production of Mn-Zn ferrite ceramics by injection moulding [12] was enabled by using binders such as combinations of polypropylene microcrystalline wax and stearic acid After debinding processes similar to those for MIM described above the ferrite samples were sintered at 1280-1320 degC1-4 h in nitrogen atmosphere The achieved results are given in Tab II [13] Tab II The main properties of injection moulded sintered Mn-Zn ferrites on toroids

Tsinttime [degCh]

Grain size [microm]

Rel density [ TD]

Initial relative permeability

Loss factor [10-6]

13202 583 892 1518 1305 1321 139 13202 480 - 1238 1360 1743 1171 13204 771 - 1463 1463 2352 2160 12802 420 871 9225 9225 2415 2333 12504 450 904 7177 - 3718 - 13202 433 901 1609 1456 90 918 13202 na 851 7334 7163 5094 4206

Hard ferrites of M type (magnetoplumbite) known as Ba and Sr hexaferrite MFe12O19 (M=PbBaSr) are used as permanent magnets CIM is used currently in manufacturing of complex anisotropic hard ferrite shapes [14] The feedstock was prepared by mixing Ba and Sr ferrite powder with polypropylenepolyethylene-glycol After CIM shaping of hard ferrite samples in the magnetic field for orientation of the particles the binder was removed in two steps ndash extracting and thermal debinding CIM hard ferrite samples were then sintered for 1 h at optimised conditions The results obtained are given in Tab III Tab III Magnetic properties of CIM anisotropic Sr hexaferrite with variation of sintering temperature Tsint BBr denotes the remanent induction Hc the coercive force and BH the hysteresis energy density

Tsint [degC]1h 1220 1240 1260 1280 1300 BBr [mT] 398 402 405 410 399 Hc [kAm] 290 260 250 230 120 BH [kJm3] 288 261 253 235 119

CIM hard ferrite anisotropy was obtained under a magnetic field of 632 kAm [15] The results obtained for magnetocrystalline grain orientation are given in Fig 3 Anisotropy is also investigated for injection moulded and pressed polymer bonded magnets magnetic and structural properties of Ba M-type ferrite composite powders [16] optimization of ceramic magnets anisotrope processing [17] of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite [18] orientation of c-axis of Sr-ferrite particles in rubber magnets [19] CIM soft and hard ferrite products (magnetic cores) for different applications are given in Fig 4

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

189

Fig 3 SEM microstructure of CIM Sr hexaferrite sintered at 1200 degC2h magnification times1000(a) isotropic (b) anisotropic oriented in a magnetic field during injection moulding

Fig 4 CIM soft ferrite bobbin cores (left) and hard ferrite magnets (right) [20] 23 CIM PZT Materials

Piezo ceramics are applied in the industry of electronic components such as chip capacitors filters sensors and actuators The main electrical parameters (resonant frequency and their tolerance) are connected to ceramic device dimensions and electrode surface value and their arrangement [21-24] That is the main reason why piezo devices are planar with thick film electrodes and why they are known as laser trimmed devices Moreover their electrical characteristics depend on chemical composition heat treatment microstructure and dopants [25-31] Furthermore their mechanical and electrical characteristics depend on the ratio of their main constituents (PZT-Pb(Zr Ti)O3 BLT-(Bi La)4Ti3O12 BT- BaTiO3 ) (see Tab IV and V) [32 33] Tab IV Physical characteristics of PZT-BLT piezo ceramics sintered at 1150 degC

Composition Density [gcm3] Grain size [microm]

PZT 761 991 09PZT-01BLT 768 223 07PZT-03BLT 753 220 05PZT-05BLT 737 142 03PZT-07BLT 749 221 01PZT-09BLT 756 223 BLT 744 244

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

190

Tab V Physical characteristics of PZT-BT piezo ceramics with optimised processing condition

Composition Tsint [degC] Density [ TD]

Grain size [microm]

PZT 1100 961 236 09PZT-01BT 1200 968 286 07PZT-03BT 1200 970 197 05PZT-05BT 1250 944 387 03PZT-07BT 1250 861 371 01PZT-09BT 1300 860 572 BT 1350 959 242

Hence the piezo devices are produced by classical procedures such as tape casting isostatic pressing of powder polymer bonded types and very rarely by PIM technology [32] The ratio of PZT-binder for the feedstock was 7426 vol Polymers used for binder aimed for the injection of PZT ceramics are very common paraffin-wax 65 (ethylene vinyl acetate polyvinyl alcohol) 35 PIM green samples of PZT were thermally debinded and sintered from 950-1250 degC depending on chemical composition The green PZT micro components and morphologies of PZT powders are given in Fig V The initial PZT powder was submicronic Investigation of the influence of thermal treatment on the morphologies dielectric and ferroelectric properties of PZT-based ceramics is continued [34]

(a) (b) (c)

Fig 5 Green PZT micro components (a) depth of green PZT micro component (b) and micrograph of PZT powder particles (c) 3 Experimental and Results 31 CIM Ba Hexaferrite (isotropic)

Selected SEM micrographs of PIM and PM Ba hexaferrite are shown in fig 6 The microstructure of PIM Ba hexaferrite green samples made by melt feedstock injected into the mould is shown in fig 6 (a) particles around 16 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same particles can be seen very clearly as shown in fig 6 (b) The sintered microstructure of PIM samples is achieved by sintering at 1250 degC2h in air The fracture surface of sintered PM Ba hexaferrite samples achieved at the same sintering profile as for PIM samples is shown in fig 6 (d) A small gear our first isotropic Magneto-PIM product of Ba hexaferrite is shown in fig 6 (e) green part left and sintered part right Finally the gear was 12 pole lateral magnetized as

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

191

shown in picture (f) The main properties of sintered PIM and PM samples are given in tab 6 as follows

(a) (b) (c)

Ferrite core

N

S

NN

N N

N

S S

S S

S

(d) (e) (f)

Fig 6 SEM fractographs of CIM and PM BF samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) sintered PM (d) ferrite gears shaped by CIM BF (e) lateral 12 pole magnetization (f) Tab VI CIM and PM samples sintered in air

Material Particle size

[microm]

Injection pressure (MIM)

Pressure (PM) [MPa]

Tsint

[degC2h] Density [gcm3]

Shrinkage []

Remanent induction

BBr

[mT]

Coercive force

Hc

[kAm]

MIM BF dB 95 le16 80 1250 501 17 195 945 MIM BF dB 95 le16 120 1250 505 17 195 955 PM BF dB 95 le16 200 1250 505 165 205 845 PM BF dB 95 le16 400 1250 511 165 205 865

CIM Ba hexaferrite (isotropic) results (SEM Fig 6 and Tab VI) are quite close to the

best results of known hard ferrite producers [35 36] Our PIM and PM samples (Tab VI) do not differ much in density (505 vs 511 gcm3 respectively) and they have similar magnetic properties We have not yet produced PIM anisotropic samples (PIM shaping in applied magnetic field) to compare the results with anisotropic results given in Tab 3 which is to be done in the near future

32 CIM PZT Piezo Ceramic

Selected SEM micrographs of PIM and PM PZT piezo ceramic are shown in Fig 7 The microstructure of PIM PZT piezo ceramic green samples made by melt feedstock injected into the mould is shown in fig 7 (a) particles around 4 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same

5microm 5microm 5microm

5microm

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

192

particles can be seen very clearly as shown in fig 7 (b) The sintered microstructure of PIM samples is achieved by sintering at 1260 degC2h in air The microstructure of pressed PM green PZT piezo ceramic samples made of the same powder at round 3-4 times higher pressure (200-400 MPa) is shown in fig 7 (d) The fracture surface of sintered PM PZT piezo ceramic samples achieved at the same sintering profile as for PIM samples is shown in fig 7 (e) A small resonant tube with a 03 mm thick wall our second PIM product made of PZT piezo ceramic is shown in fig 7 (f) The main properties of sintered PIM and PM samples are given in tab VII as follows

