principles of biomedical engineering - amazon web...

4
Principles of Biomedical Engineering Madihally, Sundarajan V. ISBN-13: 9781608070558 Table of Contents Acknowledgments Chapter 1. Introduction 1.1. Overview 1.2. Roles of Bioengineers 1.3. History of Bioengineering 1.3.1. Development of Biomedical Imaging 1.3.2. Development of Dialysis 1.3.3. Development of the Heart-Lung Machine 1.3.4. Other Devices 1.4. Literature Sources Problems Selected Bibliography Chapter 2. Biotransport 2.1. Overview 2.2. Fundamental Factors 2.2.1. Fluid Compartments 2.2.2. Concentration 2.2.3. Pressure 2.2.4. Body pH 2.3. Diffusion 2.3.1. Free Diffusion 2.3.2. Facilitated Diffusion 2.3.3. Active Transport 2.4. Osmosis 2.4.1. Osmolarity 2.4.2. Tonicity 2.4.3. Osmotic Pressure 2.4.4. Osmometers 2.5. Transport Across Membranes 2.6. Transport of Macromolecules Problems References Selected Bibliography Chapter 3. Bioelectrical Phenomena 3.1. Overview 3.2. Membrane Potential 3.2.1. Nernst Equation 3.2.2. Donnan Equilibrium 3.2.3. Goldman Equation 3.3. Electrical Equivalent Circuit 3.3.1. Cell Membrane Conductance 3.3.2. Cell Membrane as a Capacitor 3.3.3. Resistance-Capacitance Circuit 3.3.4. Action Potential 3.3.5. Intracellular Recording of Bioelectricity 3.4. Volume Conductors 3.4.1. Electric Field 3.4.2. Electrical Potential Energy 3.4.3. Conservation of Charge 3.4.4. Measuring the Electrical Activity of Tissues: Example of the Electrocardiogram 3.4.5. Biopotential Recording Practicalities Problems Selected Bibliography Chapter 4. Biofluid Flow 4.1. Overview 4.2. Fluid Flow Characteristics 4.2.1. Conservation of Mass

Upload: ngoliem

Post on 17-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Principles of Biomedical Engineering - Amazon Web …media.matthewsbooks.com.s3.amazonaws.com/documents/... · 2011-02-16 · Principles of Biomedical Engineering Madihally, Sundarajan

Principles of Biomedical EngineeringMadihally, Sundarajan V.

ISBN-13: 9781608070558

Table of Contents

Acknowledgments Chapter 1. Introduction 1.1. Overview 1.2. Roles of Bioengineers 1.3. History of Bioengineering 1.3.1. Development of Biomedical Imaging 1.3.2. Development of Dialysis 1.3.3. Development of the Heart-Lung Machine 1.3.4. Other Devices 1.4. Literature Sources Problems Selected Bibliography Chapter 2. Biotransport 2.1. Overview 2.2. Fundamental Factors 2.2.1. Fluid Compartments 2.2.2. Concentration 2.2.3. Pressure 2.2.4. Body pH 2.3. Diffusion 2.3.1. Free Diffusion 2.3.2. Facilitated Diffusion 2.3.3. Active Transport 2.4. Osmosis 2.4.1. Osmolarity 2.4.2. Tonicity 2.4.3. Osmotic Pressure 2.4.4. Osmometers 2.5. Transport Across Membranes 2.6. Transport of Macromolecules Problems References Selected Bibliography Chapter 3. Bioelectrical Phenomena 3.1. Overview 3.2. Membrane Potential 3.2.1. Nernst Equation 3.2.2. Donnan Equilibrium 3.2.3. Goldman Equation 3.3. Electrical Equivalent Circuit 3.3.1. Cell Membrane Conductance 3.3.2. Cell Membrane as a Capacitor 3.3.3. Resistance-Capacitance Circuit 3.3.4. Action Potential 3.3.5. Intracellular Recording of Bioelectricity 3.4. Volume Conductors 3.4.1. Electric Field 3.4.2. Electrical Potential Energy 3.4.3. Conservation of Charge 3.4.4. Measuring the Electrical Activity of Tissues: Example of the Electrocardiogram 3.4.5. Biopotential Recording Practicalities Problems Selected Bibliography Chapter 4. Biofluid Flow 4.1. Overview 4.2. Fluid Flow Characteristics 4.2.1. Conservation of Mass

