prapaiwan sunwong - acceleratoraccelerator.slri.or.th/seminar/documents/atd_slri_140709.pdf · •...

45
Prapaiwan Sunwong

Upload: others

Post on 20-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Prapaiwan Sunwong

Page 2: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

• General background – characteristics of superconductor

• Material selection and cable structure

• Multipole magnets

• Generation of multipole fields

• Magnet function and coil structure

• Insertion devices

• General design requirements

• Superconducting magnet at SPS

• Concluding remarks

Talk OutlineTalk Outline

Page 3: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

IntroductionIntroduction

High bending field is required for

High energy

Compact machine

http://home.web.cern.ch

LHC

[ ]ρBE 3.0=

Page 4: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Superconducting CharacteristicsSuperconducting Characteristics

1. Zero resistanceDiscovered by Onnes in 1911– solid mercury exhibitsvanishing resistance below 4.2 K.

2. Meissner effectExclusion of magnetic flux fromits interior – discovered in 1933by Meissner and Ochsenfeld.

Page 5: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Critical TemperatureCritical Temperature

YBCO

www.ccas-web.org/superconductivity/

Page 6: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Critical Magnetic FieldsCritical Magnetic Fields

Type I

Type II

Nb3Al

Keys, 2002

Page 7: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Critical Current DensityCritical Current Density

Keys, 2002

Nb3Al

Page 8: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Critical Surface Phase DiagramCritical Surface Phase Diagram

Page 9: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Applications of SuperconductivityApplications of Superconductivity

• Superconducting electromagnets (low Tc)

• Medical uses – MRI scanners

• Scientific research – NMR

• Transportations – MAGLEV trains

• Fusion tokamak – ITER

• Particle accelerators

• Josephson junction devices – SQUID

• Low-loss power cables (high Tc)

• Magnet current leads (high Tc)

• Electric motors, generators, fault current limiters

Page 10: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Why Superconducting Magnets?Why Superconducting Magnets?

Type Advantages DisadvantagesPermanent • Compact

• Low cost ( in small low field magnets)• No utilities required• No maintenance• Simple to operate• Can result in very precise fields

• Constant field (mostly)• Limited in field

Resistive • Variable field• No need for complicated cryogenic or vacuum systems• Can be built in house or through existing industrial base• Relatively low capital cost

• Limited in field (up to ~ 2 T)• May require large amounts of electrical power and cooling water• Possible large operating costs for power & water

Superconducting • High and variable field• Lower operating costs• Reliability• Cold beam tubes yield very high vacuums• Can be made compact

• High capital costs• Limited industrial base• Requires complicated ancillary systems – cryogenics, vacuum, quench protection

Page 11: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

www.magnet.fsu.edu

Material SelectionMaterial Selection

Page 12: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

• Alloy of niobium and titanium extremely ductility

• Tc ≈ 9 K, Bc2 ≈ 15 T (vary with composition, 46.5% Ti optimum)

• Ic is influenced by microstructure (flux pinning)

• Copper stabiliser (RRR ≥ 100)

- mechanical stability

- electrical bypass

- heat sink

• Multifilamentary wire

• Typical filament diameter 5 – 50 μm

• Typical wire diameter 0.3 – 1.0 mm

• Twisted filament/wire reduce coupling between filaments

for ac field or during field sweep

NbTi WiresNbTi Wires

ATLAS strand

LHC MQY duadrupole strand

LHC dipole strand

Page 13: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

RutherfordRutherford--type Cablestype Cables

Filaments(6 μm each)

Wire/strand(6,300 filaments)

Rutherford cable (36 strands)

http://lhc-machine-outreach.web.cern.ch

• Transposed cable: every wire changes places with every other wire along the length of the cable, to decouple the wires with respect to their own self field and promote a uniform current distribution.

• Rutherford-type cables can be compacted to a high density (88 – 94 %) and rolled to a good dimensional accuracy.

Page 14: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Rutherford Cables ManufactureRutherford Cables Manufacture

Martin Wilson’s lecture

Page 15: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Multipole MagnetsMultipole Magnets

Dipole

Quadrupole

Resistive magnets Superconducting magnets

Page 16: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Generation of Multipole FieldsGeneration of Multipole Fields

)cos()( 0 φφ mII = , m = order of multipole

)sin(2

),(

)cos(2

),(

100

100

θμθ

θμθθ

mar

aIrB

mar

aIrB

m

r

m

⎟⎠⎞

⎜⎝⎛−=

⎟⎠⎞

⎜⎝⎛−=

PR

θr

x

y

beam axis

φa

current in z direction

In superconducting magnet, field shape is defined by position of each conductor (that carries current) in the coil.

