predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for...

18
Department of Chemistry CCBY 1 Predic’ng accurate absolute binding energies in aqueous solu’on: thermodynamic considera’ons for electronic structure methods arXiv.org : 1501.04428 (submiBed to PCCP) Jan H. Jensen University of Copenhagen twi9er: @janhjensen Google+: +JanJensenCopenhagen Youtube: molmodbasics Blog: Molecular Modeling Basics & Proteins and Wave FuncRons

Upload: molmodbasics

Post on 21-Jul-2015

651 views

Category:

Science


2 download

TRANSCRIPT

Page 1: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

CC-­‐BY   1  

Predic'ng  accurate  absolute  binding  energies    in  aqueous  solu'on:  thermodynamic  considera'ons    

for  electronic  structure  methods    

arXiv.org:  1501.04428  (submiBed  to  PCCP)    

Jan  H.  Jensen  University  of  Copenhagen  

 twi9er:  @janhjensen  

Google+:  +JanJensenCopenhagen  Youtube:  molmodbasics  

Blog:  Molecular  Modeling  Basics  &  Proteins  and  Wave  FuncRons    

 

Page 2: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

2  

DFT-­‐D3/  QZVP  

HF-­‐3c  (PM6-­‐D3H)  (DFTB2-­‐D3H)  

COSMO-­‐RS  

Grimme:  DOI  10.1021/jp411616b  Also:  DOI  10.1002/chem.201200497  

Page 3: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

3  

DFT-­‐D3/  QZVP  

HF-­‐3c  (PM6-­‐D3H)  (DFTB2-­‐D3H)  

COSMO-­‐RS  

Grimme:  DOI  10.1021/jp411616b  Also:  10.1002/chem.201200497  

Page 4: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

4  

3-­‐body  dispersion  &  RRHO  crucial  

DFT-­‐D3/  QZVP  

PM6-­‐D3H  (DFTB2-­‐D3H)   COSMO-­‐RS  

Grimme:  DOI  10.1002/chem.201200497  

MAD:  2  kcal/mol  

Page 5: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

5  

Page 6: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

6  

Possible  sources  of  error  

Imaginary  frequencies  

 Anharmonic    

effects  

Ions    

Explicit  solvaRon  

ConformaRonal  sampling  

 Changing    

protonaRon  state    

Explicit  ions  

Page 7: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

7  

Conforma'onal  Sampling  

Must  find  lowest  Go  conformaRon  (duh)    

Must  find  all  low-­‐Go  conformaRons?  

Nconf  

kcal/m

ol  

Worst  case  scenario:  ΔGo(Xi)  =  0  &  no  cancellaRon  

Page 8: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

8  

DFT-­‐D3/  QZVP  

HF-­‐3c  (PM6-­‐D3H)  (DFTB2-­‐D3H)  

COSMO-­‐RS  

Grimme:  DOI:  10.1021/jp411616b  Also:  10.1002/chem.201200497  

Page 9: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

9  

Changing  protona'on  state  

Un-­‐coupled  'tra'on  

Coupled  'tra'on  

Page 10: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

10  

Solva'on  energy  

!Gsolvo (X) = !Gsolv

o, polar (X)+!Gsolvo, non-polar (X)

= !Gsolvo, polar (X)+ !Gsolv

o, exp (X)!!Gsolvo, polar (X)( )

Error  in  data      <  3  kcal/mol    

Hydrophic  effect  

Error  in  fit      <  3  kcal/mol    

X(gas)! X(aq)

X(gas)+ (H2O)n (liq)! X(H2O)n (aq)

Explicit  SolvaRon  

Page 11: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

11  

X(gas)+ (H2O)n (liq)! X(H2O)n (aq)

X(gas)+ nH2O(liq)! X(H2O)n (aq)

DOI  10.1021/jp802665d  

Solva'on  energy  

Page 12: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

PM3:  128  cm-­‐1  (harmonic)  

Harmonic  

1-­‐D  VSCF  (internal  coords)  

Anharmonic  Effects  

Page 13: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

! 0 = 100 cm"1

Stefan  Grimme    DOI:10.1002/chem.201200497  

Anharmonic  Effects  

Page 14: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

14  

DFT-­‐D3/  QZVP  

PM6-­‐D3H  (DFTB2-­‐D3H)   COSMO-­‐RS  

Grimme:  DOI  10.1002/chem.201200497  

Anharmonic  Effects  

Page 15: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

How  bad  is  the  harmonic  approximaRon?  

DOI:  10.1021/jp5037537      

Anharmonic  Effects  

Scaled  frequencies  

Page 16: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

16  

Anharmonic  Effects  

CH4  –  zeolite  binding  1D  (un-­‐coupled)  anharmonic      

parRRon  funcRons  

DOI  10.1021/ct500291x  

Page 17: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

17  

Possible  sources  of  error  

Imaginary  frequencies  

 Anharmonic    

effects  

Ions    

Explicit  solvaRon  

ConformaRonal  sampling  

 Changing    

protonaRon  state    

Explicit  ions  

Page 18: Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods

Department  of  Chemistry  

18  

Protein-­‐Ligand  Binding  QM/MM  or  linear  scaling?  

HF-­‐3c  PM6-­‐D3H+  DFTB2/3  

 Low  frequencies  for  constrained  opRmizaRons  

COSMO-­‐RS  for  proteins  

 CaviRes  

Explicit  H2O  

ConformaRonal  sampling  (PELE)