development of minor actinide transmutation by …development of minor actinide transmutation by...

28
DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric Power Industry (CRIEPI) 11IEMPT, San Francisco, U.S.A., November 3, 2010

Upload: others

Post on 14-Mar-2020

8 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI

H. Ohta, T. Ogata, K. Nakamura and T. KoyamaCentral Research Institute of Electric Power Industry (CRIEPI)

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 2: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Metal Fuel FBR & Pyro-process

11IEMPT, San Francisco, U.S.A., November 3, 2010

Goals:Security of the long-term energy supply,Reduction of the amount and the toxicity of radioactive waste,Improvement of the proliferation resistance.

Innovative fuel cycle system is under development in CRIEPIU-Pu-Zr Fuel FBR : Excellent nuclear performances & safety featuresPyro-reprocessing : Simultaneous recovery of MA with U and Pu

Injection Casting Fuel Fabrication : Simple remote-control operation

Metal Fuel FBR

Pyro-reprocessing

Fuel FabricationReprocessing(PUREX)

LWR

Fuel Fabrication Repository

U mining Enrichment

Reduction to Metal

U

U U

U, Pu,MA, FP

U

FP

U, Pu

Pyro-partitioning

MA, (RE)

U, Pu, MA, (RE)

U, Pu, MA, (RE)

U, Pu,MA, FP

Spent Oxide Fuel

HLLW(MA, FP)

HLLW: High-Level Liquid Waste

MA: Minor ActinidesFP: Fission ProductsRE: Rare Earths

FP

U, Pu, MA, FP

LWR Fuel Cycle FBR Metal Fuel CycleU, Pu, MA, FP

Page 3: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

MA-Containing Metal Fuel Development

• How much content of MA should be loaded in metal fuel FBR?

Evaluation of expected fuel compositions Burnup and recycle calculations of MA & RE in metal fuel FBR cycleMass flow analysis based on the future fuel cycle scenario

• How about the effect of MA addition in metal fuel?Development of MA- and RE-containing U-Pu-Zr alloys

Ex-reactor experimentsIrradiation experiment Characterization of U-Pu-Zr-MA-RE postirradiation examinations

Various experimental studies on U-Pu-Zr-MA(-RE) alloys are performed in cooperation with JRC-ITU.

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 4: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

MA Burnup Performancein Metal Fuel FBR

OutputCore residence timeCoolant temp.

inlet / outlet Max. cladding temp.Max. linear powerAve. discharge burnup

1,500MWe / 3,900MWt6years

355 / 510ºC650ºC

500W/cm150GWd/t

Large-scale & high-burnup metal fuel core design is assumed as a model of commercial FBR.

No-MA-makeup MA-enrichedMA content, wt%RE content 1, wt%Pu enrichment, wt%Makeup MA ratio 2, %Doppler const., Tdk/dTCoolant coeff., ¢/ºC

0.80.516.6

--2.3×10-3

0.254

2.01.516.437

-2.2×10-3

0.273

5.03.5

15.853

-2.1×10-3

0.310

Feed compositions and core performance parameters

11IEMPT, San Francisco, U.S.A., November 3, 2010

1: D.F. = 10, 2: (MA from LWR) / (MA in FBR fuel)

Page 5: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Mass Flow Evaluation (1)

11IEMPT, San Francisco, U.S.A., November 3, 2010

Mass Balance of Pu & MA50 400

LWRs FBRs

Cap

acity

[GW

e]

Years

50

0

Transition Scenario from LWRs to FBRs

Years after FBR introduction Years after FBR introduction

Rem

aini

ng T

RUs [

ton]

LWR operation=50yearsMA content=2wt% MA content=5wt%

Assumptions50GWe of LWRs are operated for 50years before FBR introduction,

Reactor lifetime is 40 years,

MA content in the feed is 2 or 5wt%.

0

200

400

600

800

0 10 20 30 40 50 60 70 80

MAsPu+MAs

0

200

400

600

800

0 10 20 30 40 50 60 70 80

MAsPu+MAs

Rem

aini

ng T

RUs [

ton]

MA content of 2wt%: MA & Pu are recycled at the almost same time,5wt%: MA can be consumed in shorter-term.

Page 6: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Mass Flow Evaluation (2)

MA content of 2wt%: MA & Pu are balanced.11IEMPT, San Francisco, U.S.A., November 3, 2010

Mass Balance of Pu & MA75 400

LWRs FBRs

Cap

acity

[GW

e]

Years

50

0

Transition Scenario from LWRs to FBRs (2)

Years after FBR introduction Years after FBR introduction

Rem

aini

ng T

RUs [

ton]

LWR operation=50years LWR operation=75yearsMA content=2wt%

Assumptions50GWe of LWRs are operated for 75years before FBR introduction,

Reactor lifetime is 40 years,

MA content in the feed is 2wt%.

