ultrafast laser physics

35

Upload: duongbao

Post on 14-Jan-2017

250 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Ultrafast Laser Physics
Page 2: Ultrafast Laser Physics
Page 3: Ultrafast Laser Physics
Page 4: Ultrafast Laser Physics

There is however one main difference in this chapter compared to many other chapters. All loss and gain coefficients are given for the intensity and not the amplitude and are therefore a factor of 2 larger!

l t o tal nonsaturable intensity loss coefficient per resonator round-trip (i.e. without

the saturable absorber, but includes output coupler loss and any additional parasitic loss – also the nonsaturable losses of the saturable absorber

q s a turable intensity loss coefficient of the saturable absorber per cavity round-trip q0 u n bleached intensity loss coefficient of the saturable absorber per cavity round-

trip (i.e. maximum q at low intensity)

g s a turated intensity gain coefficient per resonator round-trip (please note here we use intensity gain and not amplitude gain)

g0 i n t ens i t y small signal gain coefficient per resonator round-trip (often also simply called small signal gain). For a homogenous gain material applies in steady-state(factor 2 for a linear standing-wave resonator):

g = g01+ 2I Isat

Page 5: Ultrafast Laser Physics

0 20161284Zeit, ns

Inte

nsitä

t

~~ e(g – l)t/TR0 e–γ tc

γ c = l TRg0 = rl

Page 6: Ultrafast Laser Physics

focussingoptics coating:

HR - laser λHT - diode λ

partiallyreflectivecoating

lasercrystal

diodelaser

A/O Q-switch

acoustictransducer

outputcoupler

Page 7: Ultrafast Laser Physics
Page 8: Ultrafast Laser Physics
Page 9: Ultrafast Laser Physics

Page 10: Ultrafast Laser Physics
Page 11: Ultrafast Laser Physics
Page 12: Ultrafast Laser Physics

dndt = KNn − γ cn

dNdt = Rp − γ LN − KnN

Rp =Pabshν pump

Page 13: Ultrafast Laser Physics

dndt = KNn − γ cn

dNdt = Rp − γ LN − KnN

dNdt ≈ Rp − γ LN = Rp −

Nτ L

N t( ) = Rpτ L 1− exp −t τ L( )⎡⎣ ⎤⎦= Nmax 1− exp −t τ L( )⎡⎣ ⎤⎦

Nmax = Rpτ L

2τ Lτ L t

N t( )

n t( ) ≈ 0 , Rp = const.≈ 3τ L

Page 14: Ultrafast Laser Physics

≈ 3τ LdNdt ≈ Rp − γ LN = Rp −

Nτ L

N t( ) = Rpτ L 1− exp −t τ L( )⎡⎣ ⎤⎦= Nmax 1− exp −t τ L( )⎡⎣ ⎤⎦

Nmax = Rpτ L

2τ Lτ L t

N t( )

n t( ) ≈ 0 , Rp = const.

Ep = const. ⇔ Trep >≈ 3τ L , or frep =1Trep

<≈ 13τ L

13τ L

=

Page 15: Ultrafast Laser Physics

dndt = KNn − γ cn

dNdt = Rp − γ LN − KnN

N t = 0( ) = Ni

n t = 0( ) = ni ≈ 1

N t( ) ≈ Ni ≈ const.

r = Ni Nth

Nth = γ c K

dndt ≈ K Ni − Nth( )n = KNth r −1( )n = r −1

τ cn

n t( ) ≈ niexpr −1τ c

t⎛⎝⎜

⎞⎠⎟

τ c=TR l, g0=rl⎯ →⎯⎯⎯⎯ = niexp g0 − l( ) tTR⎡

⎣⎢

⎦⎥

Page 16: Ultrafast Laser Physics

0 20161284Zeit, ns

Inte

nsitä

t

~~ e(g – l)t/TR0 e–γ tc

γ c = l TRg0 = rl

Page 17: Ultrafast Laser Physics

dndt = KNn − γ cn

dNdt = Rp − γ LN − KnN

Nth = γ c K

dndt = K N − Nth( )ndNdt ≈ −KnNdn

dN ≈K N − Nth( )n

−KnN = Nth − NN

dn ≈ Nth − NN dN N t = 0( ) = Ni = rNth , n t = 0( ) = ni ≈ 1 dn

ni

n t( )

∫ ≈ Nth − NN dN

Ni=rNth

N t( )

n t( ) ≈ Ni − N t( ) − Nir ln

NiN t( )

⎛⎝⎜

⎞⎠⎟

, with Ni = rNth n t( ) = nmax for g = l ⇔ N t( ) = Nth

nmax

Page 18: Ultrafast Laser Physics

n t( ) = nmax for g = l ⇔ N t( ) = Nth

nmax ≈r −1− lnr

r Ni , with Ni = rNth

nmax Ni

Pp,out =nmaxhντ c

Ep,out ≈ Ep ≈ Ni − N f( )hν

nmax

Page 19: Ultrafast Laser Physics

n t( ) = nmax for g = l ⇔ N t( ) = Nth

nmax ≈r −1− lnr

r Ni , with Ni = rNth

Pp,out =nmaxhντ c

Ep,out ≈ Ep ≈ Ni − N f( )hν

η ≡ Q - switched pulse energystored energy =

Ni − N f( )hνNihν

=Ni − N f

Ni

Ep,out = Ep ≈ η r( )Nihν

nmax

Page 20: Ultrafast Laser Physics

Pp,out =nmaxhντ c

Ep,out = Ep ≈ η r( )Nihν

τ p ≈Ep,out

Pp,out≈η r( )Ni

nmaxτ c ≈

rη r( )r −1− ln r τ c

η r( )

