introduction to algorithms - iit-computer sciencewan/cs330/shortest-paths.pdf · introduction to...

59
Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I Properties of shortest paths Dijkstra’s algorithm Correctness Analysis Breadth-first search

Upload: dinhminh

Post on 27-Jun-2018

243 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms6.046J/18.401J

Prof. Charles E. Leiserson

LECTURE 14Shortest Paths I• Properties of shortest paths• Dijkstra’s algorithm• Correctness• Analysis• Breadth-first search

Page 2: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.2© 2001–4 by Charles E. Leiserson

Paths in graphsConsider a digraph G = (V, E) with edge-weight function w : E → R. The weight of path p = v1 →v2 →L→ vk is defined to be

∑−

=+=

1

11),()(

k

iii vvwpw .

Page 3: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.3© 2001–4 by Charles E. Leiserson

Paths in graphsConsider a digraph G = (V, E) with edge-weight function w : E → R. The weight of path p = v1 →v2 →L→ vk is defined to be

∑−

=+=

1

11),()(

k

iii vvwpw .

v1v1

v2v2

v3v3

v4v4

v5v54 –2 –5 1

Example:

w(p) = –2

Page 4: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.4© 2001–4 by Charles E. Leiserson

Shortest paths

A shortest path from u to v is a path of minimum weight from u to v. The shortest-path weight from u to v is defined asδ(u, v) = min{w(p) : p is a path from u to v}.

Note: δ(u, v) = ∞ if no path from u to v exists.

Page 5: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.5© 2001–4 by Charles E. Leiserson

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Page 6: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.6© 2001–4 by Charles E. Leiserson

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Page 7: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.7© 2001–4 by Charles E. Leiserson

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Page 8: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.8© 2001–4 by Charles E. Leiserson

Triangle inequality

Theorem. For all u, v, x ∈ V, we haveδ(u, v) ≤ δ(u, x) + δ(x, v).

Page 9: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.9© 2001–4 by Charles E. Leiserson

Triangle inequality

Theorem. For all u, v, x ∈ V, we haveδ(u, v) ≤ δ(u, x) + δ(x, v).

uu

Proof.

xx

vvδ(u, v)

δ(u, x) δ(x, v)

Page 10: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.10© 2001–4 by Charles E. Leiserson

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Page 11: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.11© 2001–4 by Charles E. Leiserson

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:

uu vv

< 0

Page 12: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.12© 2001–4 by Charles E. Leiserson

Single-source shortest pathsProblem. From a given source vertex s ∈ V, find the shortest-path weights δ(s, v) for all v ∈ V.If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist. IDEA: Greedy.1. Maintain a set S of vertices whose shortest-

path distances from s are known.2. At each step add to S the vertex v ∈ V – S

whose distance estimate from s is minimal.3. Update the distance estimates of vertices

adjacent to v.

Page 13: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.13© 2001–4 by Charles E. Leiserson

Dijkstra’s algorithmd[s] ← 0for each v ∈ V – {s}

do d[v] ←∞S ←∅Q ← V ⊳ Q is a priority queue maintaining V – S

Page 14: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.14© 2001–4 by Charles E. Leiserson

Dijkstra’s algorithmd[s] ← 0for each v ∈ V – {s}

do d[v] ←∞S ←∅Q ← V ⊳ Q is a priority queue maintaining V – Swhile Q ≠ ∅

do u ← EXTRACT-MIN(Q)S ← S ∪ {u}for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)then d[v] ← d[u] + w(u, v)

Page 15: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.15© 2001–4 by Charles E. Leiserson

Dijkstra’s algorithmd[s] ← 0for each v ∈ V – {s}

do d[v] ←∞S ←∅Q ← V ⊳ Q is a priority queue maintaining V – Swhile Q ≠ ∅

do u ← EXTRACT-MIN(Q)S ← S ∪ {u}for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)then d[v] ← d[u] + w(u, v)

relaxation step

Implicit DECREASE-KEY

Page 16: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.16© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2

Graph with nonnegative edge weights:

Page 17: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.17© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2

Initialize:

A B C D EQ:0 ∞ ∞ ∞ ∞

S: {}

0

∞ ∞

Page 18: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.18© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2A B C D EQ:0 ∞ ∞ ∞ ∞

S: { A }

0

∞ ∞

∞“A” ← EXTRACT-MIN(Q):

Page 19: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.19© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2A B C D EQ:0 ∞ ∞ ∞ ∞

S: { A }

0

10

3 ∞

10 3

Relax all edges leaving A:

∞ ∞

Page 20: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.20© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2A B C D EQ:0 ∞ ∞ ∞ ∞