Page 2: Principles of Biomedical Engineering - Amazon Web …media.matthewsbooks.com.s3.amazonaws.com/documents/... · 2011-02-16 · Principles of Biomedical Engineering Madihally, Sundarajan

4.2.2. Inertial and Viscous Forces 4.2.3. Conservation of Momentum 4.3. Nonidealities in Biological Systems 4.3.1. Oscillatory and Pulsating Flows 4.3.2. Alterations in Viscosity 4.3.3. Influence Fluid Flow on Blood 4.4. Conservation of Energy 4.4.1. Different Energy Forms 4.4.2. Energy Balance in the Body 4.4.3. Energy Expenditure Calculations 4.5. Fluid Power 4.5.1. Power Calculations in a Cardiac Cycle 4.5.2. Efficiency of a Pump 4.5.3. Pumps in Series and Parallel 4.6. Optimization Principle for Fluid Transport 4.6.1. Minimum Work of Circulation Problems References Selected Bibliography Chapter 5. Biomechanics 5.1. Overview 5.2. Equations of Motion 5.2.1. Center of Mass 5.2.2. Newton's Laws of Motion 5.2.3. Leverage 5.2.4. Impulse-Momentum Relation 5.2.5. Gait Analysis (Motion Analysis) 5.3. Ideal Stress-Strain Characteristics 5.3.1. Structural Parameters and Material Parameters 5.3.2. Axial Stress and Strain 5.3.3. Shear Stress 5.3.4. Bending 5.3.5. Torsion 5.4. Nonidealities in Stress-Strain Characterization 5.4.1. Failure Under Combined Loading 5.4.2. Viscoelastic Characteristics 5.4.3. Dynamic Loading 5.5. Energy Conservation 5.5.1. Conservation of Energy 5.5.2. Energy Absorption Problems References Selected Bibliography Chapter Biomaterials 6.1. Overview 6.2. Types of Biomaterials 6.2.1. Metals and Alloys 6.2.2. Ceramics 6.2.3. Polymers 6.2.4. Biological Materials 6.2.5. Composites 6.3. Material Characteristics 6.3.1. Mechanical Performance 6.3.2. Mechanical Durability 6.3.3. Corrosion and Degradation 6.3.4. Surface Roughness 6.3.5. Sterilization Techniques 6.4. Physiological Responses to Biomaterials 6.4.1. Toxicity Analysis 6.4.2. Surface Adhesion 6.4.3. Blood-Material Interactions 6.4.4. Inflammatory Response 6.4.5. Infection 6.5. Tissue Engineering 6.5.1. Material Selection 6.5.2. Scaffold Formation Techniques Problems References

Page 3: Principles of Biomedical Engineering - Amazon Web …media.matthewsbooks.com.s3.amazonaws.com/documents/... · 2011-02-16 · Principles of Biomedical Engineering Madihally, Sundarajan