τ p

τ c

nmax

Page 21: Ultrafast Laser Physics

τ p

τ c

n t( ) = nmaxexp − t τ c( )

Pp,out =nmaxhντ c

Ep,out = Ep ≈ η r( )Nihν

η r( )

nmax

Page 22: Ultrafast Laser Physics
Page 23: Ultrafast Laser Physics

dRdI I > TR

τ stim≈ r TR

τ L

Page 24: Ultrafast Laser Physics
Page 25: Ultrafast Laser Physics

Sam

plin

g O

scillo

scop

e

-500 0 500Time [ps]

180 ps

Page 26: Ultrafast Laser Physics

Evanescent wave coupled nonlinear semiconductor mirror

B

CD

MISER: Monolithic Nd:YAG LaserApplying a magnetic field causes unidirectional lasing

Pump-Laser:cw Ti:Sapphire laser @ 809 nm

Output: Without nonlinear mirror -> cw output, single mode due to unidirectional ring laser

With nonlinear mirror-> single mode Q-switched

A

z

α > α Τ

Saturable Absorber orModulator section

Mirror section

Interface B (see Fig. 1a)

Inside MISER(Nd:YAG, n =1.82)

Airgap:Coupling through evanescent waves:Frustrated total internal reflection (FTIR)

Inside nonlinear semiconductor mirror

Air

Page 27: Ultrafast Laser Physics

μJ-pulses with ≈ 10 kHz repetition rates ≈ 10 mW average powers

Page 28: Ultrafast Laser Physics

Output coupler

Laser output

Diode pump laser

Dichroic beamsplitterHT @ pump wavelengthHR @ laser wavelengthCopper

heat sink

Cavitylength

SESAM

Microchip crystal

Page 29: Ultrafast Laser Physics

6

80.1

2

4

6

81

Pum

p pr

obe

sign

al

2001000

Time delay pump-probe (ps)

τA = 120 ps

SESAM #1: R = 10.3%Fsat = 36 μJ/cm2

1.00

0.96

0.92

0.88

Refle

ctivi

ty

102 4 6

1002 4 6

1000Fluence on absorber (μJ/cm )

R = 10.3%Δ

F sat

SESAM #2: R = 7.3%Fsat = 47 μJ/cm2

1.000.980.960.940.920.90

Refle

ctivi

ty

102 4

1002 4

1000Fluence on absorber (μJ/cm )

Fsat

R = 7.3%Δ

4

3

2

1

0

Refra

ctiv

e In

dex

151050z (μm)

4

3

2

1

0

Field Intensity (Rel. Units)

absorber: InGaAs/GaAs quantum wells

top reflectorHfO2/SiO2

Bragg mirrorAlAs/GaAs

substrateGaAs

incoming light

Field intensity (rel. units)

Refra

ctive

inde

x

Page 30: Ultrafast Laser Physics

• A > p

Fsat,A << Fsat,L = hνL2σL

SESAM R, Fsat,A

Gainmaterial L, Fsat,L

OutputcouplerTout

mode area A

longitudinalsection

cross-section

Parasitic losses Lp

Lg

Total losses Ltot = Tout + Lp

out = Lout/(Lout + Lp)

Page 31: Ultrafast Laser Physics

P-

P+P+ P = P-=

T out

τ , ELL

q

τ , EA AAL AA

g

dndt = KL NL − KA NA −

1τ c

⎛⎝⎜

⎞⎠⎟n

dNLdt = − NL

τ L− KL n NL + Rp

dNAdt = − NA − NA0

τ A− KA n NA

n = Phν TR

TR=2L c⎯ →⎯⎯⎯ = 2Lchν P

g = LgNLV σ L

V=ALLg⎯ →⎯⎯ = NLAL

σ L

TRdP t( )dT = g t( ) − l t( ) − q t( )⎡⎣ ⎤⎦ P t( )

W stim = KLn =Ihν σ L =

PALhν

σ L KL =σ LALTR

dg t( )dt = −

g t( ) − g0τ L

−g t( ) P t( )

EL

dq t( )dt = −

q t( ) − q0τ A

−q t( ) P t( )

EA

q = NAAA

σ A

Page 32: Ultrafast Laser Physics

-600 -400 -200 0 200 400 600

Time (ps)

l

Gain g(t)

Loss q(t)+L

Intracavitypower P(t)

Phase 1 Phase 2 Phase 3 Phase 4

l +ΔR

RΔ-l tot

Estored = ELg

Ereleased = ELΔg

R):Δg ≈ 2ΔRTout + Lp ≈ ΔR

llp

q0 ≈ ΔR

Page 33: Ultrafast Laser Physics

••

••

••

-600 -400 -200 0 200 400 600

Time (ps)

l

Gain g(t)

Loss q(t)+l

Intracavitypower P(t)

Phase 1 Phase 2 Phase 3 Phase 4

l +ΔR

RΔ-l

100

80

60

40

20

0

Pe

ak

po

we

r (k

W)

403020100

Time (μs)

20

15

10

5

0

Ga

in, L

oss (%

)

Unsaturated loss l + ΔR

Gain g(t)r=3

Gain g(t)r=2

Power P(t) No pulse for r=2

Page 34: Ultrafast Laser Physics

Ep ≈hνLσ L

AΔRηout

τ p ≈3.52TRΔR

Ep A

frep ≈g0 − (Ltot + ΔR)

2ΔRτ L

L L + Labs

Page 35: Ultrafast Laser Physics

τ p ≈3.52TRΔR

1.5

1.0

0.5

0.02001000-100

Time (ps)

37 ps