0

200

400

600

800

0 10 20 30 40 50 60 70 80

MAsPu+MAs

0

200

400

600

800

0 10 20 30 40 50 60 70 80

MAsPu+MAs

Rem

aini

ng T

RUs [

ton]

Page 7: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Miscibilities among U-Pu-Zr-MA-RE

44U-18Pu-10Zr-9Np-5Am-3Ce-10Nd (wt%)Pu-Am-RE phaseU-Pu-Zr-Np phase

In the alloys of high RE content,→ Matrix segregates into upper

and lower parts.

100µm

U-Pu-Zr-Np phasePu-Am-RE precipitates

39U-22Pu-12Zr-15Np-10Am-0.6Ce-1.8Nd

In the alloys of low RE content (≤5%),→ RE-rich precipitates were

uniformly dispersed.

U-Pu-Zr-MA-RE alloys of different compositions were mixed by arc-melting.

RE ≤ 5% can be mixed in U-Pu-Zr-MA matrix.11IEMPT, San Francisco, U.S.A., November 3, 2010

→ U-Pu-Zr-MA alloys without RE can be blended homogeneously.

Page 8: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Phase Structures of annealed U-Pu-Zr-MA-RE

50mm

500°C 600°C 700°C 850°C50mm

500°C 600°C 700°C 850°C

Metallography of U-Pu-Zr-2MA-2RE.

Metallography of U-Pu-Zr-5MA-5RE.

U-Pu-Zr-MA-RE alloys were annealed and quenched.

Am & RE-rich precipitates - Uniformly dispersing- Cohesion at grain boundary

(≥700°C)- ~3µm (-2MA-2RE), - ≥10µm (-5MA-5RE)

Matrix phase≤ 600°C: Two phase structures

ζ+δ at 500°Cγ+δ (or ζ+δ) at 600°C

≥ 700°C: Single γ-phase

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 9: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Phase transition temperature

200 400 600 800 200 400 600 800 200 400 600 800Temperature [°C]

Expa

nsio

n

Temperature [°C]Temperature [°C]

Expa

nsio

n

Expa

nsio

n

(a) U-Pu-Zr-2MA-2RE (b) U-Pu-Zr-5MA-5RE (c) U-Pu-Zr

Phase transition temperature of U-Pu-Zr(-MA-RE) were measured by dilatometry method.

~580°Cζ+δ↔ γ+δ

~630°Cγ+δ↔ γ

For all samples, two distinctive phase transition temperatures at ~580°C & ~630°C→

Dilatometric curves

Insignificant influence of MA and RE addition up to 5wt%

11IEMPT, San Francisco, U.S.A., November 3, 2010

ζ+δ↔ γ+δ

γ+δ↔ γ

ζ+δ↔ γ+δ

γ+δ↔ γ

Page 10: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

U-19Pu-10Zr-5MA-5RE U-19Pu-10Zr Reported

U-19Pu-10ZrMelting point [°C] 1207±10 1217±10 1214±75 [2]

ElasticityYoung’s modulus [GPa]Shear modulus [GPa]Poisson’s ratio

93.3135.390.32

85.2232.650.31

Compatibility with SS * [1] 920-960 970-990

Thermal conductivity

Rela

tive

ther

ma

l con

duc

tivity

[-]

02468

1012141618

200 300 400 500 600 700Temperature [°C]

U-Pu-Zr-5MA-5REU-Pu-Zr

Other properties

*: Metallurgical reaction temperature between the alloy and stainless steel.

[1] C. Sari, etal, J. Nucl. Mater., 208 (1994) 201. [2] M.C. Billon, etal., Int. Conf. on Reliable Fuels for Liquid Metal Reactors,  (1986).

11IEMPT, San Francisco, U.S.A., November 3, 2010

Diffusion couple of U-Pu-Zr-5MA-5RE / SSOptical metallography α-autoradiography

Steel

Steel

Steel

Steel

Influence of MA and RE addition ≤ 5wt% is not significant.

U-Pu-Zr-5MA-5RE

U-Pu-Zr-5MA-5RE

Page 11: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Fabrication of MA-containing Metal FuelFuel Fabrication:

U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA, U-19Pu-10Zr-5MA-5RE and U-19Pu-10ZrMA=60Np-30Am-10Cm, RE=10Y-10Ce-70Nd-10Gd.