Selected Bibliography Chapter 7. Cellular Engineering 7.1. Overview 7.2. Cellular Interactions 7.2.1. Cell Culture Microenvironment 7.2.2. Cell-Soluble Factor Interactions 7.2.3. Cell-Matrix Interactions 7.2.4. Cell-Cell Interactions 7.3. Cellular Processes 7.3.1. Migration 7.3.2. Proliferation and Differentiation 7.3.3. Metabolism 7.3.4. Intracellular Degradation 7.4. Bioreactors 7.4.1. Different Shapes of Bioreactors 7.4.2. Different Modes of Operation 7.4.3. Downstream Processing 7.5. Preservation of Cells and Tissues 7.5.1. Long-Term Storage of Cells 7.5.2. Storage of Tissues Problems References Selected Bibliography Chapter 8. Biomedical Imaging 8.1. Overview 8.2. Properties of Light 8.2.1. Electromagnetic Spectrum 8.2.2. Energy in an EM Wave 8.2.3. Generation of EM Radiation 8.3. Interaction of Radiation with Matter 8.3.1. Absorption of EM Waves 8.3.2. Scattering of EM Waves 8.3.3. Transmission Imaging 8.4. Basics of Imaging 8.4.1. Image Acquisition 8.4.2. Digitizing Images 8.4.3. 3D Image Reconstruction 8.4.4. Image Quality 8.5. Imaging Devices 8.5.1. X-Ray Imaging 8.5.2. Positron Emission Tomography (PET) 8.5.3. Magnetic Resonance Imaging (MRI) 8.5.4. Ultrasound Imaging 8.5.5. Optical Coherence Tomography (OCT) 8.5.6. Endoscopes 8.5.7. Fluorescence Imaging Problems References Selected Bibliography Chapter 9. Biosensors 9.1. Overview 9.2. Bioelectrodes 9.2.1. Electrode-Electrolyte Interface 9.2.2. Polarization 9.2.3. Potential Monitoring Electrodes 9.3. Biosensing Elements 9.3.1. Enzyme-Based Biosensors 9.3.2. Antibody-Based Biosensors 9.3.3. Nucleic Acid-Based Biosensors 9.3.4. Cell-Based Biosensors 9.4. Transducing Elements 9.4.1. Electrochemical Biosensors 9.4.2. Optical Transducers 9.4.3. Acoustic Transducers 9.4.4. Other Transducers 9.5. Manufacturing Technology 9.5.1. Performance Parameters 9.5.2. Immobilization Strategies

Page 4: Principles of Biomedical Engineering - Amazon Web …media.matthewsbooks.com.s3.amazonaws.com/documents/... · 2011-02-16 · Principles of Biomedical Engineering Madihally, Sundarajan

9.5.3. Microelectromechanical Systems (MEMS) 9.5.4. Microarray Technology 9.6. Bioinformatics Problems References Selected Bibliography Chapter 10. Physiological Modeling 10.1. Overview 10.2. Compartmental Modeling 10.2.1. Chemical Compartmental Model 10.2.2. Single Electrical Compartmental Model 10.2.3. Other Single Compartmental Systems 10.2.4. Multicompartmental Models 10.3. Special Cases of Compartmental Modeling 10.3.1. Modeling Dialysis 10.3.2. Cable Theory 10.4. Modeling Diffusion-Limited Processes 10.4.1. Case 1: Reaction-Diffusion in Cartesian Coordinates 10.4.2. Case 2: The Krogh Tissue Cylinder 10.4.3. Case 3: One-Dimensional Radial Diffusion in Spherical Coordinates 10.4.4. Complex Model Systems Problems References Selected Bibliography Chapter 11. Ethical, Legal, and Societal Aspects 11.1. Overview 11.2. Fundamentals of Bioethics 11.2.1. Classical Ethical Theories 11.2.2. Difference Between Ethics and Law 11.2.3. Influence of Religion and Culture 11.3. Research Involving Human Participants 11.3.1. The Declaration of Helsinki 11.3.2. Belmont Report 11.3.3. Institutional Review Board (IRB) 11.3.4. Informed Consent 11.4. Standards 11.4.1. Standards and Guidelines 11.4.2. International Electromedical Commission (IEC) 11.4.3. International Organization for Standardization (ISO) 11.5. Regulatory Agencies 11.5.1. The Food and Drug Administration 11.5.2. Device Classification 11.5.3. Compliance Requirements Problems References Selected Bibliography About the Author Index