phytoremediation of heavy metal contaminated...

51
Phytoremediation of heavy metal contaminated sites: a focus on field experiments in a heavy metal contaminated region in Belgium (‘Noord-Limburg’) Ann Ruttens and Jaco Vangronsveld (Hasselt University) Veerle Grispen and Jos Verkleij (Vrije Universiteit Amsterdam) Ludo Diels (VITO)

Upload: others

Post on 25-Oct-2019

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Phytoremediation of heavy metal contaminated sites:

a focus on field experiments in a heavy metal contaminated region in Belgium

(‘Noord-Limburg’)

Ann Ruttens and Jaco Vangronsveld (Hasselt University)

Veerle Grispen and Jos Verkleij (Vrije Universiteit Amsterdam)

Ludo Diels (VITO)

Page 2: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Content

1. Non ferro industry in the ’ Noorderkempen’ (Belgium)

2. Remediation options for soils contaminated with heavy metals

3. Phytoremediation of heavy metal contaminated soils3.1 Phytoextraction3.2 Phytostabilisation

4. Conclusions

Page 3: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

1. Non ferro industry in ‘Noord-Limburg’

• since the end of 19th centuryzinc smeltershave been active:-Lommel -Overpelt-Balen-(Budel-NL)

• -poor sandy soils(limited agricultural productivity)• -poor sandy soils(limited agricultural productivity)=>open area + need for economic activities

-presence of several channels=> easy transport of ores and products

•result of the activities: widespread soil contamination with metals(Zn, Cd, Pb)

=>related to the production technology=>diffuse contamination + point sources=>area: by estimation >280 km2 !!!

Page 4: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

0

100

200

300

400

500

600

700

Cd

prod

uctio

n (t

on/y

ear)

050100150200250300350400

Cd

emis

sion

(kg

/day

)

1950 1970 1989

•Historic soil contamination: illustration

0 0

Cd production 250 300 600

Cd emssion 340 200 0.35

1950 1970 1989

⇒emissions became lower and lower in the course of time:first because of shift from pyrometallurgic to electrolytic process technology, later due to improved filter systems

Source: Staessen et al., 1995

Page 5: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

2. Remediation options for soils contaminated with heavy metals

Engeneering approaches:

-Metal removal:-excavation and landfilling-excavation and soil washing techniques-excavation and soil washing techniques

-Metal stabilization:-vitrification (heat 1600-200°C)-physical caps-addition of stabilizing materials (e.g cement)

Page 6: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Disadvantages engeneering approaches:

-clean soil for replacement?-destruction of soil ‘quality’-high cost (280 km2 !)

Technique Cost per ha

Excavate + landfill 1 620 000 €

=>contaminated area in ‘Noord-Limburg’ too large to be treated with engeneering techniques (= 45 360 000 000 € ,

excavate and landfill)=> alternative option? PHYTOREMEDIATION?

Excavate + soil washing 790 000 €

Page 7: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Remediation: cost per hectare*Remediation: cost per hectare*

10 000 €IMMOBILIZATION+

PHYTOSTABILIZATION

*Cunningham & Berti (1999)

1 600 000 €

0 20 40 60

EXCAVATION+LANDFILLING

EXCAVATION+SOIL WASHING

775 000 €

Page 8: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

1. Non ferro industry in ‘Noord-Limburg’ (Belgium)

2. Remediation options for soils contaminated with heavy metals

Content

metals

3. Phytoremediation of heavy metal contaminated soils3.1 Phytoextraction3.2 Phytostabilization

4. Conclusions

Page 9: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

3. Phytoremediation of metal contaminated soils

• Phytoremediation of contaminated soils= the use of plants to reduce the negative impact of a contaminated site, or for soil clean up

• In case of metal contamined soils:

– PHYTOEXTRACTION:extraction of metals from the soil using metal accumulating plants (clean-up)

– PHYTOSTABILIZATION: in situ metal inactivation by means of revegetation often in combination with metal-immobilizing and/or fertilizing soil amendments (immobilization/inactivation)

Page 10: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

3.1 PHYTOEXTRACTION

MAIN AIM OF THE STRATEGY

(adapted from Cuningham et al., 1995)

-removal of contaminants from the soil by plants-root uptake and repeated harvesting (contaminant preferably to be translocated and concentrated in above-ground biomass)

Page 11: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

DESIRABLE CHARACTERISTICS IN AN EFFECTIVE PHYTOEXTRACTION SPECIES

• High metal accumulationin easily harvested plant parts

• Tolerance to elevated soil metal levels that may be coupled with low macronutrient and soil organic matter content

• Potential ‘use’ of the biomass:• Potential ‘use’ of the biomass:-originally: hyperaccumulators

=> no further use of biomass, metal recuperation? dumping?=> long clean up time due to low biomass

-more and more: high biomass producing specieswith moderate metal content but with harvestable product/economic value!possibilities: -woody plants (eg willow) => ‘green energy’

-oil producing plants (eg rapeseed) => motor-oil

Page 12: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

TARGET AREA’S

– Agricultural soils

– Abandoned agricultural land

– Kitchen gardens

Metal concentrations in crops often above consumption limits!