(a) (b) (c)

(d) (e) (f)

Fig 7 SEM fractographs of CIM and PM PZT samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) green PM part (d) sintered PM part (e) piezo tube resonator shaped by CIM (f) Tab VII CIM and PM samples sintered in air

Material Particle

size [microm]

Injection pressure (MIM) Pressure (PM)

[MPa]

Tsint[degC2h]

Density [gcm3]

Shrinkage []

Piezoelectric charge

constants d33

[pCN] MIM PZT

dB 50 le4 80 1260 754 17 532

MIM PZT

dB 50 le4 120 1260 754 17 530

PM PZT dB 50 le4 200 1260 741 165 505 PM PZT dB 50 le4 400 1260 741 162 502

The CIM PZT results (SEM in Fig 7 Tab VII) are very close to the PZT data given in Fig 5 and Tab IV and available literature data [32 33] The PIM and PM density results (Tab VII) are quite close implying small differences in piezo electric properties as well Our main product micro resonator tube made of PZT ceramics and shaped by micro-PIM emits

5microm 5microm 5microm

5microm 5microm

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

193

acoustic signals in the frequency range of the human ear The piezo properties attained are comparable to those given in the literature [21 2834] Our experiments are continuing 4 Conclusion

Initially our interest in PIM was to develop some metallic mechanical parts with high complexity for industrial applications such as micro gears heat sinks fly wheel lock part cutting tool mechanical parts through using the MIM procedure Later experiments were started with ceramics and then sensor materials ferrites and PZT ceramics using the CIM procedure It was a difficult task to control the functional properties of ceramics by controlling micro-structural development

Comparison between PIM and PM (powder metallurgy) samples is a common method in research of materials which the authors have also applied in their experiments The values to be compared are usually particle average grain size density and porosity shrinkage hardness brittleness and the main functional properties of the materials

Previous results for PM technology was fundamental thus CIM samples were followed by PM samples compacted from powder (dry pressed) Two optimisations in pressures and sintering temperatures were done in parallel to ensure simultaneous analysis of both (PM and PIM) optimum to achieve the optimum mechanical and electrical thermal magnetic and piezo properties In all PIM experiments the feedstock was prepared using a solvent binder system (wax thermoplast and additives)

CIM samples have the same starting powder particle size (16 and 4 microm on average for Ba hexaferrite and PZT piezo ceramics) as such manufactured by PM but differ in pressure applied PM pressures are also several times higher It is well known that pressing (compacting) gives the first significant contacts between particles which enhances subsequent sintering nevertheless the PIM route yields excellent results even without this compacting step

Of course direct comparison of products obtained by PIM and PM press-and-sinter techniques respectively is difficult due to the strong effect of the manufacturing process on the final properties but in any case it can be concluded that both for metallic and ceramic materials powder injection moulding is attractive for combining complex 3D geometries with excellent material properties 5 References

1 V Piotter T Gietzelt LMerz Sadhana 28 (2003) 299 2 JE Zorzi CA Perottoni JAH da Jornada Materials Letters 57 (2003) 3784 3 R Zauner Microelectronic Engineering 83 (2006) 1442 4 M Trunec P Dobsk J Cihlaacute J Eur Ceram Soc 20 (2000) 859 5 DM Liu WJ Tseng Ceram Int 25 (1999) 529 6 J Janardhana Reddy N Ravi and M Vijayakumar J Eur Ceram Soc 20 (2000)

2183 7 S Krug JRG Evans JHH Ter Maat J Eur Ceram Soc 22 (2002) 173 8 WJ Tseng Mat Sci Eng A 289 (2000) 116 9 PC Yu QF Li JYH Fuh T Li L Lu J Mater Process Technol 192-193

(2007) 312 10 B Williams Metal Powder Report 58 (2003) 27 11 SH Ng JB Hull JL Henshall J Mater Process Technol 157 (2006) 299 12 Morgan Advanced Ceramics Stourport Ceramics Injection Moulding (catalogue)

2007 13 AJ Pigram R Freer J Mater Sci 29 (1994) 6420 14 S H Lee W Y Jeung J MagnMagn Mater 226-230 (2001) 1400

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 4: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

188

22 CIM Ferrites

Soft magnetic ferrites of spinel type AB2O4 (B=Fe Co Ni A= Mn-Zn Ni-Zn and Mg-Zn) are widely used in electronics transformers choke coils EMI filters antennas and microwave waveguides The production of Mn-Zn ferrite ceramics by injection moulding [12] was enabled by using binders such as combinations of polypropylene microcrystalline wax and stearic acid After debinding processes similar to those for MIM described above the ferrite samples were sintered at 1280-1320 degC1-4 h in nitrogen atmosphere The achieved results are given in Tab II [13] Tab II The main properties of injection moulded sintered Mn-Zn ferrites on toroids

Tsinttime [degCh]

Grain size [microm]

Rel density [ TD]

Initial relative permeability

Loss factor [10-6]

13202 583 892 1518 1305 1321 139 13202 480 - 1238 1360 1743 1171 13204 771 - 1463 1463 2352 2160 12802 420 871 9225 9225 2415 2333 12504 450 904 7177 - 3718 - 13202 433 901 1609 1456 90 918 13202 na 851 7334 7163 5094 4206

Hard ferrites of M type (magnetoplumbite) known as Ba and Sr hexaferrite MFe12O19 (M=PbBaSr) are used as permanent magnets CIM is used currently in manufacturing of complex anisotropic hard ferrite shapes [14] The feedstock was prepared by mixing Ba and Sr ferrite powder with polypropylenepolyethylene-glycol After CIM shaping of hard ferrite samples in the magnetic field for orientation of the particles the binder was removed in two steps ndash extracting and thermal debinding CIM hard ferrite samples were then sintered for 1 h at optimised conditions The results obtained are given in Tab III Tab III Magnetic properties of CIM anisotropic Sr hexaferrite with variation of sintering temperature Tsint BBr denotes the remanent induction Hc the coercive force and BH the hysteresis energy density

Tsint [degC]1h 1220 1240 1260 1280 1300 BBr [mT] 398 402 405 410 399 Hc [kAm] 290 260 250 230 120 BH [kJm3] 288 261 253 235 119

CIM hard ferrite anisotropy was obtained under a magnetic field of 632 kAm [15] The results obtained for magnetocrystalline grain orientation are given in Fig 3 Anisotropy is also investigated for injection moulded and pressed polymer bonded magnets magnetic and structural properties of Ba M-type ferrite composite powders [16] optimization of ceramic magnets anisotrope processing [17] of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite [18] orientation of c-axis of Sr-ferrite particles in rubber magnets [19] CIM soft and hard ferrite products (magnetic cores) for different applications are given in Fig 4

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

189

Fig 3 SEM microstructure of CIM Sr hexaferrite sintered at 1200 degC2h magnification times1000(a) isotropic (b) anisotropic oriented in a magnetic field during injection moulding

Fig 4 CIM soft ferrite bobbin cores (left) and hard ferrite magnets (right) [20] 23 CIM PZT Materials

