pyrolysis and charcoal

41
Pyrolysis and charcoal Morten Grønli NTNU Department of Energy and Process Engineering Engineering

Upload: ngocong

Post on 13-Feb-2017

248 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Pyrolysis and charcoal

Pyrolysis and charcoal

Morten GrønliNTNU

Department of Energy and Process EngineeringEngineering

Page 2: Pyrolysis and charcoal

NTNU & SINTEFNTNU : Norwegian University of Science and TechnologySINTEF: The Foundation for Scientific and Industrial Research at NTNU

Number of employees:

NTNU 4 700NTNU 4.700Scientific 60 %(incl. Post. doc and PhD Students)

SINTEF 1.900Scientific 72 %

Students: 20.000

SINTEF employees contribute in

teaching/supervising at NTNU

NTNU personnel contribute in

SINTEF projects

Joint use of laboratories and

instruments

Page 3: Pyrolysis and charcoal

Department of Energy and Process Engineering Ca 150 employees within 4 specialist groups

Thermal energy Industrial process technology Energy and indoor environment Fluids engeneering

80-90 Ph.D. students (10-15 annually) 70-100 M.Sc. students

Centres for Environment-friendly Energy Research (FME)1. BIGCCS

CENBIO2. CENBIO3. ZEB4. NOWITECH

CEDREN5. CEDREN

Coordinator of ECCSEL (European Carbon Dioxide Capture and Storage Laboratory), a distributed pan-European Research Infrastructure within CCS (assigned by ESFRI)

3

Page 4: Pyrolysis and charcoal

4

Page 5: Pyrolysis and charcoal

Solar energy Energy efficiency in

Wind power

buildings and industry

Water power

Bioenergy

Power production

H2

Bioenergy

Refinerywith CO2 capture

CO2Oil Gas

Heat pump

Oil and gas transportOil and gas transportMultiphase flow & LNG

Ocean energy

Page 6: Pyrolysis and charcoal

Heat and Power Heat and Power from Thermochemical Conversion of Biomassfrom Thermochemical Conversion of Biomass

PyrolysisPyrolysis GasificationGasification CombustionCombustion

CharcoalCharcoal BioBio--oiloil Combustible Combustible HeatHeat

GasGas turbineturbineMotorMotorBarbequeBarbeque Metalurgical industryMetalurgical industry EngineEngine BoilerBoiler WoodstoveWoodstove

CharcoalCharcoal BioBio--oiloil gasgas HeatHeat

GasGas--turbineturbineBarbequeBarbeque Metalurgical industryMetalurgical industry EngineEngine BoilerBoiler WoodstoveWoodstove

GeneratorGenerator District heatingDistrict heatingSteamSteam--turbineturbine

GeneratorGenerator District heatingDistrict heating

ElectricityElectricity

Page 7: Pyrolysis and charcoal

Magnificent charcoal drawings in theMagnificent charcoal drawings in the Grotte Chauvet are > 30.000 years old !

(http://www.culture.gouv.fr/culture/arcnat/chauvet/en/index.html)

7

Page 8: Pyrolysis and charcoal

Parameters

FEEDSTOCK: Elemental analyses (C/H/N/S/O) Proximate analyses (VM/fix-C/ash) Chemical composition (cellulose/hemicell./lignin)

PROCESS PARAMETERS: Temperature Heating rateHeating rate ”Cooking time” Pressure Pressure

8

Page 9: Pyrolysis and charcoal

Primærreaksjoner Sekundærreaksjoner

BIOMASSE TJÆRE

TREKULL GASSCracking

BIOMASSE

GASS

TJÆRE

TREKULLRepolymerisering

Olje/tjære Trekull Gassj j

HURTIG PYROLYSE 75% 12% 13% “moderat” temperatur kort oppholdstid

KARBONISERING 30% 35% 35% “lav” temperatur lang oppholdstid

GASSIFISERING 5% 10% 85% GASSIFISERING 5% 10% 85% “høy” temperatur lang oppholdstid

Page 10: Pyrolysis and charcoal

Slow pyrolysisFast pyrolysis Slow pyrolysisCarbonization

TAR + CHARCOAL

Charcoal 12 wt% Charcoal 30 wt%Bio oil 75 wt%Gases 13 wt%

Tar 35 wt%Gases 35 wt%

10

Page 11: Pyrolysis and charcoal

Bio-olje - Anvendelse

Bio-oil

Extract

Boiler

UpgradeBoiler

Heat Chemicals

Electricity Transport fuel

Page 12: Pyrolysis and charcoal

Bio-olje - egenskaperj g p

Bio-olje Fyringsolje nr 2

Vanninnhold pH Spesifikk tetthet

[vekt%] [kg/l]

