psm ii seminar - universiti teknologi arahim/presentation psm ii_azhar.pdfآ  2006-11-21آ  psm ii...

Download PSM II SEMINAR - Universiti Teknologi arahim/Presentation PSM II_azhar.pdfآ  2006-11-21آ  psm ii seminar

Post on 16-Jul-2020

3 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • PSM II SEMINARPSM II SEMINAR

    DEPARTMENT OF AUTOMOTIVE DEPARTMENT OF AUTOMOTIVE AND AERONAUTICAND AERONAUTIC

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

  • DRUM BRAKE SQUEAL NOISE DRUM BRAKE SQUEAL NOISE USING COMPLEX EIGENVALUE USING COMPLEX EIGENVALUE

    ANALYSISANALYSIS

    BY : AZHAR BIN SHARIFBY : AZHAR BIN SHARIF

    SUPERVISOR : DR. ABD RAHIM B. ABU SUPERVISOR : DR. ABD RAHIM B. ABU BAKARBAKAR

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

  • OBJECTIVEOBJECTIVE

    1.1. Determine instability of a drum brake Determine instability of a drum brake componentcomponent

    2.2. Perform Complex Eigenvalue AnalysisPerform Complex Eigenvalue Analysis

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

  • SCOPESCOPE 1.1. Use an existing FE model of a drum Use an existing FE model of a drum

    brake.brake. 2.2. Carry out modal testing of a real drum Carry out modal testing of a real drum

    brake equipments. (Proton Wira model)brake equipments. (Proton Wira model) 3.3. Obtain degree of correlation between Obtain degree of correlation between

    predicted and measured result.predicted and measured result.

    4.4. Perform Complex Eigenvalue Analysis.Perform Complex Eigenvalue Analysis. 5.5. Study the effect of various parameter on Study the effect of various parameter on

    squeal propensity.squeal propensity.

    PSM 1

    PSM 2

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

  • INTRODUCTIONINTRODUCTION

    Generally, noise have 2 category :Generally, noise have 2 category :-- Low frequency, 100Low frequency, 100--1000 Hz1000 Hz High frequency, ≥ 1000 Hz (Group of High frequency, ≥ 1000 Hz (Group of Squeal Squeal noisenoise))

    Types of Squeal noise:Types of Squeal noise:-- Low Low squealsqueal frequency, 1000frequency, 1000--5000 Hz5000 Hz High High squealsqueal frequency, > 5000 Hzfrequency, > 5000 Hz

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

  • INTRODUCTIONINTRODUCTION

    Squeal exist during every braking action. This is Squeal exist during every braking action. This is called brake squeal.called brake squeal. Actually, brake squeal is disturbing human ear Actually, brake squeal is disturbing human ear and can cause noise pollutionand can cause noise pollution Brake squeal can easy to defined as a vibration Brake squeal can easy to defined as a vibration within the range 1within the range 1--5 kHz.5 kHz.

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

  • INTRODUCTIONINTRODUCTION There have several perhaps in brake system can There have several perhaps in brake system can produce squeal :produce squeal :--

    Change of friction characteristic interfaceChange of friction characteristic interface Instability of vibration modeInstability of vibration mode Actuation force at drum componentActuation force at drum component

    There have several significant characteristics to There have several significant characteristics to affect squeal happens in drum brake system :affect squeal happens in drum brake system :--

    Frequency of vibration each brake componentFrequency of vibration each brake component Friction between surface of drum and liningFriction between surface of drum and lining Range of frequency ≥1000 HzRange of frequency ≥1000 Hz

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

  • METHODOLOGYMETHODOLOGY Start

    Basic theory on drum brake

    Literature review

    Experimental of real drum brake equipment

    Result Correlation

    FEM result

    Complete 1st Objective

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

    FE model of Design study

    Comparison Result

    Complete 2nd objective

    USE ABAQUS SOFTWARE Complex Eigenvalue solver

    Complex Eigenvalue Analysis

    Squeal Propensity at different parameter

    PSM I

  • METHODOLOGYMETHODOLOGY UNIVERSITI TEKNOLOGI

    MALAYSIA UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI

    MALAYSIAMALAYSIA

    FE model of Design study

    Comparison Result

    Complete 2nd objective

    USE ABAQUS SOFTWARE Complex Eigenvalue solver

    Complex Eigenvalue Analysis

    Squeal Propensity at different parameter

    PSM II

  • COMPLEX EIGENVALUE ANALYSISCOMPLEX EIGENVALUE ANALYSIS

    The existing nonThe existing non--linear structure must be linearised linear structure must be linearised to enable extraction of the complex eigenvalues and to enable extraction of the complex eigenvalues and mode shape.mode shape.

