raghu meka oberwolfach , nov 2012

57
Recent Progress in Derandomization Raghu Meka Oberwolfach, Nov 2012

Upload: quang

Post on 16-Feb-2016

36 views

Category:

Documents


2 download

DESCRIPTION

Recent Progress in Derandomization. Raghu Meka Oberwolfach , Nov 2012. Can we generate random bits?. Pseudorandom Generators. Stretch bits to fool a class of “test functions” F. Can we generate random bits?. Complexity theory, algorithms, streaming E vidence suggests P=BPP! - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Raghu  Meka Oberwolfach , Nov 2012

Recent Progress in Derandomization

Raghu MekaOberwolfach, Nov 2012

Page 2: Raghu  Meka Oberwolfach , Nov 2012

Can we generate random bits?

Page 3: Raghu  Meka Oberwolfach , Nov 2012

Pseudorandom Generators

Stretch bits to fool a class of “test functions” F

Page 4: Raghu  Meka Oberwolfach , Nov 2012

Can we generate random bits?

• Complexity theory, algorithms, streaming

• Evidence suggests P=BPP!– Hardness vs Randomness: BMY83,

NW94, IW97

• Unconditionally? Duh.

Page 5: Raghu  Meka Oberwolfach , Nov 2012

Can we generate random bits?

• Restricted models: bounded depth circuits (AC0), bounded space algorithms

Nis91, Bazzi09, B10, … Nis90, NZ93, INW94, …

Page 6: Raghu  Meka Oberwolfach , Nov 2012

OutlineI. PRGs for small space

II. PRGs for bounded-depth

III. Deterministic approximate counting

Omitting many others

Page 7: Raghu  Meka Oberwolfach , Nov 2012

7

Read Once Branching Programs

• Layered graph• vertices each• Edges: • Input: • Output: final

vertex reached.

(𝑊 ,𝑛)−𝑅𝑂𝐵𝑃

n layers

W …

Page 8: Raghu  Meka Oberwolfach , Nov 2012

Nis90, INW94: PRGs for poly. width with seed .

PRGs for ROBPs• Central challenge: RL = L?• PRGs for poly-width ROBPs?

n layers

W …

Page 9: Raghu  Meka Oberwolfach , Nov 2012

9

Small Space: Recent results

1. PRGs for garbled ROBPs– IMZ12: PRGs from shrinkage.

2. PRGs for combinatorial rectangles– GMRTV12: (mild)random

restrictions

Page 10: Raghu  Meka Oberwolfach , Nov 2012

PRGs for Garbled ROBPs• Earlier model assumes order of bits

known• What if not? Nisan, INW break!• BPW11: PRG with seed .8n.

n layers

W …

𝑥1 𝑥2 𝑥𝑛𝑥5 𝑥7 𝑥1

IMZ12: PRG for garbled ROBPs with seed .

Page 11: Raghu  Meka Oberwolfach , Nov 2012

(if X has high min-entropy)

An Old New PRG• Use Nisan-Zuckerman96 PRG• Input: , • Output:

Recycling x’s randomness.

Page 12: Raghu  Meka Oberwolfach , Nov 2012

No problems hereOnly lose bits. Ext works!Only lose bits. Repeat.

Nisan-Zuckerman PRG

W

Page 13: Raghu  Meka Oberwolfach , Nov 2012

Garbled ROBPs?

W

• Condition on G transitions. • Entropy loss: Repeat.

Page 14: Raghu  Meka Oberwolfach , Nov 2012

Garbled ROBPs?• Balance: bits used

W

IMZ12: PRG for garbled ROBPs with seed .

Much more: Pseudorandomness from “shrinkage”

Page 15: Raghu  Meka Oberwolfach , Nov 2012

Garbled ROBPs• Better seed? NZ recurse. We

cannot.Challenge 1: PRGs for garbled ROBPs

with seed ?

Page 16: Raghu  Meka Oberwolfach , Nov 2012

16

Small Space: Recent results

1. PRGs for garbled ROBPs– IMZ12: PRGs from shrinkage.

2. PRGs for combinatorial rectangles– GMRTV12: (mild)random

restrictions

Page 17: Raghu  Meka Oberwolfach , Nov 2012

Combinatorial Rectangles

Applications: Number theory, analysis, integration, hardness amplification

Page 18: Raghu  Meka Oberwolfach , Nov 2012

PRGs for Comb. Rectangles

Small set preserving volume

Volume of rectangle ~ Fraction of positive PRG points

Page 19: Raghu  Meka Oberwolfach , Nov 2012

• Non explicit: GMRTV12: PRG for comb. rectangles with seed .