Yttria molds used for fuel rod casting Cast fuel rods

Fuel Rod diameterFuel Rod lengthsDensity

U-19Pu-10Zr-2MA-2REU-19Pu-10Zr-5MA-5REU-19Pu-10Zr-5MAU-19Pu-10Zr

4.9 mm20-50 mm

14.73 g/cm3

14.66 g/cm3

15.31 g/cm3

15.77 g/cm3*

11IEMPT, San Francisco, U.S.A., November 3, 2010

*: Reported value =15.8g/cm3,J.H.Kittel, et al., N.E.D. 15 (1971)

Page 12: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Irradiation ExperimentMA-containing alloys were irradiated in Phénix.

3 metal fuel pins & 16 oxide fuel pinswere arranged in an capsule.

Pin No.1 : U-19Pu-10ZrPin No.2 : U-19Pu-10Zr-2MA-2REPin No.3 : U-19Pu-10Zr-5MA / -5MA-5RE

Cladding material : 15-15TiBurnup goals ~2.5at.% (METAPHIX-1),

~ 7at.% (METAPHIX-2), ~10at.% (METAPHIX-3).

Oxide Fuel Pin (Driver)Metal Fuel Pin

Irradiation Capsule

6.55mm

No.1

No.2 No.3

Unit [mm]

5050

425

1010

010

028

5

1,79

3

Met

al fu

el P

in N

o.1

Met

al fu

el P

in N

o.2

Oxid

e fu

el d

river

pin

Met

al fu

el P

in N

o.3

U-Pu-Zr

U-Pu-Zr-2MA-2RE U-Pu-Zr

-5MA

U-Pu-Zr-5MA-5RE

U-Pu-Zr

U-Pu-ZrU-Pu-Zr

U-Pu-Zr

850

U-Pu-Zr

U-Pu-Zr

Initial bondsodium level

Schematic views of irradiated fuel pins.Fuel pin arrangement in irradiation capsule.

485

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 13: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

METAPHIX Program’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12

Irradiation ExperimentsMETAPHIX-1 (2.5at.% B.U.)METAPHIX-2 (7at.% B.U.)METAPHIX-3 (10at.% B.U.)

Postirradiation ExaminationsMETAPHIX-1 (2.5at.% B.U.)METAPHIX-2 (7at.% B.U.)METAPHIX-3 (10at.% B.U.)

NDT NDT & Destructive PIEsTransport from Phénix to ITUCooling time

- Irradiation experiments were carried out from Dec. 2003 to May 2008 in Phénix.- After cooling, NDT were carried out.

No excessive damage due to neutron irradiation was observed.- Irradiated fuel pins are transported to ITU for nondestructive & destructive PIE.- After the PIE, pyro-reprocessing experiment is planned.

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 14: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Irradiation Conditions

Pin No.1U-19Pu-10Zr

Pin No.2U-19Pu-10Zr+2MA+2RE

Pin No.3(lower)U-19Pu-10Zr

+5MA

Pin No.3(upper)U-19Pu-10Zr+5MA+5RE

Begin of IrradiationMax. Linear Power 1 [W/cm]Max. Cladding Temp. 2 [oC]

350581

327581

343581

332←

End of METAPHIX-1 (120EFPD 3)Max. Linear Power 1 [W/cm]Max. Cladding Temp. 2 [oC]Max. Burnup [at.%]

3305722.4

3085722.5

3255722.4

313←

2.6End of METAPHIX-2 (360EFPD 3)Max. Linear Power 1 [W/cm]Max. Cladding Temp. 2 [oC]Max. Burnup [at.%]

2955566.9

2765567.1

2945567.0

282←

7.5End of METAPHIX-3 (900EFPD 3)Max. Linear Power 1 [W/cm]Max. Cladding Temp. 2 [oC]Max. Burnup [at.%]

26854310.9

25154311.2

26954311.2

256←

11.9

Irradiation parameters were analyzed taking account of the operation diagram of the Phénix reactor.

1: Top of the test alloy, 2: Top of the fuel stack, 3: EFPD=Effective Full Power Days.

Projected Irradiation Conditions for METAPHIX Experiment

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 15: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

1mm1mm

Three concentric regions are formed.γ ↔ γ+ζ ↔ ζ+δ

(center) (periphery)

Two concentric regions are formed.(γ-phase is not observed.)→ Irradiation temperature < 630°C

11IEMPT, San Francisco, U.S.A., November 3, 2010

(a) (b)

Metallography (1)

405m

mU

-Pu-

Zr

440m

mU

-Pu-

Zr

METAPHIX-1, U-19Pu-10Zr

Page 16: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

100μmCentral Zone

Intermediate Zone

1mm

Cross-Sectional Overview

Unirradiated U-Pu-Zr-2MA-2RE

Dense phase→ (γ+ζ)-phases

Matrix morphology is similar to that of U-Pu-Zr fuel (b).Some narrow layered phases (MA-RE inclusions) spread along grain boundaries in

γ+ζ zone.In low-temperature region, some dark spots (MA and RE inclusions) are visible.