5-30 2.5 1 2

~ 0 -

0 8 Spesifikk tetthet Elementsammensetning: C H

[kg/l] [vekt%] [ k %]

1.2

56.4 6 2

0.8

86-87 13 14 H

O N Aske

[vekt%] [vekt%] [vekt%] [vekt%]

6.2 37.3 0.1 0.1

13-14 - - -

Brennverdi (25% vann) Viskositet (40ºC, 25% vann) Koksrest

[MJ/kg] [cSt] [vekt%]

16-19

25-100 1

~ 40

1.5-3.0 Koksrest [vekt%] 1

Page 13: Pyrolysis and charcoal

Charcoal properties Wenzl, 1970adopted fromC a coa p ope t es adopted fromBergström, 1947

- effect of temperature on the properties of charcoal.

13

Page 14: Pyrolysis and charcoal

Ferrosilicon production

SiO2 (s) + 2C (s) = Si (s) + 2CO (g)

Charcoal as a reduction material Charcoal as a reduction material Fix-C content StrengthStrength SiO-reactivity

Page 15: Pyrolysis and charcoal

Definitions

Charcoal yield: Charcoal yield:Xcharcoal yield = mcharcoal/mbio

VM VM:XVM = mVM/mcharcoal mVMmVM

Ash:Xash = mash/mcharcoal mfix Cmfix-C

Fix-C:Xfix-C = 100-XVM-Xash

mfix-C

m k

fix-C

m

Fix-C-yield:

maske

Biomasse Trekull

mash

Biomass CharcoalyXfix-C-yield = Xcharcoal yield · Xfix-C

mbio mtrekullmbiomcharcoal

15

Page 16: Pyrolysis and charcoal

Slow carbonization at NTNUSlow carbonization at NTNU

VENT PIPE

PURGE-GAS

VENT PIPE

MUFFELOVEN

N2

IMP

DATA ACQUISITION

N2

RETORTTHERMOCOUPLES

R t tRetort- volum: ca 4 liter- capacity: ca 1 kg woodcapacity: ca 1 kg wood

Page 17: Pyrolysis and charcoal

”Flash carbonization” at HNEI - Hawaii

A: air accumulator

Flash carbonization at HNEI Hawaii

PGSRDflare

ATW: annular thermocouple wellC: compressorDDV: downdraft valveDS: disk separator

PRV

IV UDV

ATW

PT

GSP

GSP: gas sampling portH: electric heaterHIC: heat-insulating canisterIV: isolation valveMMV i t lIV UDV

HIC

IV

MMV: micrometer valvePG: pressure gaugePRV: pressure relief valvePT: pressure transducerR: regulator

DS

TCTC

TCTCWT

R: regulatorSRD: safety rupture diskTC: thermocoupleUDV: updraft valveWT: water trap

R

A

DS

TCTC

TCTC

PT

WT: water trap

MMV

H

CTCH

17

DDVH

WT

H

Page 18: Pyrolysis and charcoal

Feedstock

ELEMENTAL COMPOSITION PROX ANALYSES "THEORETICAL"ELEMENTAL COMPOSITION(wt%)

PROX. ANALYSES (wt%)

THEORETICAL (wt%)

C H N O S Ash VM Fix C Ash Fix CC H N O S Ash VM Fix-C Ash Fix-C

Spruce 48.9 6.0 0.12 44.7 < 0.05 0.26 85.4 14.4 0.26 33.4

Pine 49.4 6.1 0.11 44.1 < 0.05 0.31 85.0 14.7 0.31 33.8

Birch 48.1 6.0 0.17 45.6 < 0.05 0.20 87.4 12.4 0.20 32.4

Alder 48.3 6.0 0.30 45.1 < 0.05 0.33 86.0 13.7 0.33 33.1

Maximum fix-C-yield Minimum fix-C-yieldy

Maximum fix-C-yield at thermodynamicilib i (450 C 1 0 MP )

18

equilibrium (450o C, 1.0 MPa)