Piezo ceramics are applied in the industry of electronic components such as chip capacitors filters sensors and actuators The main electrical parameters (resonant frequency and their tolerance) are connected to ceramic device dimensions and electrode surface value and their arrangement [21-24] That is the main reason why piezo devices are planar with thick film electrodes and why they are known as laser trimmed devices Moreover their electrical characteristics depend on chemical composition heat treatment microstructure and dopants [25-31] Furthermore their mechanical and electrical characteristics depend on the ratio of their main constituents (PZT-Pb(Zr Ti)O3 BLT-(Bi La)4Ti3O12 BT- BaTiO3 ) (see Tab IV and V) [32 33] Tab IV Physical characteristics of PZT-BLT piezo ceramics sintered at 1150 degC

Composition Density [gcm3] Grain size [microm]

PZT 761 991 09PZT-01BLT 768 223 07PZT-03BLT 753 220 05PZT-05BLT 737 142 03PZT-07BLT 749 221 01PZT-09BLT 756 223 BLT 744 244

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

190

Tab V Physical characteristics of PZT-BT piezo ceramics with optimised processing condition

Composition Tsint [degC] Density [ TD]

Grain size [microm]

PZT 1100 961 236 09PZT-01BT 1200 968 286 07PZT-03BT 1200 970 197 05PZT-05BT 1250 944 387 03PZT-07BT 1250 861 371 01PZT-09BT 1300 860 572 BT 1350 959 242

Hence the piezo devices are produced by classical procedures such as tape casting isostatic pressing of powder polymer bonded types and very rarely by PIM technology [32] The ratio of PZT-binder for the feedstock was 7426 vol Polymers used for binder aimed for the injection of PZT ceramics are very common paraffin-wax 65 (ethylene vinyl acetate polyvinyl alcohol) 35 PIM green samples of PZT were thermally debinded and sintered from 950-1250 degC depending on chemical composition The green PZT micro components and morphologies of PZT powders are given in Fig V The initial PZT powder was submicronic Investigation of the influence of thermal treatment on the morphologies dielectric and ferroelectric properties of PZT-based ceramics is continued [34]

(a) (b) (c)

Fig 5 Green PZT micro components (a) depth of green PZT micro component (b) and micrograph of PZT powder particles (c) 3 Experimental and Results 31 CIM Ba Hexaferrite (isotropic)

Selected SEM micrographs of PIM and PM Ba hexaferrite are shown in fig 6 The microstructure of PIM Ba hexaferrite green samples made by melt feedstock injected into the mould is shown in fig 6 (a) particles around 16 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same particles can be seen very clearly as shown in fig 6 (b) The sintered microstructure of PIM samples is achieved by sintering at 1250 degC2h in air The fracture surface of sintered PM Ba hexaferrite samples achieved at the same sintering profile as for PIM samples is shown in fig 6 (d) A small gear our first isotropic Magneto-PIM product of Ba hexaferrite is shown in fig 6 (e) green part left and sintered part right Finally the gear was 12 pole lateral magnetized as

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

191

shown in picture (f) The main properties of sintered PIM and PM samples are given in tab 6 as follows

(a) (b) (c)

Ferrite core

N

S

NN

N N

N

S S

S S

S

(d) (e) (f)

Fig 6 SEM fractographs of CIM and PM BF samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) sintered PM (d) ferrite gears shaped by CIM BF (e) lateral 12 pole magnetization (f) Tab VI CIM and PM samples sintered in air

Material Particle size

[microm]

Injection pressure (MIM)

Pressure (PM) [MPa]

Tsint

[degC2h] Density [gcm3]

Shrinkage []

Remanent induction

BBr

[mT]

Coercive force

Hc

[kAm]

MIM BF dB 95 le16 80 1250 501 17 195 945 MIM BF dB 95 le16 120 1250 505 17 195 955 PM BF dB 95 le16 200 1250 505 165 205 845 PM BF dB 95 le16 400 1250 511 165 205 865

CIM Ba hexaferrite (isotropic) results (SEM Fig 6 and Tab VI) are quite close to the

best results of known hard ferrite producers [35 36] Our PIM and PM samples (Tab VI) do not differ much in density (505 vs 511 gcm3 respectively) and they have similar magnetic properties We have not yet produced PIM anisotropic samples (PIM shaping in applied magnetic field) to compare the results with anisotropic results given in Tab 3 which is to be done in the near future

32 CIM PZT Piezo Ceramic

Selected SEM micrographs of PIM and PM PZT piezo ceramic are shown in Fig 7 The microstructure of PIM PZT piezo ceramic green samples made by melt feedstock injected into the mould is shown in fig 7 (a) particles around 4 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same

5microm 5microm 5microm

5microm

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

192

particles can be seen very clearly as shown in fig 7 (b) The sintered microstructure of PIM samples is achieved by sintering at 1260 degC2h in air The microstructure of pressed PM green PZT piezo ceramic samples made of the same powder at round 3-4 times higher pressure (200-400 MPa) is shown in fig 7 (d) The fracture surface of sintered PM PZT piezo ceramic samples achieved at the same sintering profile as for PIM samples is shown in fig 7 (e) A small resonant tube with a 03 mm thick wall our second PIM product made of PZT piezo ceramic is shown in fig 7 (f) The main properties of sintered PIM and PM samples are given in tab VII as follows

(a) (b) (c)

(d) (e) (f)

Fig 7 SEM fractographs of CIM and PM PZT samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) green PM part (d) sintered PM part (e) piezo tube resonator shaped by CIM (f) Tab VII CIM and PM samples sintered in air

Material Particle

size [microm]

Injection pressure (MIM) Pressure (PM)

[MPa]

Tsint[degC2h]

Density [gcm3]

Shrinkage []

Piezoelectric charge

constants d33

[pCN] MIM PZT

dB 50 le4 80 1260 754 17 532

MIM PZT

dB 50 le4 120 1260 754 17 530

PM PZT dB 50 le4 200 1260 741 165 505 PM PZT dB 50 le4 400 1260 741 162 502

The CIM PZT results (SEM in Fig 7 Tab VII) are very close to the PZT data given in Fig 5 and Tab IV and available literature data [32 33] The PIM and PM density results (Tab VII) are quite close implying small differences in piezo electric properties as well Our main product micro resonator tube made of PZT ceramics and shaped by micro-PIM emits

5microm 5microm 5microm

5microm 5microm

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

193

acoustic signals in the frequency range of the human ear The piezo properties attained are comparable to those given in the literature [21 2834] Our experiments are continuing 4 Conclusion

Initially our interest in PIM was to develop some metallic mechanical parts with high complexity for industrial applications such as micro gears heat sinks fly wheel lock part cutting tool mechanical parts through using the MIM procedure Later experiments were started with ceramics and then sensor materials ferrites and PZT ceramics using the CIM procedure It was a difficult task to control the functional properties of ceramics by controlling micro-structural development

Comparison between PIM and PM (powder metallurgy) samples is a common method in research of materials which the authors have also applied in their experiments The values to be compared are usually particle average grain size density and porosity shrinkage hardness brittleness and the main functional properties of the materials

Previous results for PM technology was fundamental thus CIM samples were followed by PM samples compacted from powder (dry pressed) Two optimisations in pressures and sintering temperatures were done in parallel to ensure simultaneous analysis of both (PM and PIM) optimum to achieve the optimum mechanical and electrical thermal magnetic and piezo properties In all PIM experiments the feedstock was prepared using a solvent binder system (wax thermoplast and additives)

CIM samples have the same starting powder particle size (16 and 4 microm on average for Ba hexaferrite and PZT piezo ceramics) as such manufactured by PM but differ in pressure applied PM pressures are also several times higher It is well known that pressing (compacting) gives the first significant contacts between particles which enhances subsequent sintering nevertheless the PIM route yields excellent results even without this compacting step

