progress in the development of an infrared ion beam spectrometer

18
Main Title Kyle Crabtree, Kyle Ford, Holger Kreckel, Andrew Mills, Manori Perera and Ben McCall University of Illinois at Urbana-Champaign 64 th International Symposium on Molecular Spectroscopy Ohio State University June 23th, 2009 Progress In The Development Of An Infrared Ion Beam Spectrometer

Upload: xanto

Post on 07-Jan-2016

30 views

Category:

Documents


1 download

DESCRIPTION

Progress In The Development Of An Infrared Ion Beam Spectrometer. Outline. Why molecular ion beam First generation SCRIBES instrument. Improvements Development of the second generation SCRIBES Prospects. S ensitive C old R esolved I on BE am S pectrometer. High resolution spectroscopy - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Progress In The Development Of An Infrared Ion Beam Spectrometer

Main Title

Kyle Crabtree, Kyle Ford, Holger Kreckel, Andrew Mills, Manori Perera and Ben McCall

University of Illinois at Urbana-Champaign

64th International Symposium on Molecular SpectroscopyOhio State University

June 23th, 2009

Progress In The Development Of An Infrared Ion Beam

Spectrometer

Progress In The Development Of An Infrared Ion Beam

Spectrometer

Page 2: Progress In The Development Of An Infrared Ion Beam Spectrometer

2

OutlineOutline

• Why molecular ion beam

• First generation SCRIBES instrument

• Improvements

• Development of the second generation SCRIBES

• Prospects

SensitiveColdResolvedIonBEamSpectrometer

Page 3: Progress In The Development Of An Infrared Ion Beam Spectrometer

3

Why Use Molecular Ion Beam?

Why Use Molecular Ion Beam?

• Why molecular ions• Astrochemistry• Combustion • Carbocation chemistry• Fundamental insterest

• Why fast ion beam• Kinematic compression

• High resolution spectroscopy• Fingerprint for molecular ions

Andrew Mills, WH02 at 2:05pm

Δω depends on √1/Ufloat voltage

200

150

100

50W

idth

of th

e ab

sorp

tion

lin

e (M

Hz)

10008006004002000

Beam voltage (V)

Page 4: Progress In The Development Of An Infrared Ion Beam Spectrometer

4

First Generation SCRIBES Instrument

First Generation SCRIBES Instrument

Cathode

Anode

Ion Optics

Quadrupoles

Ion Optics

Pulser Plate

Iris

Electron Multiplier

Ringdown Mirrors

InSb

Drift Region

Modeled after Saykally’s instrument (Saykally et al. J. Chem. Phys. 1989, 90 (8), 3893-3894)

• Low ion beam current

• Overlap of the laser

• Modular

• Development of TOF-MS

Page 5: Progress In The Development Of An Infrared Ion Beam Spectrometer

5

Second Generation SCRIBESSecond Generation SCRIBESSource

• High ion beam current• Improved ion optics• Differential pumping

• Modular instrumentation

Page 6: Progress In The Development Of An Infrared Ion Beam Spectrometer

6

Ion Sources Ion Sources

• Cold cathode discharge source

• Considerations for the test application• High ion density• Fast ion beam without a big energy spread• Low maintenance

Precursor gas

Anode Cathode

Fused Silica

• Supersonic source

• Rotationally cold ions

• Continuous source

• Modular

Page 7: Progress In The Development Of An Infrared Ion Beam Spectrometer

7

Uncooled Cold Cathode Source with N2 PlasmaUncooled Cold Cathode Source with N2 Plasma

Source Cathode3.5 kV

Anode7.5 kV

Extraction plateGround

N2 plasma

ISource = 30 µA

IBeam = 10 µA

IOverlap= 1.5 µA

Page 8: Progress In The Development Of An Infrared Ion Beam Spectrometer

8

Ion OpticsIon Optics

Einzel Lens

Side view Frontal view

Page 9: Progress In The Development Of An Infrared Ion Beam Spectrometer

9

Cavity RegionCavity Region

V-V+

Neutrals

Laser path

Ions only3 mm

3 mm

Page 10: Progress In The Development Of An Infrared Ion Beam Spectrometer

10

QuadrupolesQuadrupoles

Output Input

Collimated beam

-V

+V

+V

-V

Diverging beam

Page 11: Progress In The Development Of An Infrared Ion Beam Spectrometer

11

Asymmetrical Deflector Plates

Asymmetrical Deflector Plates

Output parallel beam

Inputfocused beam

(-)V

(+)V

Page 12: Progress In The Development Of An Infrared Ion Beam Spectrometer

12

Mass Selecting RegionMass Selecting Region

• Characterization method• TOF mass spectrometer

Time-of-Flight Mass Spectrometer

• Identity of the masses

• Beam energy

• Beam energy spread

Page 13: Progress In The Development Of An Infrared Ion Beam Spectrometer

13

Collision CellCollision Cell

Laser

Rin

gdow

n T

ime

Con

stan

t (µ

s)

Pseudo-time (s)

CO2 gas at 30 mTorr

Ringdown mirror

Page 14: Progress In The Development Of An Infrared Ion Beam Spectrometer

14

Mass SpectrometerMass Spectrometer

8

6

4

2

Inte

nsi

ty (m

V)

353025201510

Mass (amu)

N+

O+

H2O+

N2+

O2+

Page 15: Progress In The Development Of An Infrared Ion Beam Spectrometer

15

Mass Spectrum of N2 PlasmaMass Spectrum of N2 Plasma

Ion beam energy = 3580 V ± 10 V

Power supply output = 3574 V

8

6

4

2

0

Inte

nsi

ty (V

)

30252015Mass (amu)

N2+ (m/z=28)90%

N+ (m/z=14)10%

Page 16: Progress In The Development Of An Infrared Ion Beam Spectrometer

16

Growth of SCRIBESGrowth of SCRIBES

1st Generation SCRIBES

cw-Cavity ringdown spectroscopy

2st Generation SCRIBES

Test N2+

Meinel lines

Velocity modulated cavity enhanced spectroscopy

Ion modulated cavity

ringdown spectroscopy

DFG laser

H3+ band

(fundamental)

Supersonic source

Page 17: Progress In The Development Of An Infrared Ion Beam Spectrometer

17

AcknowledgementAcknowledgement

• McCall Group

• Funding

Page 18: Progress In The Development Of An Infrared Ion Beam Spectrometer

Questions?Questions?