quantrainx50 module 3.1 electron optics

110
Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

Upload: brooks

Post on 23-Mar-2016

77 views

Category:

Documents


0 download

DESCRIPTION

place photo here. Quantrainx50 Module 3.1 Electron Optics. 1-2011. SEM Main Components. Wehnelt cylinder or FEG unit. Electron Gun. Demagnification system. Condenser lenses. Scan generator. Scan Unit. Scan generator. Focus Unit. Objective and Stigmation lenses. Detecting Unit. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quantrainx50   Module 3.1 Electron Optics

Confidential

Quantrainx50 Module 3.1 Electron

Optics1-2011

place photo here

Page 2: Quantrainx50   Module 3.1 Electron Optics

2

2

SEM Main Components

Electron Gun

Demagnification system

Scan Unit

Detecting Unit

Wehnelt cylinderor FEG unit

Condenser lenses

Scan generator

Objective andStigmation lenses

Electron detector

Focus Unit

Scan generator

Page 3: Quantrainx50   Module 3.1 Electron Optics

3

3

SEM Main Components

Electron GunWehnelt cylinderFEG Electron Gun

Page 4: Quantrainx50   Module 3.1 Electron Optics

4

4

Electron Gun Emitters• Tungsten filament (W)• Lanthanum Hexaboride filament (LaB6)

(obsolete)• Cerium Hexaboride (CeB6)• Field emission filament (FEG)

Page 5: Quantrainx50   Module 3.1 Electron Optics

5

Electron Gun Animation *5

* Video courtesy of Oxford Instruments

Page 6: Quantrainx50   Module 3.1 Electron Optics

6

6

Electron Source Properties• Current density (brightness)• Emission current• Stability of source• Lifetime of filament• Design of electron source assembly• Ease of operation• Costs involved

ą

ip

do

specimen

Page 7: Quantrainx50   Module 3.1 Electron Optics

7

7

Emission Area For Tungsten (W)

Filament

Wehnelt cap

Anode

Cross-over plane

Filament heating supply

High voltage supply (200 v- 30 kV)

70 A

Page 8: Quantrainx50   Module 3.1 Electron Optics

8

8

Bias on Wehnelt Cap

Equipotential lines of the Voltage Field

High emissionlarge spot

Sufficient emission

small spot

Low bias voltage

0+

Optimum bias voltage

0+

High bias voltage

No emission

+0

Page 9: Quantrainx50   Module 3.1 Electron Optics

9

9

Bias 255 ……………………………….. Bias 1

110 µA

90 µA 1 kV 30 kV

Emission : Autobias control

9

Autobias keeps emission between 90-110 µA for all kV

Page 10: Quantrainx50   Module 3.1 Electron Optics

10

10

W Filament Saturation

filament current

emis

sion

cur

rent

Saturation point

False peak / Misalignment

Page 11: Quantrainx50   Module 3.1 Electron Optics

11

11

Tungsten Filament

Page 12: Quantrainx50   Module 3.1 Electron Optics

12

12

High Resolution, High Brightness FEG source…

Tungsten LaB6 FEGNormalized Brightness (-) 1 10 1000Maximum probe current (nA) 2000 500 100Life time (hrs) 60-200 200-1000 > 10000Beam current stability (10 hrs) <1% <1% <0.4%Resolution 30kV (nm) 3.0 2.0 1.2Resolution 1kV (nm) 25 15 3.0Cost source (USD) 20 900 26000

Page 13: Quantrainx50   Module 3.1 Electron Optics

1414

XL Schottky FEG Theory

• The Boersch Effect• A) Perfect beam: no

interactions• B) Random beam: one

dimension• C) Random beam: two

dimensions

• It is actually three dimensional

ooooooooo

oo

o

ooo

o

oo

oo

o o

o o

o oo o

A B C

Page 14: Quantrainx50   Module 3.1 Electron Optics

1515

XL Schottky FEG Theory• The Lateral Effect• lateral trajectory

displacement• This effect results in a

larger final spot• The diameter of the

circle of confusion due to this effect.

o o o o o o

o o oo o o

Page 15: Quantrainx50   Module 3.1 Electron Optics

16

16

Lens Defects

image plane

Spherical aberration

Chromatic aberration

Aperture

Diffraction

optical axis

Page 16: Quantrainx50   Module 3.1 Electron Optics

17

17

Spherical Aberrations

• Electrons entering into a lens at different points get focused at different points