100μm

11IEMPT, San Francisco, U.S.A., November 3, 2010

Metallography (2)

370m

mU

-Pu-

ZrU

-Pu-

Zr-2

MA

-2R

E

METAPHIX-1, U-19Pu-10Zr-2MA-2RE

Page 17: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

1mm

Unirradiated U-Pu-Zr-5MA-5RE

Cross-Sectional Overview

Dense phase→ (γ+ζ)-phases

Porous phase→ γ-phase

Matrix morphology is similar to that of U-Pu-Zr fuel (a).Large precipitates (MA and RE inclusions) appear in γ phase zone.Some narrow layered phases (MA-RE inclusions) spread along grain boundaries in

γ+ζ zone.In low-temperature region, small dark spots (MA and RE inclusions) are observed.

100μmCentral Zone

100μm

Peripheral Zone

Intermediate Zone

11IEMPT, San Francisco, U.S.A., November 3, 2010

METAPHIX-1, U-19Pu-10Zr-5MA-5REMetallography (3)

100μm

370m

mU

-Pu-

ZrU

-Pu-

Zr-5

MA

-5M

A-5

RE

Page 18: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Characteristics of Irradiated MA-Containing Metal Fuel

1. The radial distribution of fuel matrix morphology is similarto that of U-Pu-Zr ternary fuels.

2. Some large precipitates (MA and RE inclusions) appearin the high-temperature phase.

3. In the dense matrix zone, some narrow layered phases (MA and RE inclusions) spread along grain boundaries.

4. In low-temperature region, some dark spots (MA and RE inclusions) are visible.

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 19: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

SummaryMass flow of Pu and MA was analyzed for future LWR-FBR transition scenario.

MA content in the FBR fuel was estimated to be 2wt%. With using 5wt% MA content fuel, MAs recycling from LWRs can be accelerated for several decades.

Relevant characteristics of U-Pu-Zr-MA-RE were examined.In the case of ≤ 5wt% MA and ≤ 5wt% RE additions,

- Am-RE-rich precipitates are dispersed almost uniformly in the alloy,- Basic properties are practically unchanged.

MA-containing U-Pu-Zr alloys were irradiated in Phénix.o Compositions: U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA(-5RE)o Peak burnups: ~2.5at.%, ~7at.% and ~10at.%.

NDT of the METAPHIX-1, -2 & -3 pins- No critical damage had occurred during irradiation.

Metallography of METAPHIX-1- Matrix structure is similar to that of U-Pu-Zr fuels.- Large precipitates appear in γ-phase zone.- Some layered phase spread along grain boundaries in γ+ζ phase region.

Quantitative analyses are being carried out.- Fuel constituent redistribution,- MA transmutation performance

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 20: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Thank you for your attention!!

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 21: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Compositions of Metal Fuel Alloys

Average Compositions of Fabricated Metal Fuel Alloys [wt%]

4 types of metal fuel alloy were prepared.

Target 71U-19Pu-10Zr 67U-19Pu-10Zr+2MA+2RE

66U-19Pu-10Zr+5MA

61U-19Pu-10Zr+5MA+5RE

U 71.00 66.85 66.30 63.50Pu 18.93 19.80 19.35 19.75Zr 10.19 9.46 8.97 8.19MA

NpAmCm

0.03-

0.03-

2.081.230.670.18

4.742.971.450.32

4.783.041.520.31

REY

CeNdGd

-----

1.730.120.201.250.16

-----

3.400.310.452.300.32

Impurities < 0.3wt%

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 22: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Specifications of Metal Fuel PinsFuel pins were manufactured according to Phénix geometry.

Pin length [mm]Outer cladding diameter [mm]Cladding materialFuel length [mm]Fuel diameter [mm]Initial fuel-cladding gap [mm]Fuel smear density [%]Sodium level above fuel* [mm]Plenum length [mm]

1,7936.55

15-15 Ti4854.9

0.37575.2~10464

* : Sodium is filled into fuel‐cladding gap as thermal bonding.