PRGs for Combinatorial Rectangles

Reference Seed-lengthEGLNV92

LLSZ93ASWZ96

Lu01

Page 20: Raghu  Meka Oberwolfach , Nov 2012

OutlineI. PRGs for small space

II. PRGs for bounded-depth

III. Deterministic approximate counting

Page 21: Raghu  Meka Oberwolfach , Nov 2012

•  

Reference Seed-lengthNisan 91LVW 93

Bazzi 09DETT 10DETT 10

PRGs for AC0

For polynomially small error best waseven for read-once CNFs.

Page 22: Raghu  Meka Oberwolfach , Nov 2012

Why Small Error?• Because we “should” be able to

• Symptomatic: const. error for large depth implies poly. error for smaller depth

• Applications: algorithmic derandomizations, complexity lowerbounds

Page 23: Raghu  Meka Oberwolfach , Nov 2012

Small Error: GMRTV12

New generator: iterative application of mild random restrictions.

1. PRG for comb. rectangles with seed .

2. PRG for read-once CNFs with seed .

Page 24: Raghu  Meka Oberwolfach , Nov 2012

Thm: PRG for read-once CNFs with seed .

Now: PRG for RCNFs• Non explicit:

Page 25: Raghu  Meka Oberwolfach , Nov 2012

Random Restrictions• Switching lemma – Ajt83, FSS84,

Has86

 * * *1 100 0 0** *** *

Page 26: Raghu  Meka Oberwolfach , Nov 2012

• Problem: No strong derandomized switching lemmas.

PRGs from Random Restrictions

• AW85: Use “pseudorandom restrictions”.

* * ** *** * *

Page 27: Raghu  Meka Oberwolfach , Nov 2012

* * * * * ** * * 0 0 1 0 0 00 0 0

Mild Psedorandom Restrictions

• Restrict half the bits (pseudorandomly).

* * * * * *Simplification: “average function”

can be fooled by small-bias spaces.

* * *

Page 28: Raghu  Meka Oberwolfach , Nov 2012

Thm: PRG for read-once CNFs with seed .

Repeat Randomness:

Full Generator Construction

 Pick half using almost k-wise* * * * * * * *

Small-bias

* * * *

Small-bias

* *

Small-bias

 

Page 29: Raghu  Meka Oberwolfach , Nov 2012

Interleaved Small-Bias Spaces

• What else can the generator fool?• Combining small-bias spaces

powerful– PRGs for GF2 polynomials (BV, L, V)Challenge 2 (RV): XOR of two small-bias

fools Logspace?

Question: XOR of several small-bias fools Logspace? How about interleaved?

Page 30: Raghu  Meka Oberwolfach , Nov 2012

OutlineI. PRGs for small space

II. PRGs for bounded-depth

III. Deterministic approximate counting

Page 31: Raghu  Meka Oberwolfach , Nov 2012

Can we Count?

31

Count proper 4-colorings?

533,816,322,048!O(1)

Page 32: Raghu  Meka Oberwolfach , Nov 2012

Can we Count?

32

Count satisfying solutions to a 2-SAT formula?

Count satisfying solutions to a DNF formula?

Count satisfying solutions to a CNF formula? Seriously?

Page 33: Raghu  Meka Oberwolfach , Nov 2012

Counting vs Deciding• Counting interesting even if solving

“easy”.Four colorings: Always solvable!

Page 34: Raghu  Meka Oberwolfach , Nov 2012

Counting vs Solving• Counting interesting even if solving

“easy”.Matchings

Solving – Edmonds 65Counting = Permanent (#P)

Page 35: Raghu  Meka Oberwolfach , Nov 2012

Counting vs Solving• Counting interesting even if solving

“easy”.Spanning Trees

Counting/Sampling: Kirchoff’s law, Effective resistances

Page 36: Raghu  Meka Oberwolfach , Nov 2012

Counting vs Solving• Counting interesting even if solving

“easy”.

Thermodynamics = Counting

Page 37: Raghu  Meka Oberwolfach , Nov 2012

Counting for CNFs/DNFsINPUT: CNF f

OUTPUT: No. of accepting solutions

INPUT: DNF f

OUTPUT: No. of accepting solutions

#CNF #DNF#P-Hard

Page 38: Raghu  Meka Oberwolfach , Nov 2012

Counting for CNFs/DNFsINPUT: CNF f

OUTPUT: Approximation

for No. of solutions

INPUT: DNF f

OUTPUT: Approximation for No. of solutions

#CNF #DNF

Page 39: Raghu  Meka Oberwolfach , Nov 2012

Approximate Counting

Focus on additive for good reason

Additive error: Compute p

Page 40: Raghu  Meka Oberwolfach , Nov 2012

• CNFs/DNFs as simple as they get

Why Deterministic Counting?