Of course direct comparison of products obtained by PIM and PM press-and-sinter techniques respectively is difficult due to the strong effect of the manufacturing process on the final properties but in any case it can be concluded that both for metallic and ceramic materials powder injection moulding is attractive for combining complex 3D geometries with excellent material properties 5 References

1 V Piotter T Gietzelt LMerz Sadhana 28 (2003) 299 2 JE Zorzi CA Perottoni JAH da Jornada Materials Letters 57 (2003) 3784 3 R Zauner Microelectronic Engineering 83 (2006) 1442 4 M Trunec P Dobsk J Cihlaacute J Eur Ceram Soc 20 (2000) 859 5 DM Liu WJ Tseng Ceram Int 25 (1999) 529 6 J Janardhana Reddy N Ravi and M Vijayakumar J Eur Ceram Soc 20 (2000)

2183 7 S Krug JRG Evans JHH Ter Maat J Eur Ceram Soc 22 (2002) 173 8 WJ Tseng Mat Sci Eng A 289 (2000) 116 9 PC Yu QF Li JYH Fuh T Li L Lu J Mater Process Technol 192-193

(2007) 312 10 B Williams Metal Powder Report 58 (2003) 27 11 SH Ng JB Hull JL Henshall J Mater Process Technol 157 (2006) 299 12 Morgan Advanced Ceramics Stourport Ceramics Injection Moulding (catalogue)

2007 13 AJ Pigram R Freer J Mater Sci 29 (1994) 6420 14 S H Lee W Y Jeung J MagnMagn Mater 226-230 (2001) 1400

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 5: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

189

Fig 3 SEM microstructure of CIM Sr hexaferrite sintered at 1200 degC2h magnification times1000(a) isotropic (b) anisotropic oriented in a magnetic field during injection moulding

Fig 4 CIM soft ferrite bobbin cores (left) and hard ferrite magnets (right) [20] 23 CIM PZT Materials

Piezo ceramics are applied in the industry of electronic components such as chip capacitors filters sensors and actuators The main electrical parameters (resonant frequency and their tolerance) are connected to ceramic device dimensions and electrode surface value and their arrangement [21-24] That is the main reason why piezo devices are planar with thick film electrodes and why they are known as laser trimmed devices Moreover their electrical characteristics depend on chemical composition heat treatment microstructure and dopants [25-31] Furthermore their mechanical and electrical characteristics depend on the ratio of their main constituents (PZT-Pb(Zr Ti)O3 BLT-(Bi La)4Ti3O12 BT- BaTiO3 ) (see Tab IV and V) [32 33] Tab IV Physical characteristics of PZT-BLT piezo ceramics sintered at 1150 degC

Composition Density [gcm3] Grain size [microm]

PZT 761 991 09PZT-01BLT 768 223 07PZT-03BLT 753 220 05PZT-05BLT 737 142 03PZT-07BLT 749 221 01PZT-09BLT 756 223 BLT 744 244

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

190

Tab V Physical characteristics of PZT-BT piezo ceramics with optimised processing condition

Composition Tsint [degC] Density [ TD]

Grain size [microm]

PZT 1100 961 236 09PZT-01BT 1200 968 286 07PZT-03BT 1200 970 197 05PZT-05BT 1250 944 387 03PZT-07BT 1250 861 371 01PZT-09BT 1300 860 572 BT 1350 959 242

Hence the piezo devices are produced by classical procedures such as tape casting isostatic pressing of powder polymer bonded types and very rarely by PIM technology [32] The ratio of PZT-binder for the feedstock was 7426 vol Polymers used for binder aimed for the injection of PZT ceramics are very common paraffin-wax 65 (ethylene vinyl acetate polyvinyl alcohol) 35 PIM green samples of PZT were thermally debinded and sintered from 950-1250 degC depending on chemical composition The green PZT micro components and morphologies of PZT powders are given in Fig V The initial PZT powder was submicronic Investigation of the influence of thermal treatment on the morphologies dielectric and ferroelectric properties of PZT-based ceramics is continued [34]

(a) (b) (c)

Fig 5 Green PZT micro components (a) depth of green PZT micro component (b) and micrograph of PZT powder particles (c) 3 Experimental and Results 31 CIM Ba Hexaferrite (isotropic)

Selected SEM micrographs of PIM and PM Ba hexaferrite are shown in fig 6 The microstructure of PIM Ba hexaferrite green samples made by melt feedstock injected into the mould is shown in fig 6 (a) particles around 16 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same particles can be seen very clearly as shown in fig 6 (b) The sintered microstructure of PIM samples is achieved by sintering at 1250 degC2h in air The fracture surface of sintered PM Ba hexaferrite samples achieved at the same sintering profile as for PIM samples is shown in fig 6 (d) A small gear our first isotropic Magneto-PIM product of Ba hexaferrite is shown in fig 6 (e) green part left and sintered part right Finally the gear was 12 pole lateral magnetized as

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

191

shown in picture (f) The main properties of sintered PIM and PM samples are given in tab 6 as follows

(a) (b) (c)

Ferrite core

N

S

NN

N N

N

S S

S S

S

(d) (e) (f)

Fig 6 SEM fractographs of CIM and PM BF samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) sintered PM (d) ferrite gears shaped by CIM BF (e) lateral 12 pole magnetization (f) Tab VI CIM and PM samples sintered in air

Material Particle size

[microm]

Injection pressure (MIM)

Pressure (PM) [MPa]

Tsint

[degC2h] Density [gcm3]

Shrinkage []

Remanent induction

BBr

[mT]

Coercive force

Hc

[kAm]

MIM BF dB 95 le16 80 1250 501 17 195 945 MIM BF dB 95 le16 120 1250 505 17 195 955 PM BF dB 95 le16 200 1250 505 165 205 845 PM BF dB 95 le16 400 1250 511 165 205 865

CIM Ba hexaferrite (isotropic) results (SEM Fig 6 and Tab VI) are quite close to the

best results of known hard ferrite producers [35 36] Our PIM and PM samples (Tab VI) do not differ much in density (505 vs 511 gcm3 respectively) and they have similar magnetic properties We have not yet produced PIM anisotropic samples (PIM shaping in applied magnetic field) to compare the results with anisotropic results given in Tab 3 which is to be done in the near future

32 CIM PZT Piezo Ceramic

Selected SEM micrographs of PIM and PM PZT piezo ceramic are shown in Fig 7 The microstructure of PIM PZT piezo ceramic green samples made by melt feedstock injected into the mould is shown in fig 7 (a) particles around 4 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same

5microm 5microm 5microm

5microm

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

192

particles can be seen very clearly as shown in fig 7 (b) The sintered microstructure of PIM samples is achieved by sintering at 1260 degC2h in air The microstructure of pressed PM green PZT piezo ceramic samples made of the same powder at round 3-4 times higher pressure (200-400 MPa) is shown in fig 7 (d) The fracture surface of sintered PM PZT piezo ceramic samples achieved at the same sintering profile as for PIM samples is shown in fig 7 (e) A small resonant tube with a 03 mm thick wall our second PIM product made of PZT piezo ceramic is shown in fig 7 (f) The main properties of sintered PIM and PM samples are given in tab VII as follows

(a) (b) (c)

(d) (e) (f)

Fig 7 SEM fractographs of CIM and PM PZT samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) green PM part (d) sintered PM part (e) piezo tube resonator shaped by CIM (f) Tab VII CIM and PM samples sintered in air

Material Particle

size [microm]

Injection pressure (MIM) Pressure (PM)

[MPa]

Tsint[degC2h]

Density [gcm3]

Shrinkage []