Disc of Least Confusion

Page 17: Quantrainx50   Module 3.1 Electron Optics

18

18

Chromatic Aberrations

• Electrons of differing energies will be focused at different places

Disc of Least Confusion

Page 18: Quantrainx50   Module 3.1 Electron Optics

19

19

Diffraction

• The wave nature of electrons cause diffraction limitations

Page 19: Quantrainx50   Module 3.1 Electron Optics

20

20

XL Schottky FEG Theory• Design Limitations• Longer electron-electron interaction times and

smaller electron-electron distances lead to higher statistical aberrations at low KV

• Chromatic aberration is more dominant at low voltages.

Page 20: Quantrainx50   Module 3.1 Electron Optics

21

21

XL Schottky FEG Theory• Innovative solutions to reduce design limitations• A Coulomb tube designed into the column to

reduce aberrations and interactions by keeping a high beam energy in the tube

• Effective aperturing of the beam to remove those electrons not contributing to the probe

Page 21: Quantrainx50   Module 3.1 Electron Optics

22

22

FEG Column Principle Diagram

Scan Coils

Gun Alignment Coils

Objective Aperture

10KVDriftSpace(Coulomb Tube)

C1

C2

Objective Lens

Page 22: Quantrainx50   Module 3.1 Electron Optics

23

23

FEG gun (electron source)

Emitter Schottky Cold

Scource size 20nm 2nm

Beam current stability

<1%/hour decreases steadily 10-50%/hour

Flashing not required always needed (daily) depends on vacuum quality

Page 23: Quantrainx50   Module 3.1 Electron Optics

24

24

Emission Area for FEG

Extractor systemC1 static lens

Anode

Filament heating supply

High voltage supply (200 v- 30 KV)

150 A

Page 24: Quantrainx50   Module 3.1 Electron Optics

2525

Schottky Gun Design

• Fil = Filament current input (2.4 Ampere)

• S = Suppressor (-500V)

• E = Extractor (+5000V)

• C1 = Electrostatic Condenser lens

S

E

C1

Fil

E

Page 25: Quantrainx50   Module 3.1 Electron Optics

26

26

Schottky Tip design• M = Tip module• W = Welded

tungsten Tip• Fil = Tungsten

wire filament• T = Sharpened

Tip• Zr = Zirconium

reservoir Zr

T

Fil

W

M

Page 26: Quantrainx50   Module 3.1 Electron Optics

27

27

FEG Startup Steps

• Warmstart / Coldstart

• Gun conditioning

Page 27: Quantrainx50   Module 3.1 Electron Optics

28

28

Beam Menu

Final operation status

Page 28: Quantrainx50   Module 3.1 Electron Optics

29

29

FEG Column Double condenser lens

• Extraction voltage changes not necessary, beam current is set by condenser lenses

• C1 is electrostatic• C2 is electromagnetic• Variable lens strengths:

A = high beam current modeB = low beam current mode

• Final beam energy 30keV down to 200eV

A B

C1

C2

Page 29: Quantrainx50   Module 3.1 Electron Optics

30

30

FEG Column Double Condenser Lens

• Extraction voltage changes not necessary, beam current is set by condenser lenses

• C1 is electrostatic• C2 is electromagnetic• Variable lens strengths:

A = high beam current modeB = low beam current mode

• Final beam energy 30keV down to 200eV

A B

C1

C2

InternalSpray

Aperture

Page 30: Quantrainx50   Module 3.1 Electron Optics

31

31

• Different paths for low

and high beam current conditions through thecoulomb tube, but common path to objective

Small Spot Large Spot

C1

C2

Aperture

DecelerationLens

FEG Column

Page 31: Quantrainx50   Module 3.1 Electron Optics

3232

Comparison of Columns(20KV)