Page 19: Pyrolysis and charcoal

Yields versus final temperature100

80

90Carbon

60

70

t%]

fix-C content

40

50

Yiel

ds [w

charcoal yieldOxygen

20

30

Y charcoal yield

fi C i ld

yg

10

20 fix-C yield

Hydrogen

200 300 400 500 600 700 800Temperature [°C]

0

19

Page 20: Pyrolysis and charcoal

20

Page 21: Pyrolysis and charcoal

21

Page 22: Pyrolysis and charcoal

22

Page 23: Pyrolysis and charcoal

5090%80% 100%

45(%

) 1

40

-C Y

ield

( 23

45

35

al F

ixed

-

6 7

8910

11

12 13

141516

30

heor

etic 1718

19

25

T

2020 25 30 35 40 45 50

Experimental Fixed-C Yield (%) Parity plot of fixed-carbon yield (theoretical vs. experimental). 1) Pecan Shell 2) Kukui Nut Shell 3) Macadamia Nut Shell 4) Eucalyptus Wood 5) Coconut Shell 6) Sunflower Seed Hull 7) Walnut Shell 8) Oak Wood [Results from PDU] 9) Almond Shell 10) Ald W d 11) Pi W d [R lt f PDU] 12) C C b 13) S W d 14) B b 15) L W d 16) Bi h

23

Alder Wood 11) Pine Wood [Results from PDU] 12) Corn Cob 13) Spruce Wood 14) Bamboo 15) Leucaena Wood 16) Birch Wood 17) Rice Hull 18) Oat Hull 19) Garlic Waste

Page 24: Pyrolysis and charcoal

24

Page 25: Pyrolysis and charcoal

22 22 pages 232 references

25

Page 26: Pyrolysis and charcoal

Grønli, Morten; Antal, Jr, Michael Jerry; Schenkel, Yves; Crehay, R. The Science and Technology of Charcoal Production. I: Fast Pyrolysis of Biomass: A Handbook Volume 3. Tall Gables, The Sydings Speen, Newbury, Berks RG14 1RZ, UK: CPL Press 2005. ISBN 1872691927. s. 147-178

26

Page 27: Pyrolysis and charcoal

Survey of Carbonization Processesy

27

Page 28: Pyrolysis and charcoal

Heating systemsg y

Internal heating Heating with resirculated gasg

GASTARCHARCOAL

FEED

g g

CAIR

CHARCOALAIR

GASTARCHARCOAL

FEED

Most common system, where part of the raw material is burntunder controlled air flow External heating

GASTARFEED

External heatingPyroligneous vapours are burnt in an external combustion chamber and directed into the

CHARCOAL reactor where it is in direct contact with the raw material

The retort is heated from the outside and no oxygen enters

28

the reactor

Page 29: Pyrolysis and charcoal

Earthmound KilnGASTARCHARCOAL

FEED

AIR

Sweden year 1900 Africa year 2000

Cycle time:•Construction: ? days

Cycle time:•Construction: ? days

•Carbonization: 25 days •Cooling: 10 days

Construction: ? days•Carbonization: 3 days •Cooling: 4 days

29

Page 30: Pyrolysis and charcoal

Missouri kilnGASTARCHARCOAL

FEED

AIR

Cycle time:Loading/discharging: 4 days• Loading/discharging: 4 days

• Carbonization: 6 days• Cooling: 20 days

• North and South America + Africa• Batch process• Made of concrete or brick

V l it f 165 3 ( )• Volume capacity of 165 m3 (or more)

30

Page 31: Pyrolysis and charcoal

Brazilian beehive kilnGASTARCHARCOAL

FEED

AIR

• South America (Brazil)Batch process• Batch process

• Made of brick • Volume capacity of 45 m3

Cycle time:y•Loading/discharging: 8 hours•Carbonization: 80 hours•Cooling: 70 hours

31

Page 32: Pyrolysis and charcoal

CMLGASTARCHARCOAL

FEED

AIR

•French technology•Batch process•12 retorts connected to one combustion chamber/chimny•12 retorts connected to one combustion chamber/chimny•Volume capacity of each retort 16.5 m3

Cycle time:•Loading/discharging: 1 hour•Carbonization: 8 hours•Cooling: 15 hours

32

Page 33: Pyrolysis and charcoal

Van Marion Retort (VMR) GASTARCHARCOAL

FEED

( )

•Dutch technology•Batch process•Batch process•1 VMR oven = 2 retorts•Volume capacity of each retort 4.5 m3