Piezoelectric charge

constants d33

[pCN] MIM PZT

dB 50 le4 80 1260 754 17 532

MIM PZT

dB 50 le4 120 1260 754 17 530

PM PZT dB 50 le4 200 1260 741 165 505 PM PZT dB 50 le4 400 1260 741 162 502

The CIM PZT results (SEM in Fig 7 Tab VII) are very close to the PZT data given in Fig 5 and Tab IV and available literature data [32 33] The PIM and PM density results (Tab VII) are quite close implying small differences in piezo electric properties as well Our main product micro resonator tube made of PZT ceramics and shaped by micro-PIM emits

5microm 5microm 5microm

5microm 5microm

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

193

acoustic signals in the frequency range of the human ear The piezo properties attained are comparable to those given in the literature [21 2834] Our experiments are continuing 4 Conclusion

Initially our interest in PIM was to develop some metallic mechanical parts with high complexity for industrial applications such as micro gears heat sinks fly wheel lock part cutting tool mechanical parts through using the MIM procedure Later experiments were started with ceramics and then sensor materials ferrites and PZT ceramics using the CIM procedure It was a difficult task to control the functional properties of ceramics by controlling micro-structural development

Comparison between PIM and PM (powder metallurgy) samples is a common method in research of materials which the authors have also applied in their experiments The values to be compared are usually particle average grain size density and porosity shrinkage hardness brittleness and the main functional properties of the materials

Previous results for PM technology was fundamental thus CIM samples were followed by PM samples compacted from powder (dry pressed) Two optimisations in pressures and sintering temperatures were done in parallel to ensure simultaneous analysis of both (PM and PIM) optimum to achieve the optimum mechanical and electrical thermal magnetic and piezo properties In all PIM experiments the feedstock was prepared using a solvent binder system (wax thermoplast and additives)

CIM samples have the same starting powder particle size (16 and 4 microm on average for Ba hexaferrite and PZT piezo ceramics) as such manufactured by PM but differ in pressure applied PM pressures are also several times higher It is well known that pressing (compacting) gives the first significant contacts between particles which enhances subsequent sintering nevertheless the PIM route yields excellent results even without this compacting step

Of course direct comparison of products obtained by PIM and PM press-and-sinter techniques respectively is difficult due to the strong effect of the manufacturing process on the final properties but in any case it can be concluded that both for metallic and ceramic materials powder injection moulding is attractive for combining complex 3D geometries with excellent material properties 5 References

1 V Piotter T Gietzelt LMerz Sadhana 28 (2003) 299 2 JE Zorzi CA Perottoni JAH da Jornada Materials Letters 57 (2003) 3784 3 R Zauner Microelectronic Engineering 83 (2006) 1442 4 M Trunec P Dobsk J Cihlaacute J Eur Ceram Soc 20 (2000) 859 5 DM Liu WJ Tseng Ceram Int 25 (1999) 529 6 J Janardhana Reddy N Ravi and M Vijayakumar J Eur Ceram Soc 20 (2000)

2183 7 S Krug JRG Evans JHH Ter Maat J Eur Ceram Soc 22 (2002) 173 8 WJ Tseng Mat Sci Eng A 289 (2000) 116 9 PC Yu QF Li JYH Fuh T Li L Lu J Mater Process Technol 192-193

(2007) 312 10 B Williams Metal Powder Report 58 (2003) 27 11 SH Ng JB Hull JL Henshall J Mater Process Technol 157 (2006) 299 12 Morgan Advanced Ceramics Stourport Ceramics Injection Moulding (catalogue)

2007 13 AJ Pigram R Freer J Mater Sci 29 (1994) 6420 14 S H Lee W Y Jeung J MagnMagn Mater 226-230 (2001) 1400

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 6: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

190

Tab V Physical characteristics of PZT-BT piezo ceramics with optimised processing condition

Composition Tsint [degC] Density [ TD]

Grain size [microm]

PZT 1100 961 236 09PZT-01BT 1200 968 286 07PZT-03BT 1200 970 197 05PZT-05BT 1250 944 387 03PZT-07BT 1250 861 371 01PZT-09BT 1300 860 572 BT 1350 959 242

Hence the piezo devices are produced by classical procedures such as tape casting isostatic pressing of powder polymer bonded types and very rarely by PIM technology [32] The ratio of PZT-binder for the feedstock was 7426 vol Polymers used for binder aimed for the injection of PZT ceramics are very common paraffin-wax 65 (ethylene vinyl acetate polyvinyl alcohol) 35 PIM green samples of PZT were thermally debinded and sintered from 950-1250 degC depending on chemical composition The green PZT micro components and morphologies of PZT powders are given in Fig V The initial PZT powder was submicronic Investigation of the influence of thermal treatment on the morphologies dielectric and ferroelectric properties of PZT-based ceramics is continued [34]

(a) (b) (c)

Fig 5 Green PZT micro components (a) depth of green PZT micro component (b) and micrograph of PZT powder particles (c) 3 Experimental and Results 31 CIM Ba Hexaferrite (isotropic)

Selected SEM micrographs of PIM and PM Ba hexaferrite are shown in fig 6 The microstructure of PIM Ba hexaferrite green samples made by melt feedstock injected into the mould is shown in fig 6 (a) particles around 16 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same particles can be seen very clearly as shown in fig 6 (b) The sintered microstructure of PIM samples is achieved by sintering at 1250 degC2h in air The fracture surface of sintered PM Ba hexaferrite samples achieved at the same sintering profile as for PIM samples is shown in fig 6 (d) A small gear our first isotropic Magneto-PIM product of Ba hexaferrite is shown in fig 6 (e) green part left and sintered part right Finally the gear was 12 pole lateral magnetized as

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

191

shown in picture (f) The main properties of sintered PIM and PM samples are given in tab 6 as follows

(a) (b) (c)

Ferrite core

N

S

NN

N N

N

S S

S S

S

(d) (e) (f)

Fig 6 SEM fractographs of CIM and PM BF samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) sintered PM (d) ferrite gears shaped by CIM BF (e) lateral 12 pole magnetization (f) Tab VI CIM and PM samples sintered in air

Material Particle size

[microm]

Injection pressure (MIM)

Pressure (PM) [MPa]

Tsint

[degC2h] Density [gcm3]

Shrinkage []

Remanent induction

BBr

[mT]

Coercive force

Hc

[kAm]

MIM BF dB 95 le16 80 1250 501 17 195 945 MIM BF dB 95 le16 120 1250 505 17 195 955 PM BF dB 95 le16 200 1250 505 165 205 845 PM BF dB 95 le16 400 1250 511 165 205 865

CIM Ba hexaferrite (isotropic) results (SEM Fig 6 and Tab VI) are quite close to the

best results of known hard ferrite producers [35 36] Our PIM and PM samples (Tab VI) do not differ much in density (505 vs 511 gcm3 respectively) and they have similar magnetic properties We have not yet produced PIM anisotropic samples (PIM shaping in applied magnetic field) to compare the results with anisotropic results given in Tab 3 which is to be done in the near future

32 CIM PZT Piezo Ceramic

Selected SEM micrographs of PIM and PM PZT piezo ceramic are shown in Fig 7 The microstructure of PIM PZT piezo ceramic green samples made by melt feedstock injected into the mould is shown in fig 7 (a) particles around 4 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same

5microm 5microm 5microm

5microm

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

192

particles can be seen very clearly as shown in fig 7 (b) The sintered microstructure of PIM samples is achieved by sintering at 1260 degC2h in air The microstructure of pressed PM green PZT piezo ceramic samples made of the same powder at round 3-4 times higher pressure (200-400 MPa) is shown in fig 7 (d) The fracture surface of sintered PM PZT piezo ceramic samples achieved at the same sintering profile as for PIM samples is shown in fig 7 (e) A small resonant tube with a 03 mm thick wall our second PIM product made of PZT piezo ceramic is shown in fig 7 (f) The main properties of sintered PIM and PM samples are given in tab VII as follows