Spot W LaB6 FEG

5 1nA-100nM 2Na-59nM 2.4nA- 5nM

6 4nA- 200nM 8nA-100nM 9.5nA-10nM

7 16nA-400nM 30nA-200nM 35nA-20nM

8 64nA-800nM 100nA-400nM NA

Page 32: Quantrainx50   Module 3.1 Electron Optics

33

33

Beam Current: Spotsize 30kV 20kV 10kV 5kV 2kV 1kV 500V

1 21 p 13 p 8 p 5 p 2.5 p 1.4 p 0.7 p

2 44 p 40 p 33 p 25 p 13 p 7 p 4 p

3 154 p 148 p 130 p 98 p 53 p 30 p 16 p

4 625 p 617 p 538 p 398 p 211 p 116 p 62 p

5 2.41 n 2.39 n 2.11 n 1.57 n 840 p 464 p 249 p

6 9.54 n 9.45 n 8.37 n 6.27 n 3.37 n 1.86 n 1.00 n

7 36.9 n 36.5 n 32.4 n 24.3 n 13.1 n 7.24 n 3.89 n

Probe Current for FEG

Page 33: Quantrainx50   Module 3.1 Electron Optics

34

34

Spotsize 30kV 20kV 10kV 5kV 2kV 1kV 500V

1 0.4 0.4 0.4 0.5 0.5 0.5 0.6

2 0.6 0.7 0.8 1.0 1.2 1.3 1.3

3 1.0 1.3 1.7 2.1 2.4 2.5 2.6

4 2.1 2.6 3.4 4.1 4.8 5.0 5.2

5 4.1 5.0 6.7 8.2 9.5 10.0 10.4

6 8.2 10.0 13.4 16.4 19.0 20.0 20.7

7 16.0 19.6 26.3 32.3 37.4 39.4 40.9

*Source = 20KV and WD = 10mm (spot diameters in nm).

FEG Spot Size (nM)

Page 34: Quantrainx50   Module 3.1 Electron Optics

35

35

SEM Main Components

Electron Gun

Demagnification system

Scan Unit

Wehnelt cylinder

Condenser lenses

Scan generator

Demagnification system

Page 35: Quantrainx50   Module 3.1 Electron Optics

36

36

Magnification

l

M=L/l

L

L

***-important

Page 36: Quantrainx50   Module 3.1 Electron Optics

37

37

Scan Size Vs. Magnification

• Low Mag.

• Med Mag.

• Hi Mag.

Page 37: Quantrainx50   Module 3.1 Electron Optics

38

38

Magnifying Your Sample on Quantax50

M= L

l

_

lL

Page 38: Quantrainx50   Module 3.1 Electron Optics

39

39

Low Magnification

Scan Here

Display Here

Page 39: Quantrainx50   Module 3.1 Electron Optics

40

40

Intermediate Magnification

Scan Here

Display Here

Page 40: Quantrainx50   Module 3.1 Electron Optics

41

41

Higher Magnification

Scan Here

Display Here

Page 41: Quantrainx50   Module 3.1 Electron Optics

42

42

• The viewed area (L) is fixed

Scan Size Vs. Magnification

• The smaller the area scanned on the sample results in higher viewed magnification

Page 42: Quantrainx50   Module 3.1 Electron Optics

43

43

A Focused Vs. An Unfocused Beam

Page 43: Quantrainx50   Module 3.1 Electron Optics

44

44

The Crossover point on the Beam is of a Finite Size

D= Spot Size

I = Beam Current

ą = Measurement of the ‘cone’

Page 44: Quantrainx50   Module 3.1 Electron Optics

45

45

Current Density

• Current Density remains constant through the optical path of the electron beam

=4 X I Amps

π X d o X a( ) Cm Steradians2β

Page 45: Quantrainx50   Module 3.1 Electron Optics

46

46

Current Density (remove constants)

• Current and Spot size are directly proportional

=I Amps

d o ( ) Cm 2β

Page 46: Quantrainx50   Module 3.1 Electron Optics

47

47

Resolution

The resolution of the microscope

is a measure of the smallest separation

that can be distinguished in the image

resolved unresolved

Page 47: Quantrainx50   Module 3.1 Electron Optics

48

48

The Diameter of the Electron Beam Must Be Smaller Than the Feature to Be Resolved