Current distribution

Magnetic field

θBrB

B

θr

x

y

Page 17: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Current distribution can be created by multiple intersecting circles/ellipses carrying constant current densities (J) in differentdirections.

The field inside the current free region is computed by superimposing the field produced by the conductors.

Circular conductor:

Elliptical conductor:

⇒ Difficult to fabricate⇒ Use of current shells for practical constant-CSA conductors

Generation of Multipole FieldsGeneration of Multipole Fields

)cos()( 0 φφ mII =

21

20

21

10 ,

aaxaJB

aayaJB yx +

=+

−= μμ

2 ,

2 00xJByJB yx μμ =−=

+J-J

y

x

1a2a

Page 18: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Magnet Function and Coil StructureMagnet Function and Coil Structure

Dipole • m = 1

• Uniform field for bending

• Intersecting (overlapping) circles

• Intersecting (overlapping) ellipses 2

0JdBB yμ

−==

21

20 aa

daJBB y +−== μ

B

Page 19: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Quadrupole• m = 2

• Intersecting ellipses

• Gradient field for focusing

Magnet Function and Coil StructureMagnet Function and Coil Structure

xaa

aaJB

yaa

aaJB

y

x

21

210

21

210

)(

)(

+−

=

+−

=

μ

μ

y

a1

a2

Sextupole• m = 3

• Intersecting ellipses

• For chromaticity correction

( ) ...

...222 +−=

+=

yxSB

SxyB

y

x

Page 20: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Liu, 2011

Some novel designs (for pure multipole fields)

Sextupole Octupole

Magnet Function and Coil StructureMagnet Function and Coil Structure

Page 21: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Major ProjectsMajor Projects

USPAS Course on Superconducting Accelerator Magnets, 2003

Page 22: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

TevatronTevatron

Bottura, 2011

Page 23: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Major ProjectsMajor Projects

USPAS Course on Superconducting Accelerator Magnets, 2003

Page 24: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

LHCLHC

Bottura, 2011

Page 25: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

LHC TwinLHC Twin--aperture Dipoleaperture Dipole

cds.cern.ch

Page 26: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Insertion DevicesInsertion Devices

Undulator

K ≤ 1, θ ≤ 1/γ

- many alternating low-field magnetic poles- strong interference effects to increase photon flux

Wiggler

K > 1, θ > 1/ γ

Multipole wiggler- several periods to increase photon flux- less important interference effects

Wavelength shifter- one period with high field center pole (usually 5-6 T)- very short-wavelength radiation

http://pd.chem.ucl.ac.uk/pdnn/inst2/insert.htm

2c E

BK

u

u

λλ

λ

∝Parameter

Critical wavelength

Page 27: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Helical undulator Planar undulator

Superconducting helical undulator for ILC (bifilar helix design)

UndulatorUndulator

YuryIvanyushenkov, ASD Seminar, 2013

Argonne National Laboratory’s planar superconductor undulator

Page 28: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Period length switching for hybrid superconducting undulator/wiggler

UndulatorUndulator

Grau, 2010

BK uλ∝

Page 29: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

The iron yoke and poles of a CESR superconducting wiggler magnet for ILC

Multipole wigglerMultipole wiggler

Superconducting wiggler at NSLS

Superconducting wiggler at DLS

Page 30: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Wavelength ShifterWavelength Shifter

Prototype SWLS at NIRS

Total power distribution of SWLSat SPS (1.2 GeV, 200 mA)

Page 31: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

YuryIvanyushenkov, ASD Seminar, 2013

Country Organization ActivityTaiwan TLS, TPS SC wigglers, R&D on SCUs

Russia Budker Institute SC helical undulator for HEP;SC wavelength shifters;SC wiggler

France ACO, Orsay SCU

Germany ANKA SCU for Mainz Microtron, R&D on SCUs

ACCEL Two SCUs (for ANKA and for SSLS/NUS, Singapore)