(a) (b) (c)

(d) (e) (f)

Fig 7 SEM fractographs of CIM and PM PZT samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) green PM part (d) sintered PM part (e) piezo tube resonator shaped by CIM (f) Tab VII CIM and PM samples sintered in air

Material Particle

size [microm]

Injection pressure (MIM) Pressure (PM)

[MPa]

Tsint[degC2h]

Density [gcm3]

Shrinkage []

Piezoelectric charge

constants d33

[pCN] MIM PZT

dB 50 le4 80 1260 754 17 532

MIM PZT

dB 50 le4 120 1260 754 17 530

PM PZT dB 50 le4 200 1260 741 165 505 PM PZT dB 50 le4 400 1260 741 162 502

The CIM PZT results (SEM in Fig 7 Tab VII) are very close to the PZT data given in Fig 5 and Tab IV and available literature data [32 33] The PIM and PM density results (Tab VII) are quite close implying small differences in piezo electric properties as well Our main product micro resonator tube made of PZT ceramics and shaped by micro-PIM emits

5microm 5microm 5microm

5microm 5microm

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

193

acoustic signals in the frequency range of the human ear The piezo properties attained are comparable to those given in the literature [21 2834] Our experiments are continuing 4 Conclusion

Initially our interest in PIM was to develop some metallic mechanical parts with high complexity for industrial applications such as micro gears heat sinks fly wheel lock part cutting tool mechanical parts through using the MIM procedure Later experiments were started with ceramics and then sensor materials ferrites and PZT ceramics using the CIM procedure It was a difficult task to control the functional properties of ceramics by controlling micro-structural development

Comparison between PIM and PM (powder metallurgy) samples is a common method in research of materials which the authors have also applied in their experiments The values to be compared are usually particle average grain size density and porosity shrinkage hardness brittleness and the main functional properties of the materials

Previous results for PM technology was fundamental thus CIM samples were followed by PM samples compacted from powder (dry pressed) Two optimisations in pressures and sintering temperatures were done in parallel to ensure simultaneous analysis of both (PM and PIM) optimum to achieve the optimum mechanical and electrical thermal magnetic and piezo properties In all PIM experiments the feedstock was prepared using a solvent binder system (wax thermoplast and additives)

CIM samples have the same starting powder particle size (16 and 4 microm on average for Ba hexaferrite and PZT piezo ceramics) as such manufactured by PM but differ in pressure applied PM pressures are also several times higher It is well known that pressing (compacting) gives the first significant contacts between particles which enhances subsequent sintering nevertheless the PIM route yields excellent results even without this compacting step

Of course direct comparison of products obtained by PIM and PM press-and-sinter techniques respectively is difficult due to the strong effect of the manufacturing process on the final properties but in any case it can be concluded that both for metallic and ceramic materials powder injection moulding is attractive for combining complex 3D geometries with excellent material properties 5 References

1 V Piotter T Gietzelt LMerz Sadhana 28 (2003) 299 2 JE Zorzi CA Perottoni JAH da Jornada Materials Letters 57 (2003) 3784 3 R Zauner Microelectronic Engineering 83 (2006) 1442 4 M Trunec P Dobsk J Cihlaacute J Eur Ceram Soc 20 (2000) 859 5 DM Liu WJ Tseng Ceram Int 25 (1999) 529 6 J Janardhana Reddy N Ravi and M Vijayakumar J Eur Ceram Soc 20 (2000)

2183 7 S Krug JRG Evans JHH Ter Maat J Eur Ceram Soc 22 (2002) 173 8 WJ Tseng Mat Sci Eng A 289 (2000) 116 9 PC Yu QF Li JYH Fuh T Li L Lu J Mater Process Technol 192-193

(2007) 312 10 B Williams Metal Powder Report 58 (2003) 27 11 SH Ng JB Hull JL Henshall J Mater Process Technol 157 (2006) 299 12 Morgan Advanced Ceramics Stourport Ceramics Injection Moulding (catalogue)

2007 13 AJ Pigram R Freer J Mater Sci 29 (1994) 6420 14 S H Lee W Y Jeung J MagnMagn Mater 226-230 (2001) 1400

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 7: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

191

shown in picture (f) The main properties of sintered PIM and PM samples are given in tab 6 as follows

(a) (b) (c)

Ferrite core

N

S

NN

N N

N

S S

S S

S

(d) (e) (f)

Fig 6 SEM fractographs of CIM and PM BF samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) sintered PM (d) ferrite gears shaped by CIM BF (e) lateral 12 pole magnetization (f) Tab VI CIM and PM samples sintered in air

Material Particle size

[microm]

Injection pressure (MIM)

Pressure (PM) [MPa]

Tsint

[degC2h] Density [gcm3]

Shrinkage []

Remanent induction

BBr

[mT]

Coercive force

Hc

[kAm]

MIM BF dB 95 le16 80 1250 501 17 195 945 MIM BF dB 95 le16 120 1250 505 17 195 955 PM BF dB 95 le16 200 1250 505 165 205 845 PM BF dB 95 le16 400 1250 511 165 205 865

CIM Ba hexaferrite (isotropic) results (SEM Fig 6 and Tab VI) are quite close to the

best results of known hard ferrite producers [35 36] Our PIM and PM samples (Tab VI) do not differ much in density (505 vs 511 gcm3 respectively) and they have similar magnetic properties We have not yet produced PIM anisotropic samples (PIM shaping in applied magnetic field) to compare the results with anisotropic results given in Tab 3 which is to be done in the near future

32 CIM PZT Piezo Ceramic

Selected SEM micrographs of PIM and PM PZT piezo ceramic are shown in Fig 7 The microstructure of PIM PZT piezo ceramic green samples made by melt feedstock injected into the mould is shown in fig 7 (a) particles around 4 microm can be seen together with binder After the debinding process when most of the binder was removed by solvent the same

5microm 5microm 5microm

5microm

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

192

particles can be seen very clearly as shown in fig 7 (b) The sintered microstructure of PIM samples is achieved by sintering at 1260 degC2h in air The microstructure of pressed PM green PZT piezo ceramic samples made of the same powder at round 3-4 times higher pressure (200-400 MPa) is shown in fig 7 (d) The fracture surface of sintered PM PZT piezo ceramic samples achieved at the same sintering profile as for PIM samples is shown in fig 7 (e) A small resonant tube with a 03 mm thick wall our second PIM product made of PZT piezo ceramic is shown in fig 7 (f) The main properties of sintered PIM and PM samples are given in tab VII as follows

(a) (b) (c)

(d) (e) (f)

Fig 7 SEM fractographs of CIM and PM PZT samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) green PM part (d) sintered PM part (e) piezo tube resonator shaped by CIM (f) Tab VII CIM and PM samples sintered in air

Material Particle

size [microm]

Injection pressure (MIM) Pressure (PM)

[MPa]

Tsint[degC2h]

Density [gcm3]

Shrinkage []

Piezoelectric charge

constants d33

[pCN] MIM PZT

dB 50 le4 80 1260 754 17 532

MIM PZT

dB 50 le4 120 1260 754 17 530

PM PZT dB 50 le4 200 1260 741 165 505 PM PZT dB 50 le4 400 1260 741 162 502

The CIM PZT results (SEM in Fig 7 Tab VII) are very close to the PZT data given in Fig 5 and Tab IV and available literature data [32 33] The PIM and PM density results (Tab VII) are quite close implying small differences in piezo electric properties as well Our main product micro resonator tube made of PZT ceramics and shaped by micro-PIM emits