Page 48: Quantrainx50   Module 3.1 Electron Optics

49

49

The Electron Beam Scans From Left to Right

• There can be from 512 to 4096 scan lines, at all magnifications

Page 49: Quantrainx50   Module 3.1 Electron Optics

50

50

The Electron Beam Spot Size Must Be Smaller Than the Features Being Resolved

• The ideal spot size

Page 50: Quantrainx50   Module 3.1 Electron Optics

51

51

Too Large of Spot Size Looks Out of Focus

• Too big of spot size creates an out of focus image

Page 51: Quantrainx50   Module 3.1 Electron Optics

52

52

Scan Size Vs. Magnification

• Spot size for low mag is not acceptable for higher mag

***-important

Page 52: Quantrainx50   Module 3.1 Electron Optics

53

53

Scan Size Vs. Magnification

• Spot size for medium mag is not acceptable for highest mag

***-important

Page 53: Quantrainx50   Module 3.1 Electron Optics

54

54

Obtaining an Image• The SEM operator needs to do two

things:

1- find the correct focus

2- determine the correct spot size

Page 54: Quantrainx50   Module 3.1 Electron Optics

55

55

Obtaining an Image• Focusing moves the crossover point of the

beam up and down, trying to place the focal point onto the sample

• Spot size controls the lateral size of the focused beam on the sample

Page 55: Quantrainx50   Module 3.1 Electron Optics

56

56

Electro-magnetic Condenser Lens

metal jacket

copper windings

Optic axis

Air gap

Cross-over

e-

Page 56: Quantrainx50   Module 3.1 Electron Optics

58

58

Aperture

Condenser lens

Electron beam In

Electron spray

Electron beam Out

Condenser Lens Action on Beam

Page 57: Quantrainx50   Module 3.1 Electron Optics

59

59

Condenser Lens Action on Beam

• Decreased lens current creates more beam current

Page 58: Quantrainx50   Module 3.1 Electron Optics

60

60

• Increased lens current creates less beam current

Condenser Lens Action on Beam

Page 59: Quantrainx50   Module 3.1 Electron Optics

61

61

Spot Size Summary

• Smaller spot sizes for higher magnification• Larger spot size for x-ray analysis• Too large of spot may result in a de-focused

image• Too small of spot may result in poor S/N

Page 60: Quantrainx50   Module 3.1 Electron Optics

62

62

How to get High Resolution (100.000 - 150.000x) (Tungsten)• Use 20-30 kV• Use spot 1• Use WD 5 mm• Tilt stage 10° • Take BSE detector out• Lock stage• Use image definition of 1024x884 or 2048x1768• Take 1 Frame, frametime min. 60 seconds• Move to new area after focusing/stigmation

Page 61: Quantrainx50   Module 3.1 Electron Optics

63

63

Summary of Spot Size Affecting SEM Image

• The electron column is designed to produce smallest spot containing highest possible probe current

• Spot size limits minimum size of objects that can be separated

• Higher probe current improves the signal to background ratio

Page 62: Quantrainx50   Module 3.1 Electron Optics

64

64

SEM Main Components

Electron Gun

Demagnification system

Scan Unit

Wehnelt cylinder

Condenser lenses

Scan generator

Focus UnitObjective andStigmation lenses

Page 63: Quantrainx50   Module 3.1 Electron Optics

65

65

Focusing the Beam Onto the Sample Uses the Objective Lens

objective lensfinal lensaperture

pole piece

sample

Page 64: Quantrainx50   Module 3.1 Electron Optics

66

66

Focusing the Beam Onto the Sample

pole piece

objective lensfinal lensaperture

sample

Page 65: Quantrainx50   Module 3.1 Electron Optics

67

67

Focusing the Beam Onto the Sample

pole piece

objective lensfinal lensaperture

sample

Page 66: Quantrainx50   Module 3.1 Electron Optics

68

68

Focusing the Beam Onto the Sample

objective lensfinal lensaperture

pole piece

sample

Page 67: Quantrainx50   Module 3.1 Electron Optics

69

69

Working Distance (WD)

OWDFWD

pole piece

objective lensfinal lensaperture

specimen

Page 68: Quantrainx50   Module 3.1 Electron Optics

70

70

Synchronizing Stage Height With WD

Z

Z

WD

WDspecimen specimen

Page 69: Quantrainx50   Module 3.1 Electron Optics

71

71

WD Vs. Gas Path Length(GPL)

EDS

WD

Final Lens Pole Piece

Hi-Vac

GPL

Page 70: Quantrainx50   Module 3.1 Electron Optics

72

72

WD Vs. Gas Path Length(GPL)

Final Lens Pole Piece

EDS

WD= 10 mmGPL= 2MM

EDS Cone(8mm)

Hi-Vac Intermediate Vacuum

Page 71: Quantrainx50   Module 3.1 Electron Optics

7373

Low noise EDS Mapping in Low-vacuum with use of EDS Cone

Using the EDS Cone..