    Predicts the instability of any unstable mode, Predicts the instability of any unstable mode, frequency and mode shape adopted by couple frequency and mode shape adopted by couple system.system.

    Carried out using ABAQUS which the instability Carried out using ABAQUS which the instability measurement, natural frequency and mode shape measurement, natural frequency and mode shape may be extracted.may be extracted.

    The squeal propensity can be evaluated from the The squeal propensity can be evaluated from the magnitude of the instability measurement.magnitude of the instability measurement.

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

  • UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

    COMPLEX EIGENVALUE ANALYSISCOMPLEX EIGENVALUE ANALYSIS (Cont)(Cont)

    Use the equation of motion :Use the equation of motion :--

    Where : [M] = Mass Matrix [C] = Damping Matrix [K] = Stiffness Matrix {Pi} = Normal Force

    [ ] [ ] [ ]{ } { }iiii PUKUCUM =+⎭⎬ ⎫

    ⎩ ⎨ ⎧+

    ⎭ ⎬ ⎫

    ⎩ ⎨ ⎧ ∗∗∗

  • UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

    COMPLEX EIGENVALUE ANALYSISCOMPLEX EIGENVALUE ANALYSIS (Cont)(Cont)

    From this equation can determine the From this equation can determine the eigenvalue, eigenvalue, λλ ::--

    λλ = = α α ±± jjωω Where :Where :-- αα == the real partthe real part

    ωω == frequencyfrequency This eigenvalue can be extracted the complex This eigenvalue can be extracted the complex mode.mode.

  • UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

    COMPLEX EIGENVALUE ANALYSISCOMPLEX EIGENVALUE ANALYSIS (Cont)(Cont) Solid modeling

    Calculation of unsymmetrical friction stiffness matrix

    Friction stabilization

    Complex eigenvalue extraction

    Adopted from Hi-Kang paper

  • UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

    COMPLEX EIGENVALUE ANALYSISCOMPLEX EIGENVALUE ANALYSIS (Cont)(Cont)

    6 rad/sRotational Speed (ω)

    0.35Coefficient friction (µ)

    2.5 MPaPressure (P)

    VALUEOPERATION DATA

  • UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

    Assembly FE Model in ABAQUSAssembly FE Model in ABAQUS

    Leading Shoe

    Drum

    Trailing Shoe

  • RESULTRESULT 1. 1. CONTACT PRESSURE

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

    10 7

    96 .3

    85 .6

    74 .9

    64 .2

    53 .5

    42 .8

    32 .1

    21 .4

    10 .70

    15

    30

    0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 550000 600000 650000 700000

    C on

    ta ct

    P re

    ss ur

    e (P

    a)

    Angular Position (o)

    Axial Position

    (mm)

    CONTACT PRESSURE DISTRIBUTION OF LEADING LINING SURFACE UNDER FRICTIONAL CONDITION (µ=0.35)

    650000-700000 600000-650000 550000-600000 500000-550000 450000-500000 400000-450000 350000-400000 300000-350000 250000-300000 200000-250000 150000-200000 100000-150000 50000-100000 0-50000

    Toe

    Heel

  • RESULTRESULT 1. 1. CONTACT PRESSURE (Cont.)

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

    10 7

    96 .8

    86 .6

    76 .4

    66 .2

    56

    45 .8

    35 .6

    25 .4

    15 .2501 02

    03 04

    0

    0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 550000 600000 650000 700000

    Co nt

    ac t P

    re ss

    ur e

    (P a)

    Angular Position (o)

    Axial Position (mm)

    CONTACT PRESSURE DISTRIBUTION OF TRAILING LINING SURFACE UNDER FRICTIONAL CONDITION (µ = 0.35)

    650000-700000 600000-650000 550000-600000 500000-550000 450000-500000 400000-450000 350000-400000 300000-350000 250000-300000 200000-250000 150000-200000 100000-150000 50000-100000 0-50000

    Toe

    Heel

  • RESULTRESULT 2. MODE SHAPE2. MODE SHAPE

    UNIVERSITI TEKNOLOGI MALAYSIA

    UNIVERSITI TEKNOLOGI UNIVERSITI TEKNOLOGI MALAYSIAMALAYSIA

    185.886 th N