5microm 5microm 5microm

5microm 5microm

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

193

acoustic signals in the frequency range of the human ear The piezo properties attained are comparable to those given in the literature [21 2834] Our experiments are continuing 4 Conclusion

Initially our interest in PIM was to develop some metallic mechanical parts with high complexity for industrial applications such as micro gears heat sinks fly wheel lock part cutting tool mechanical parts through using the MIM procedure Later experiments were started with ceramics and then sensor materials ferrites and PZT ceramics using the CIM procedure It was a difficult task to control the functional properties of ceramics by controlling micro-structural development

Comparison between PIM and PM (powder metallurgy) samples is a common method in research of materials which the authors have also applied in their experiments The values to be compared are usually particle average grain size density and porosity shrinkage hardness brittleness and the main functional properties of the materials

Previous results for PM technology was fundamental thus CIM samples were followed by PM samples compacted from powder (dry pressed) Two optimisations in pressures and sintering temperatures were done in parallel to ensure simultaneous analysis of both (PM and PIM) optimum to achieve the optimum mechanical and electrical thermal magnetic and piezo properties In all PIM experiments the feedstock was prepared using a solvent binder system (wax thermoplast and additives)

CIM samples have the same starting powder particle size (16 and 4 microm on average for Ba hexaferrite and PZT piezo ceramics) as such manufactured by PM but differ in pressure applied PM pressures are also several times higher It is well known that pressing (compacting) gives the first significant contacts between particles which enhances subsequent sintering nevertheless the PIM route yields excellent results even without this compacting step

Of course direct comparison of products obtained by PIM and PM press-and-sinter techniques respectively is difficult due to the strong effect of the manufacturing process on the final properties but in any case it can be concluded that both for metallic and ceramic materials powder injection moulding is attractive for combining complex 3D geometries with excellent material properties 5 References

1 V Piotter T Gietzelt LMerz Sadhana 28 (2003) 299 2 JE Zorzi CA Perottoni JAH da Jornada Materials Letters 57 (2003) 3784 3 R Zauner Microelectronic Engineering 83 (2006) 1442 4 M Trunec P Dobsk J Cihlaacute J Eur Ceram Soc 20 (2000) 859 5 DM Liu WJ Tseng Ceram Int 25 (1999) 529 6 J Janardhana Reddy N Ravi and M Vijayakumar J Eur Ceram Soc 20 (2000)

2183 7 S Krug JRG Evans JHH Ter Maat J Eur Ceram Soc 22 (2002) 173 8 WJ Tseng Mat Sci Eng A 289 (2000) 116 9 PC Yu QF Li JYH Fuh T Li L Lu J Mater Process Technol 192-193

(2007) 312 10 B Williams Metal Powder Report 58 (2003) 27 11 SH Ng JB Hull JL Henshall J Mater Process Technol 157 (2006) 299 12 Morgan Advanced Ceramics Stourport Ceramics Injection Moulding (catalogue)

2007 13 AJ Pigram R Freer J Mater Sci 29 (1994) 6420 14 S H Lee W Y Jeung J MagnMagn Mater 226-230 (2001) 1400

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 8: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

192

particles can be seen very clearly as shown in fig 7 (b) The sintered microstructure of PIM samples is achieved by sintering at 1260 degC2h in air The microstructure of pressed PM green PZT piezo ceramic samples made of the same powder at round 3-4 times higher pressure (200-400 MPa) is shown in fig 7 (d) The fracture surface of sintered PM PZT piezo ceramic samples achieved at the same sintering profile as for PIM samples is shown in fig 7 (e) A small resonant tube with a 03 mm thick wall our second PIM product made of PZT piezo ceramic is shown in fig 7 (f) The main properties of sintered PIM and PM samples are given in tab VII as follows

(a) (b) (c)

(d) (e) (f)

Fig 7 SEM fractographs of CIM and PM PZT samples magnified times5000 CIM green part (a) CIM debinded white part (b) sintered part (c) green PM part (d) sintered PM part (e) piezo tube resonator shaped by CIM (f) Tab VII CIM and PM samples sintered in air

Material Particle

size [microm]

Injection pressure (MIM) Pressure (PM)

[MPa]

Tsint[degC2h]

Density [gcm3]

Shrinkage []

Piezoelectric charge

constants d33

[pCN] MIM PZT

dB 50 le4 80 1260 754 17 532

MIM PZT

dB 50 le4 120 1260 754 17 530

PM PZT dB 50 le4 200 1260 741 165 505 PM PZT dB 50 le4 400 1260 741 162 502

The CIM PZT results (SEM in Fig 7 Tab VII) are very close to the PZT data given in Fig 5 and Tab IV and available literature data [32 33] The PIM and PM density results (Tab VII) are quite close implying small differences in piezo electric properties as well Our main product micro resonator tube made of PZT ceramics and shaped by micro-PIM emits

5microm 5microm 5microm

5microm 5microm

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

193

acoustic signals in the frequency range of the human ear The piezo properties attained are comparable to those given in the literature [21 2834] Our experiments are continuing 4 Conclusion

Initially our interest in PIM was to develop some metallic mechanical parts with high complexity for industrial applications such as micro gears heat sinks fly wheel lock part cutting tool mechanical parts through using the MIM procedure Later experiments were started with ceramics and then sensor materials ferrites and PZT ceramics using the CIM procedure It was a difficult task to control the functional properties of ceramics by controlling micro-structural development

Comparison between PIM and PM (powder metallurgy) samples is a common method in research of materials which the authors have also applied in their experiments The values to be compared are usually particle average grain size density and porosity shrinkage hardness brittleness and the main functional properties of the materials

Previous results for PM technology was fundamental thus CIM samples were followed by PM samples compacted from powder (dry pressed) Two optimisations in pressures and sintering temperatures were done in parallel to ensure simultaneous analysis of both (PM and PIM) optimum to achieve the optimum mechanical and electrical thermal magnetic and piezo properties In all PIM experiments the feedstock was prepared using a solvent binder system (wax thermoplast and additives)

CIM samples have the same starting powder particle size (16 and 4 microm on average for Ba hexaferrite and PZT piezo ceramics) as such manufactured by PM but differ in pressure applied PM pressures are also several times higher It is well known that pressing (compacting) gives the first significant contacts between particles which enhances subsequent sintering nevertheless the PIM route yields excellent results even without this compacting step

Of course direct comparison of products obtained by PIM and PM press-and-sinter techniques respectively is difficult due to the strong effect of the manufacturing process on the final properties but in any case it can be concluded that both for metallic and ceramic materials powder injection moulding is attractive for combining complex 3D geometries with excellent material properties 5 References

1 V Piotter T Gietzelt LMerz Sadhana 28 (2003) 299 2 JE Zorzi CA Perottoni JAH da Jornada Materials Letters 57 (2003) 3784 3 R Zauner Microelectronic Engineering 83 (2006) 1442 4 M Trunec P Dobsk J Cihlaacute J Eur Ceram Soc 20 (2000) 859 5 DM Liu WJ Tseng Ceram Int 25 (1999) 529 6 J Janardhana Reddy N Ravi and M Vijayakumar J Eur Ceram Soc 20 (2000)

2183 7 S Krug JRG Evans JHH Ter Maat J Eur Ceram Soc 22 (2002) 173 8 WJ Tseng Mat Sci Eng A 289 (2000) 116 9 PC Yu QF Li JYH Fuh T Li L Lu J Mater Process Technol 192-193