S: { A, C }

0

10

3 ∞

10 3

“C” ← EXTRACT-MIN(Q):

∞ ∞

Page 21: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.21© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2A B C D EQ:0 ∞ ∞ ∞ ∞

S: { A, C }

0

7

3 5

11

10 37 11 5

Relax all edges leaving C:

∞ ∞

Page 22: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.22© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2A B C D EQ:0 ∞ ∞ ∞ ∞

S: { A, C, E }

0

7

3 5

11

10 37 11 5

“E” ← EXTRACT-MIN(Q):

∞ ∞

Page 23: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.23© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2A B C D EQ:0 ∞ ∞ ∞ ∞

S: { A, C, E }

0

7

3 5

11

10 3 ∞ ∞7 11 57 11

Relax all edges leaving E:

Page 24: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.24© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2A B C D EQ:0 ∞ ∞ ∞ ∞

S: { A, C, E, B }

0

7

3 5

11

10 3 ∞ ∞7 11 57 11

“B” ← EXTRACT-MIN(Q):

Page 25: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.25© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2A B C D EQ:0 ∞ ∞ ∞ ∞

S: { A, C, E, B }

0

7

3 5

9

10 3 ∞ ∞7 11 57 11

Relax all edges leaving B:

9

Page 26: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.26© 2001–4 by Charles E. Leiserson

Example of Dijkstra’s algorithm

AA

BB DD

CC EE

10

3

1 4 7 98

2

2A B C D EQ:0 ∞ ∞ ∞ ∞

S: { A, C, E, B, D }

0

7

3 5

9

10 3 ∞ ∞7 11 57 11

9

“D” ← EXTRACT-MIN(Q):

Page 27: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.27© 2001–4 by Charles E. Leiserson

Correctness — Part ILemma. Initializing d[s] ← 0 and d[v] ←∞ for all v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, and this invariant is maintained over any sequence of relaxation steps.

Page 28: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.28© 2001–4 by Charles E. Leiserson

Correctness — Part ILemma. Initializing d[s] ← 0 and d[v] ←∞ for all v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, and this invariant is maintained over any sequence of relaxation steps.Proof. Suppose not. Let v be the first vertex for which d[v] < δ(s, v), and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then,

d[v] < δ(s, v) supposition≤ δ(s, u) + δ(u, v) triangle inequality≤ δ(s,u) + w(u, v) sh. path ≤ specific path≤ d[u] + w(u, v) v is first violation

Contradiction.

Page 29: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.29© 2001–4 by Charles E. Leiserson

Correctness — Part IILemma. Let u be v’s predecessor on a shortest path from s to v. Then, if d[u] = δ(s, u) and edge (u, v) is relaxed, we have d[v] = δ(s, v) after the relaxation.

Page 30: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.30© 2001–4 by Charles E. Leiserson

Correctness — Part IILemma. Let u be v’s predecessor on a shortest path from s to v. Then, if d[u] = δ(s, u) and edge (u, v) is relaxed, we have d[v] = δ(s, v) after the relaxation.Proof. Observe that δ(s, v) = δ(s, u) + w(u, v). Suppose that d[v] > δ(s, v) before the relaxation. (Otherwise, we’re done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because d[v] > δ(s, v) = δ(s, u) + w(u, v) = d[u] + w(u, v), and the algorithm sets d[v] = d[u] + w(u, v) = δ(s, v).

Page 31: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.31© 2001–4 by Charles E. Leiserson

Correctness — Part IIITheorem. Dijkstra’s algorithm terminates with d[v] = δ(s, v) for all v ∈ V.

Page 32: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.32© 2001–4 by Charles E. Leiserson

Correctness — Part IIITheorem. Dijkstra’s algorithm terminates with d[v] = δ(s, v) for all v ∈ V.Proof. It suffices to show that d[v] = δ(s, v) for every v ∈ V when v is added to S. Suppose u is the first vertex added to S for which d[u] > δ(s, u). Let y be the first vertex in V – S along a shortest path from s to u, and let x be its predecessor:

ss xx yy

uu

S, just before adding u.