Page 72: Quantrainx50   Module 3.1 Electron Optics

74

74

Focus and Stigmation• Focusing brings the beam crossover up or

down

• Stigmation controls the ovalness of the beam

Page 73: Quantrainx50   Module 3.1 Electron Optics

75

75

Astigmation Is an Un-oval Beam

Page 74: Quantrainx50   Module 3.1 Electron Optics

76

76

Astigmatism

disc of least confusionmagnified point source

Page 75: Quantrainx50   Module 3.1 Electron Optics

77

77

Astigmatism...Continued

You have to see it to believe it…

Page 76: Quantrainx50   Module 3.1 Electron Optics

78

78

SEM Main Components

Electron Gun

Demagnification system

Scan Unit

Detecting Unit

Wehnelt cylinder

Condenser lenses

Scan generator

Specimen + detector Detector

Objective andStigmation lenses

Page 77: Quantrainx50   Module 3.1 Electron Optics

79

79

Different Types of Electron Detectors

Electron Detector

SEM :Quantax50

A detector is a detector to the SEM

Page 78: Quantrainx50   Module 3.1 Electron Optics

80

80

High Vacuum Everhardt-Thornley Secondary Electron Detector

Photomultiplier

Light guide

glass target

Phosphorousscreen (Al-coated)( +10 kV)

Faraday cage(-250 - +250 V)

Scintillator

Page 79: Quantrainx50   Module 3.1 Electron Optics

81

81

Solid State Backscattered Detector

Backscattered electrons

Surface electrode

Silicon dead layer

SemiconductorBase plate

+++++++++++++----------------------

Page 80: Quantrainx50   Module 3.1 Electron Optics

82

82

The Solid State BSD

Page 81: Quantrainx50   Module 3.1 Electron Optics

83

83

The Gaseous Analytical Detector (GAD)

Page 82: Quantrainx50   Module 3.1 Electron Optics

84

84

Low voltage high Contrast Detector (vCD)

Backscattered electrons

Surface electrode

Silicon dead layer

SemiconductorBase plate

+++++++++++++----------------------

Page 83: Quantrainx50   Module 3.1 Electron Optics

85

85

The best imaging conditions at LV Low KeV: flat cone short beam gas path length, low pressures and long amplification path

Electron beam

EDX

Detector

Sample

Detected electron signal

5 mm WD

Page 84: Quantrainx50   Module 3.1 Electron Optics

86

86

LF (Large Field) Detector

• Large field of view SE detector for LV based on gas amplification

• Excellent signal yield at low pressures• Works from 0.5 to 1 Torr (2-3T with PLA)• Detects primarily: SE1, SE2, SE3• Not too sensitive to light or temperature• Can be used with x-ray cone for low KeV or x-ray

analysis

Page 85: Quantrainx50   Module 3.1 Electron Optics

87

87

The Large Field (LF) Detector

Page 86: Quantrainx50   Module 3.1 Electron Optics

88

88

Gaseous Secondary Electron Detector

non-conductive specimen

GSED

Primary beam

Signal amplification by gas ionisation

Collection area at high positive voltage

Detected electron signal

Page 87: Quantrainx50   Module 3.1 Electron Optics

89

89

GSED (Gaseous Secondary Electron Detector)• Second generation SE detector for ESEM based on gas

amplification• Works from 0.5 to 20 Torr• Not too sensitive to light or temperature

Page 88: Quantrainx50   Module 3.1 Electron Optics

90

90

GSED (Gaseous Secondary Electron Detector)