• #P introduced by Valiant in 1979.• Can’t solve #P-hard problems

exactly. Duh.

Approximate Counting ~ Random Sampling

Jerrum, Valiant, Vazirani 1986Triggered counting through MCMC:

Eg., Matchings (Jerrum, Sinclair, Vigoda 01)

Does counting require randomness?

Page 41: Raghu  Meka Oberwolfach , Nov 2012

Counting for CNFs/DNFs

Reference Run-TimeAjtai, Wigderson 85 Sub-exponentialNisan, Wigderson 88

Quasi-polynomialLuby, Velickovic, Wigderson Luby, Velickovic 91 Better than quasi, but

worse than poly.

• Karp, Luby 83 – counting for DNFs

Page 42: Raghu  Meka Oberwolfach , Nov 2012

New results: GMR12 Main Result: A deterministic algorithm.

• New structural result on CNFs• Strong “junta theorem’’ for CNFs

Page 43: Raghu  Meka Oberwolfach , Nov 2012

Counting Algorithm• Step 1: Reduce to small-width

– Same as Luby-Velickovic

• Step 2: Solve small-width directly– Structural result: width buys size

Page 44: Raghu  Meka Oberwolfach , Nov 2012

How big can a width w CNF be?

Ex: can width = O(1), size = poly(n)?

Recall: width = max-length of clause size = no. of clauses

Width vs Size

Size does not depend on n or m!

Page 45: Raghu  Meka Oberwolfach , Nov 2012

Proof of Structural resultObservation 1: Many disjoint

clauses => small

acceptance prob.

Page 46: Raghu  Meka Oberwolfach , Nov 2012

Proof of Structural result2: Many clauses => some

(essentially) disjoint

(Core)

Petals

Assume no negations.Clauses ~ subsets of

variables.

Page 47: Raghu  Meka Oberwolfach , Nov 2012

Proof of Structural result2: Many clauses => some

(essentially) disjoint

Many small sets => Large

Page 48: Raghu  Meka Oberwolfach , Nov 2012

Lower Sandwiching CNF

• Error only if all petals

satisfied• k large => error small• Repeat until CNF is small

Page 49: Raghu  Meka Oberwolfach , Nov 2012

Upper Sandwiching CNF

• Error only if all petals

satisfied• k large => error small• Repeat until CNF is small

Page 50: Raghu  Meka Oberwolfach , Nov 2012

“Quasi-sunflowers” (Rossman 10) with appropriately adapted analysis:

Main Structural Result Setting parameters properly:

Suffices for counting result.Not the dependence we

promised.

Page 51: Raghu  Meka Oberwolfach , Nov 2012

Implications of Structural Result

• PRGs for narrow DNFs

• DNF Counting

Page 52: Raghu  Meka Oberwolfach , Nov 2012

PRGs for Narrow DNFs• Sparsification: Fooling small-width ~

fooling small-size.• Small-bias fools small size: DETT10

(Baz09, KLW10).

• Previous best (AW85, Tre01):

Thm: PRG for width w with seed

Page 53: Raghu  Meka Oberwolfach , Nov 2012

Counting Algorithm• Step 1: Reduce to small-width

– Same as Luby-Velickovic

• Step 2: Solve small-width directly– Structural result: width buys sizePRG for width w with

seed

Page 54: Raghu  Meka Oberwolfach , Nov 2012

Counting for AC0Q: Deterministic polynomial time

algorithm for #CNF? PRG?

Q: Better counting for AC0?

Page 55: Raghu  Meka Oberwolfach , Nov 2012

Approximate Counting• Not many deterministic (ex: Weitz,

Gavinsky)• Want something general for MCMC

Challenge/Question: Deterministic approximate counting of matchings

(permanent)? Or hardness?LSW: Polynomial time factor approximation

Page 56: Raghu  Meka Oberwolfach , Nov 2012

SummaryI. PRGs for small space

II. PRGs for bounded-depth

III. Deterministic approximate counting

Page 57: Raghu  Meka Oberwolfach , Nov 2012

Thank you

“The best throw of the die is to throw it away” -