Page 33: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.33© 2001–4 by Charles E. Leiserson

Correctness — Part III (continued)

Since u is the first vertex violating the claimed invariant, we have d[x] = δ(s, x). When x was added to S, the edge (x, y) was relaxed, which implies that d[y] = δ(s, y) ≤ δ(s, u) < d[u]. But, d[u] ≤ d[y] by our choice of u. Contradiction.

ss xx yy

uuS

Page 34: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.34© 2001–4 by Charles E. Leiserson

Analysis of Dijkstrawhile Q ≠ ∅

do u ← EXTRACT-MIN(Q)S ← S ∪ {u}for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)then d[v] ← d[u] + w(u, v)

Page 35: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.35© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra

|V |times

while Q ≠ ∅do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)then d[v] ← d[u] + w(u, v)

Page 36: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.36© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra

degree(u)times

|V |times

while Q ≠ ∅do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)then d[v] ← d[u] + w(u, v)

Page 37: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.37© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra

degree(u)times

|V |times

Handshaking Lemma ⇒Θ(E) implicit DECREASE-KEY’s.

while Q ≠ ∅do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)then d[v] ← d[u] + w(u, v)

Page 38: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.38© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra

degree(u)times

|V |times

Handshaking Lemma ⇒Θ(E) implicit DECREASE-KEY’s.Time = Θ(V·TEXTRACT-MIN + E·TDECREASE-KEY)

Note: Same formula as in the analysis of Prim’s minimum spanning tree algorithm.

while Q ≠ ∅do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)then d[v] ← d[u] + w(u, v)

Page 39: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.39© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

Page 40: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.40© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)

Page 41: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.41© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)binary heap O(lg V) O(lg V) O(E lg V)

Page 42: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.42© 2001–4 by Charles E. Leiserson

Analysis of Dijkstra (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)binary heap O(lg V) O(lg V) O(E lg V)

Fibonacci heap

O(lg V)amortized

O(1)amortized

O(E + V lg V)worst case

Page 43: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.43© 2001–4 by Charles E. Leiserson

Unweighted graphsSuppose that w(u, v) = 1 for all (u, v) ∈ E. Can Dijkstra’s algorithm be improved?

Page 44: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.44© 2001–4 by Charles E. Leiserson

Unweighted graphs

• Use a simple FIFO queue instead of a priority queue.

Suppose that w(u, v) = 1 for all (u, v) ∈ E. Can Dijkstra’s algorithm be improved?

Page 45: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.45© 2001–4 by Charles E. Leiserson

Unweighted graphs

while Q ≠ ∅do u ← DEQUEUE(Q)

for each v ∈ Adj[u]do if d[v] = ∞

then d[v] ← d[u] + 1ENQUEUE(Q, v)

• Use a simple FIFO queue instead of a priority queue.

Breadth-first search

Suppose that w(u, v) = 1 for all (u, v) ∈ E. Can Dijkstra’s algorithm be improved?

Page 46: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.46© 2001–4 by Charles E. Leiserson

Unweighted graphs

while Q ≠ ∅do u ← DEQUEUE(Q)

for each v ∈ Adj[u]do if d[v] = ∞

then d[v] ← d[u] + 1ENQUEUE(Q, v)

• Use a simple FIFO queue instead of a priority queue.

Analysis: Time = O(V + E).

Breadth-first search

Suppose that w(u, v) = 1 for all (u, v) ∈ E. Can Dijkstra’s algorithm be improved?

Page 47: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.47© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q:

Page 48: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.48© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a

0

0

Page 49: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.49© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d

0

1

1

1 1

Page 50: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.50© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d c e

0

1

1

2 2

1 2 2

Page 51: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.51© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d c e

0

1

1

2 2

2 2

Page 52: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.52© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d c e

0

1

1

2 2

2

Page 53: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.53© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d c e g i

0

1

1

2 2

3

3

3 3

Page 54: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.54© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d c e g i f

0

1

1

2 2

3

3

4

3 4

Page 55: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.55© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d c e g i f h

0

1

1

2 2

3

3

4 4

4 4

Page 56: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.56© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d c e g i f h

0

1

1

2 2

3

3

4 4

4

Page 57: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.57© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d c e g i f h

0

1

1

2 2

3

3

4 4

Page 58: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.58© 2001–4 by Charles E. Leiserson

Example of breadth-first search

aa

bb

cc

dd

eegg

ii

ff hh

Q: a b d c e g i f h

0

1

1

2 2

3

3

4 4

Page 59: Introduction to Algorithms - IIT-Computer Sciencewan/cs330/Shortest-Paths.pdf · Introduction to Algorithms 6.046J/18.401J Prof. Charles E. Leiserson LECTURE 14 Shortest Paths I •

Introduction to Algorithms November 1, 2004 L14.59© 2001–4 by Charles E. Leiserson

Correctness of BFS

Key idea:The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.• Invariant: v comes after u in Q implies that

d[v] = d[u] or d[v] = d[u] + 1.

while Q ≠ ∅do u ← DEQUEUE(Q)

for each v ∈ Adj[u]do if d[v] = ∞

then d[v] ← d[u] + 1ENQUEUE(Q, v)