•Cycle time 9-11 hour (dependent on moisture content)

33

Cycle time 9 11 hour (dependent on moisture content)

Page 34: Pyrolysis and charcoal

CG2000 CarboniserGASTARCHARCOAL

FEED

•Dutch technology•Batch process•Batch process•1 VMR oven = 2 retorts•Volume capacity of each retort 4.5 m3

•Cycle time 9-11 hour (dependent on moisture content)

34

Cycle time 9 11 hour (dependent on moisture content)

Page 35: Pyrolysis and charcoal

Degussa (Reichert) process GASTARCHARCOAL

C

FEED

AIR

CHARCOAL

A = Retorte ( ca 100 m3) B C D E F

= Tar stripper= Water cooler = Scrubber for residual gas = Combustion chamber and heat exchanger = Off-gas Fan

G H I K L

g= Fan for combustion air = Fan for forced-gas circulation = Dust collector = Saw for wood preparation = Conveyor for retort chargingL

MN

= Conveyor for retort charging = Charcoal cooler = Conveyor belt for charcoal

• Process owned by Chemviron Carbon (Germany) • Batch process • Volume capacity retort: 100 m3• Volume capacity retort: 100 m• Chemviron Carbon produces anually (7 retorts) :

• 25 000 tons of charcoal• 500 tons of acetic acid500 tons of acetic acid

35

Page 36: Pyrolysis and charcoal

LambiotteGASTARCHARCOAL

C

FEED

AIR

Lambiotte

C ti• Continuous process

• Two concepts:SIFIC (F h) i d ith b d t• SIFIC (French) equipped with by-product recovery

• CISR (Belgian) without by-product recovery

• Lambiotte 6000 (H=18 4 D= 4 3m) has a capacity of• Lambiotte 6000 (H=18.4, D= 4.3m) has a capacity of 6000 tons/year and is sold by S.A. Lambiotte & Cie N.V. (Belgium)

• Several Lambiotte plants are operating in Europe and Russia

36

Page 37: Pyrolysis and charcoal

LambiotteGASTARCHARCOAL

C

FEED

AIR

Lambiotte

Usine Lambiotte (Premery, France) produces anually 25 000 tons of charcoal in two retorts and extract finechemicals (acetic acid) from the pyroligneous vapour.

37

Page 38: Pyrolysis and charcoal

LurgiGASTARCHARCOAL

C

FEED

AIR

u gWater Pilot

fuelAir

Gas-cooler

RetortChimney

Combustionchamber

Gas-cooler

HoistWoodCharcoal

•Same principle as Lambiotte•Lurgi has built one charcoal plant in Bunbury, Western-Australia•Production capacity: 27 000 tons/year in two retorts

38

•Production capacity: 27.000 tons/year in two retorts

Page 39: Pyrolysis and charcoal

O E T Calusco (former Carbolisi)GASTARCHARCOAL

C

FEED

AIR

O.E.T. Calusco (former Carbolisi)

• Continuous process with a horizontal design • Wagons are transported throug a tunnelg p g• Cycle time: 23-24 hours• Sold by Impianti Trattamento Biomasse (Italy)• Plants in Milazzo and Mortera (Italy) each( y)

with a production capacity of 6.000 tons/year

39

Page 40: Pyrolysis and charcoal

”Flash carbonization” at HNEI - HawaiiFlash carbonization at HNEI Hawaii(www.hnei.hawaii.edu)

Demonstration reactor on campus Investment: US$ 100 000 Investment: US$ 100.000 5 tons charcoal/day (8 h) University’s green wastes as feedstock University s green wastes as feedstock barbeque and orchid potting soil

40

Page 41: Pyrolysis and charcoal

PGSRD

PRV

flare

PT

IV UDV

ATWGSP

HIC

TCTCIV

A: air accumulatorATW: annular thermocouple wellC: compressor R

DSTCTC

TCTC PT

W T

pDDV: downdraft valveDS: disk separatorGSP: gas sampling portH: electric heaterHIC heat ins lating canister

MMV

R

ATCTC

HIC: heat-insulating canisterIV: isolation valveMMV: micrometer valvePG: pressure gaugePRV: pressure relief valve

DDVH

CTC

W T

H

pPT: pressure transducerR: regulatorSRD: safety rupture diskTC: thermocoupleUDV: updraft valve

41

UDV: updraft valveWT: water trap