485mm

10mm

1,793mm

Fuel Pin Specifications in this Irradiation Experiments

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 23: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Axial Swelling of Fuel alloy

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 2 3 4 5 6 7Peak Burnup [at.%]

Axial Elong

ation [%

]

ALFUS calculation

Pin No.1: U‐Pu‐ZrPin No.2: U‐Pu‐Zr‐2MA‐2REPin No.3: U‐Pu‐Zr‐5MA / ‐5MA‐5RE

Fuel elongation behavior is independent of MA and RE additions.Axial swelling of METAPHIX fuels is within the range of the prediction.

Fuel stack position was estimated by axial gamma-ray distribution from 106Ru.

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 24: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Fission Gas Release

[1] : R. G. Pahl, etal., Proc. Int. Fast Reactor Safety Meeting, Session 2 Vol. IV, 129 (1990).

FP gas release fraction of MA & RE‐containing fuel pins isthe same level as that of U‐Pu‐Zr alloy fuel pins, and consistent with EBR‐II ternary test fuel data.

Peak Burnup [at.%]

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

Fractio

nal R

elease [%

]

Pin No.1: U‐Pu‐ZrPin No.2: U‐Pu‐Zr‐2MA‐2REPin No.3: U‐Pu‐Zr‐5MA / ‐5MA‐5REEBR‐II Test Fuel (U‐8Pu‐10Zr) [1]

EBR‐II Test Fuel (U‐19Pu‐10Zr) [1]

Trend‐band of EBR‐II Experiment

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 25: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Metallography (3’)

1mmIntermediate Zone

Cross-Sectional Overview

Matrix morphology is similar to that of U-Pu-Zr fuel (b).Some narrow layered phases (MA-RE inclusions) spread along grain boundaries in

γ+ζ zone.In low-temperature region, small dark spots (MA and RE inclusions) are dispersed.

100μmCentral Zone

Dense phase→ (γ+ζ)-phases

100μm

11IEMPT, San Francisco, U.S.A., November 3, 2010

METAPHIX-1, U-19Pu-10Zr-5MA

320m

m

U-P

u-Zr

U-P

u-Zr

-5M

A-5

RE

-5M

A

Page 26: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Irradiation Behavior Analysis-Fuel Temperature Distribution-

420ºC < Temp. < 685ºC

Fig. Evaluated irradiation temperature for METAPHIX‐1 fuel pin at EOI (Pin No.1: U‐19Pu‐10Zr).

0

50

100

150

200

250

300

350

400

450

500

400 450 500 550 600 650 700

γ(γ+ζ)(δ+ζ)(α+δ+ζ)

PeripheryFuel

Fuel Center

Temperature [°C]

Axial Position of F

uel Stack [m

m]

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 27: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

T (sample #5)

T (sample #1) > T (sample #2)

Upper SideLower Side405mm

370mm

440mm

Sample #2Sample #1Sample #5

Axial position of fuel stack [mm]

Relativ

e γ‐ray intensity from 10

6 Ru

γ‐ray intensity from 106Ru

Fig. 12. Relative γ‐ray intensity emitted from 106Ru in Pin No.1

Axial position of fuel stack [mm]

Relativ

e γ‐ray intensity from 10

6 Ru

Linear Power [W

/cm]

γ‐ray intensity from 106RuEvaluated Linear Power

Fig. Relative γ‐ray intensity emitted from 106Ru and axial power profile of Pin No. 1

Relativ

e γ‐ray intensity from 10

6 Ru

Axial position of fuel stack [mm]

γ‐ray intensity from 106RuEvaluated Linear PowerUncertainty width of Linear Power

Linear Power [W

/cm]

Analyzed Linear Power ~275W/cm (by 104Nd method)

Discussion - Irradiation Temperature -

11IEMPT, San Francisco, U.S.A., November 3, 2010

Page 28: DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY …DEVELOPMENT OF MINOR ACTINIDE TRANSMUTATION BY CRIEPI H. Ohta, T. Ogata, K. Nakamura and T. Koyama Central Research Institute of Electric

Discussion - Irradiation Temperature -

Due to the uncertainty of linear power,

‐Temperature fluctuation for each fuel rodreaches ~20°C at the fuel center, →Irradiation temperature at higher axial level

can be lower than that at lower level,

‐The highest temperature can be ~660°C.→High‐temperature γ‐phase appears at onlylimited fuel rods.

Temperature [°C]

Axial Position of F

uel Stack [m

m]

Fig. Evaluated irradiation temperature for METAPHIX‐1 fuel pins,taking account of the uncertainties of linear power.

Fuel Center

PeripheryFuel

11IEMPT, San Francisco, U.S.A., November 3, 2010