Page 89: Quantrainx50   Module 3.1 Electron Optics

91

91

Available SE Gas Amplification Detectors & Cones

Low KV Cap

GSEDLFD GBSDX-RayCone

Page 90: Quantrainx50   Module 3.1 Electron Optics

92

92

HighVac / LowVac: LF-GSE + SS-BSE

Changing modes without detector change

LFD

BSE

Page 91: Quantrainx50   Module 3.1 Electron Optics

93

93

LF-Detector + Low KV Cap

Low kV imaging with Low KV Cap

LFD

Low KV Cap

Page 92: Quantrainx50   Module 3.1 Electron Optics

94

94

X-Ray Cone

LF-Detector + X-Ray cone: no BSE detection

LFD

X-Ray Cone

Page 93: Quantrainx50   Module 3.1 Electron Optics

95

95

GaseousAnalyticalDetector

• The GAD is a SS-BSED + X-Ray cone• Optimised low vacuum microanalysis and imaging

(SE and BSE) at the analytical WD• Minimum Magnification 250 x

LFD

GAD

Page 94: Quantrainx50   Module 3.1 Electron Optics

96

96

GBSD (Gaseous Backscattered Electron) Detector

Page 95: Quantrainx50   Module 3.1 Electron Optics

97

97

The GBSD

---

BSE Converter Plate

BSE Generated by Primary Beam

PLA

SE Collection Grid

SE 3

Buried Signal Track

++

+

Page 96: Quantrainx50   Module 3.1 Electron Optics

98

98

GBSD (Gaseous Backscattered Electron) Detector• Specialized detector allows BSE imaging at higher

pressures >4T• SE & BSE detector for ESEM based on gas amplification• Works from 4-10 Torr• Detects SE or BSE Signal in a gas• Not sensitive to light or temperature

Page 97: Quantrainx50   Module 3.1 Electron Optics

99

99

GBSD Optimized for High Pressures

Signal vs Pressure

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

Pressure

Sig

nal (

Arb

itrar

y)

BC

Page 98: Quantrainx50   Module 3.1 Electron Optics

100

100

Oil in Water

Secondary Mode

Backscattered Mode

Page 99: Quantrainx50   Module 3.1 Electron Optics

101

101

When to use what detector…

Detector SE BSE Pressure Lowest kV X-ray Area

GSED YES NO 1.0-20T 3kV up BULK

LF/SS BSE YES YES .1-1.0T(.1-1.5 FEG) 5kV up BULK

LF/GAD YES YES 0.1-4T 3kV up POINT

GBSD YES YES 4-10T 10KV up BULK

ET SE/ SSBE YES YES Hi-VAC 1KV up POINT

ICD YES NO Hi-VAC no insert 1 KV with BD POINT

Page 100: Quantrainx50   Module 3.1 Electron Optics

102

102

Hot Stage “Hook” (ESD)

Page 101: Quantrainx50   Module 3.1 Electron Optics

103

103

Hot Stage ‘Hook” and Detector

Page 102: Quantrainx50   Module 3.1 Electron Optics

104

104

Through The Lens Detector (TLD)

Specimen

PMT

E.T. SED

TLD

Page 103: Quantrainx50   Module 3.1 Electron Optics

105

105

Scintillator-type Backscattered Detector (Robinson & Centaurus)

specimen

Aluminium

P-scintillator

through light guide toPhotomultiplier tube

Page 104: Quantrainx50   Module 3.1 Electron Optics

106

106

Cathodoluminescence Detector

Polished Aluminium Light guide

Photomultiplierspecimen

Page 105: Quantrainx50   Module 3.1 Electron Optics

107

107

Electron Backscatter Pattern (EBSD) Detector

Final Lens

Primary Beam

BSE

EBSD

Page 106: Quantrainx50   Module 3.1 Electron Optics

108

108

EBSD Applications

1m = 50 steps

OIM from 1000 Å PVD Copper Damascene lines

Page 107: Quantrainx50   Module 3.1 Electron Optics

109

109

Specimen Current Detector

iPC

iSE

iBSE

iSC

specimen

Page 108: Quantrainx50   Module 3.1 Electron Optics

110

110

Electron Beam Induced Current (EBIC)

PE

SCA

P N P

Page 109: Quantrainx50   Module 3.1 Electron Optics

111

111

CCD Camera - Quantax50 View

As viewed from under the EDS detector

LFD

E.T. SED

BSD

Sample

Page 110: Quantrainx50   Module 3.1 Electron Optics

112

112

The end QUANTRAINx50 3.2PPT- Optics