(2007) 312 10 B Williams Metal Powder Report 58 (2003) 27 11 SH Ng JB Hull JL Henshall J Mater Process Technol 157 (2006) 299 12 Morgan Advanced Ceramics Stourport Ceramics Injection Moulding (catalogue)

2007 13 AJ Pigram R Freer J Mater Sci 29 (1994) 6420 14 S H Lee W Y Jeung J MagnMagn Mater 226-230 (2001) 1400

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 9: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

193

acoustic signals in the frequency range of the human ear The piezo properties attained are comparable to those given in the literature [21 2834] Our experiments are continuing 4 Conclusion

Initially our interest in PIM was to develop some metallic mechanical parts with high complexity for industrial applications such as micro gears heat sinks fly wheel lock part cutting tool mechanical parts through using the MIM procedure Later experiments were started with ceramics and then sensor materials ferrites and PZT ceramics using the CIM procedure It was a difficult task to control the functional properties of ceramics by controlling micro-structural development

Comparison between PIM and PM (powder metallurgy) samples is a common method in research of materials which the authors have also applied in their experiments The values to be compared are usually particle average grain size density and porosity shrinkage hardness brittleness and the main functional properties of the materials

Previous results for PM technology was fundamental thus CIM samples were followed by PM samples compacted from powder (dry pressed) Two optimisations in pressures and sintering temperatures were done in parallel to ensure simultaneous analysis of both (PM and PIM) optimum to achieve the optimum mechanical and electrical thermal magnetic and piezo properties In all PIM experiments the feedstock was prepared using a solvent binder system (wax thermoplast and additives)

CIM samples have the same starting powder particle size (16 and 4 microm on average for Ba hexaferrite and PZT piezo ceramics) as such manufactured by PM but differ in pressure applied PM pressures are also several times higher It is well known that pressing (compacting) gives the first significant contacts between particles which enhances subsequent sintering nevertheless the PIM route yields excellent results even without this compacting step

Of course direct comparison of products obtained by PIM and PM press-and-sinter techniques respectively is difficult due to the strong effect of the manufacturing process on the final properties but in any case it can be concluded that both for metallic and ceramic materials powder injection moulding is attractive for combining complex 3D geometries with excellent material properties 5 References

1 V Piotter T Gietzelt LMerz Sadhana 28 (2003) 299 2 JE Zorzi CA Perottoni JAH da Jornada Materials Letters 57 (2003) 3784 3 R Zauner Microelectronic Engineering 83 (2006) 1442 4 M Trunec P Dobsk J Cihlaacute J Eur Ceram Soc 20 (2000) 859 5 DM Liu WJ Tseng Ceram Int 25 (1999) 529 6 J Janardhana Reddy N Ravi and M Vijayakumar J Eur Ceram Soc 20 (2000)

2183 7 S Krug JRG Evans JHH Ter Maat J Eur Ceram Soc 22 (2002) 173 8 WJ Tseng Mat Sci Eng A 289 (2000) 116 9 PC Yu QF Li JYH Fuh T Li L Lu J Mater Process Technol 192-193

(2007) 312 10 B Williams Metal Powder Report 58 (2003) 27 11 SH Ng JB Hull JL Henshall J Mater Process Technol 157 (2006) 299 12 Morgan Advanced Ceramics Stourport Ceramics Injection Moulding (catalogue)

2007 13 AJ Pigram R Freer J Mater Sci 29 (1994) 6420 14 S H Lee W Y Jeung J MagnMagn Mater 226-230 (2001) 1400

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 10: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et al Science of Sintering 40 (2008) 185-195 ___________________________________________________________________________

194

15 N Murillo J Gonzaacutelez C Guraya M Gutieacuterrez F J Seco J Magn Magn Mater 203 (1999) 165

16 KB Paul Physica B 388 (2007) 337 17 M Mangra M Ivanescu V Stoian O Gingu J Mater Process Technol 89-90

(1999) 481 18 J Topfer S Schwarzer S Senz D Hesse J Eur Ceram Soc 25 (2005) 1681 19 O Kohmoto T Yamane J Miyoshi H Sakihara F Ono J Magn Magn Mater

272-276 (2004) 791 20 Oak Ridge National Laboratory Review Volume 28 Number 4 1995 21 JF Tressler S Alkoy RE Newnham J Electroceram 24 (1998) 257 22 YH Kim DH Kim JH Han CG Kim Composites Part B 38 (2007) 800 23 J Yoo K Kim C Lee L Hwang D Paik H Yoon HW Choi Sensors and

Actuators A 137 (2007) 81 24 T Zeng XL Dong CL Mao ST Chen H Chen Mat Sci Eng B 135 (2006) 50 25 L Pdungsap N Udomkan S Boonyuen and P Winotai Sensors and Actuators A

Physical 122 (2005) 250 26 PM Franch DL Tunnicliffe DK Das-Gupta Materials Research Innovation 4

(2001) 334 27 JJ Fernandez C Moure M Villegas P Duran M Kosec G Drazic J Eur Ceram

Soc 18 (1998) 1695 28 RM Piticescu L Mitoseriu M Viviani and VM Poladian J Eur Ceram Soc 25

(2005) 2491 29 LB Kong J Ma HT Huang W Zhu O K Tan Materials Letters 50 (2001) 129 30 S Linardos Q Zhang JR Alcock J Eur Ceram Soc 26 (2006) 117 31 P Duran C Moure Mater ChemPhys 15 (1986) 193 32 ZY Liu NH Loh SB Tor KA Khor Y Marakoshi R Maeda T Shimazu J

Process Technol 127 (2002) 165 33 N Thongmee A Watcharapasorn S Jiansirisomboon Current Applied Physics 7

(2007) 671 34 N Vittayakorn G Rujijanagul DP Cann J Alloys Comp 440 (2007) 259 35 Arnold group Polymer Bonded Magnets (Catalogue) 2000 pp 1-32 36 W Strass Widia Magnettechnik (Catalogue) Permanent magnet materials Hard

ferrites 2006 Садржај У овом раду ПИМ технологија (бризгање композита - праха са растопљеним везивом) описана је врло кратко После тога збирно су дати њени доприноси и достигнућа Процес бризгања керамичког праха са растопљеним везивом (ЦИМ) је детаљније анализиран ЦИМ-алумина ЦИМ-циркониа и ЦИМ ферити као чешћи у примени и производњи компонети и делова као техничка керамика керамика у медицини прибор у хемиијским лабораторијама и језгра електронских индуктивних компонената После тога дати су наши резултати ЦИМ технологије за баријум хексаферит и пиезокерамику (баријум титанат) Основне карактеристике праха линеарно скуплање густина и основна електрична својства синтерованих узорака упоређени су за изостатички пресоване ПМ (металургија праха) и ЦИМ технологијом бризгане узорке СЕМ фотографије структуре за ЦИМ и ПМ узорке су дате најпре за ЦИМ узорке несинтероване (зелене) са одстрањеним везивом (беле) и синтероване узорке а затим ПМ несинтероване (зелене) и синтероване узорке Добијени резултати су упоређени са литературним пре него сто су коришћени у производњи керамичких компонети

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology
Page 11: Recent Advances in CIM Technology - Serbian Academy of … · Recent Advances in CIM Technology B ... 4 IRITEL AD Belgrade, Batajnicki put 23, 11080 Belgrade, Serbia Abstract: In

BSZlatkov et alScience of Sintering 40 (2008) 185-195 ___________________________________________________________________________

195

Кључне речи Технологија бризгања позита-праха са растопљеним везивом (ПИМ) бризгање металних прахова (МИМ) бризгање керамичких прахова (ЦИМ) гранулација праха композит одстрањивање везива синтеровање

  • UDK 66278562179828
  • Recent Advances in CIM Technology