Babcock Noell New SCU for ANKA

UK ASTeC, RAL and DL Helical SCU for ILC

Sweden MAX-Lab SC wiggler

USA Stanford Helical SCU for FEL demonstration

BNL R&D on SCUs

LBNL R&D on SCUs

Cornell SC wiggler

NHFML R&D on SCUs

APS R&D on SCUs

Work on superconducting insertion devices around the world

Page 32: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

General Design RequirementsGeneral Design Requirements

• Keep it superconductive with a comfortable margin

• Magnet training

- well protected (when quench)

• Reduce heat load

- minimise contact resistance

- vapour-cooled/hybrid current leads

• Good cryogenic system to handle all heating

• Good support structure to handle large Lorentz force

• Cheap and easy to manufacture

• Field quality (uniformity) – relative field error better than 10-4 is required.

• Not degraded by exposure to the high radiation levels

• Well cooling of the chamber and active interlock system

Page 33: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Iron YokeIron Yoke

heat exchanger

bus-bar

saturation control

Wilson’s and Bottura’s lectures

Page 34: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

CryostatCryostat

Wilson’s and Bottura’s lectures

Radiative heat transfer ∝ T4

Page 35: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Thermal PropertiesThermal Properties

Ekin, 2007

Page 36: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Quench and ProtectionQuench and Protection

Quench = conversion of magnet energy (LI2/2) into heat inside the volume of

magnet winding which has transited into the resistive state

E = 7.8 × 106 J for LHC dipole magnet

equivalent to the kinetic energy of 26-tonnes magnet

travelling at 88 km/hr

Cause of quenching

• Low specific heat

• Conductor motion (10μm motion of

NbTi

raise local temperature to 7.5 K)

• Resin cracks

• Jc decreases with increasing temperature

Wilson’s lecture

Page 37: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Quench and ProtectionQuench and Protection

3D simulation of quench propagation for a cos theta type magnet

http://research.kek.jp/people/wake/magqt/

Page 38: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Quench and ProtectionQuench and Protection

LHC dipole GSI001

Wilson’s lecture

Safe hot spot temperature = 100 – 150 (300) K

Page 39: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Quench and ProtectionQuench and Protection

ten Kate 2013

1. Normal zone detected 2. Switch opened3. Heater activated

Bypass diodes for magnets connected in series

Page 40: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Training of Superconducting MagnetsTraining of Superconducting Magnets

Several thermal and electrical cycles need to be applied to a new coil before

the optimal performances are obtained.

Wilson’s lecture

LHC short prototype dipoles

Page 41: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Superconducting Magnet at SPSSuperconducting Magnet at SPS

6.5 T Superconducting Wavelength Shifter (from NSRRC, Taiwan)

• Current operating field = 4.0 T at 170 A (maximum field = 6.5 T at 308 A )

• Critical current of NbTi is 428 A at ∽8 T inside the coils.

• Helium consumption = 1.4 L/hr (published value = 1.3 L/hr)

• Hard x-rays radiation used in

macromolecular crystallography

- energy range = 12.7 keV

- flux = 109 photons/s at 100 mA

www.slri.or.th

Page 42: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

www.slri.or.th

6.56.5 T Superconducting Wavelength ShifterT Superconducting Wavelength Shifter

Liquid nitrogen

Liquid helium

Page 43: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Cryogenic SystemCryogenic System

www.slri.or.th

Production capacity : 20 L/hr

Page 44: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

• From MAX-Lab, Sweden

• Maximum field = 6.4 T at 250 A

• No liquid nitrogen screening

• 10 out of 1482 windings in side pole

were burnt off and replaced by Cu sheet.

• Helium consumption < 5 L/hr (???)

6.46.4 T Superconducting Wavelength ShifterT Superconducting Wavelength Shifter

Wallen, 2002

Page 45: Prapaiwan Sunwong - Acceleratoraccelerator.slri.or.th/seminar/documents/ATD_SLRI_140709.pdf · • Transportations – MAGLEV trains • Fusion tokamak – ITER • Particle accelerators

Concluding RemarksConcluding Remarks

• Magnet is the most important application of superconductivity.

• Superconducting magnets provide high magnetic fields, which are required for

high-energy and/or compact accelerators. NbTi has been used the most.

• Magnetic field profiles from superconducting magnets are determined by position

of superconducting coils, which can be obtained at high accuracy.

• Advantages of superconducting insertion devices:

- High field increases photon energies

- High flexibility

- Smaller period for the same peak field

- New research possibilities