=> solution needed for the area!

Page 13: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

=>alternative land use scenario’s

(non food crops delivering some

economic benefits)

=>combined with soil clean up?

PHYTOEXTRACTION APPROACH LOOKS ATTRACTIVE

=>system of sustainable land management=>long clean up timesnot really problematic=>combined with soil clean up?

Page 14: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

FIELD IN BALEN

-500 m from UMICORE in Balen-former maize field-sandy soil-pH-KCL 5.5 ±0.1-metal content (aqua regia):cfr.table

mg/kg DS Zn Cd Cu Pb

field 223± 17

5.0± 0.3

32± 3

198± 17

Clean up value(type II) 600 2.0 200 200

Page 15: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

TobaccoSunflowerRapeseedMaize

PLANT SPECIES TESTED

=> performance of different species in ‘Noord-Limburg’ conditions?=>’best species’ and ’best’ cultivars of a species? (highest metal removal)=> economic aspects and potential ‘use’ of biomass

Page 16: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Maize

*2 cultivars*growth and biomass production OK (18 ton/ha)*metal concentrations in plant (‘best cultivar’):

mg/kg DW Zn Cu Cd Pb

maize plant 339 16.1 2.7 21.4maize plant 339 16.1 2.7 21.4

limit value

(KB 21/4/’99)

/ / 1.1 45.5

Soil depth

of 25 cm

Cd removal

g/ha/j

reduction Cd conc. mg/kg /j

‘clean up’ time (5=>2)

actual biomass 48.6 0.016 185 y

Page 17: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Rapeseed (winter)

*10 varieties*growth and biomass production OK (8.3 t/ha) *metal concentrations ‘beste’ cv:

mg/kg DW Zn Cu Cd Pb

600 / 5.05 /

Soil depth

of 25 cm

Cd removal

g/ha/j

reduction Cd conc. mg/kg /j

‘clean up’ time (5=>2)

actual biomass 42 0.014 215

600 / 5.05 /

Page 18: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Screening 15 commercial varieties (Rolf HERZIG)

Sunflower

San Luca: good biomass production (12.6 ton/ha; 6 plants/m2)Other varieties: small or even absent=>nutrients?=>sowing data?=>pH?=>metal toxicity? YES!

Page 19: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Soil depth

of 25 cm

Cd removal

g/ha/j

reduction Cd conc. mg/kg /j

‘clean up’ time (5=>2)

*metal concentrations in sunflower (‘best cv’)

mg/kg DW Zn Cu Cd Pb

plant 657 / 6.75 /

*summary sunflower:

of 25 cm g/ha/j conc. mg/kg /j time (5=>2)

actual biomass 85 0.028 106 y

-sunflowers seem more metal sensitieve than maize and rapeseed-metal toxicity (Zn) can reduce phytoextraction succes of sunflower(pH!=>liming) !

Remark:

Page 20: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Tobacco

*Fop (Forchheim Pereg) (4.3 ton/ha ):

=> NF Cu 7-15 ; NF Cu 10-2Bag (Badisher Geudertheimer)

=> NB Cu 10-8; NB Cu 10-4 (8.4 ton/ha)

*growth and biomass OK ?(except. Bag)*metal concentrations in ‘best’ variants:mg/kg DW Zn Cu Cd Pb

Fop 525 24.6 21.0 49.9

NB CU 10-8 339 17.3 10.4 33.9

Soil depth

of 25 cm (Fop/NB)

Cd removal

g/ha/j

reduction Cd conc. mg/kg /j

‘clean up’ time (5=>2)

actual biomass 90 / 88 0.030/0.029 101 / 103

Page 21: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Comparison of different species (best results)

Maize Rapeseed(winter)

Sunflower Tobacco

N°of cultivars 2 10 15 2(+4)

Range Cdmg/kg DS

2.2-2.7 3.9-8.3 5.9-12.9 9.2-22.2

Cd conc.‘Best’ extractor

2.7 5.05 6.75 15.96‘Best’ extractor

Biomass*kg/ha

18t/ha/j(14pl/m2)

8.3 t/ha/j(4pl/m2)

12.6 t/ha/j(6 pl/m2)

8.4 t/ha/j(4 pl/m2)

Cd removal 48.6g/ha/j 42 g/ha/j 85 g/ha/j 90 g/ha/j

Clean up time(5ppm=>2ppm)

185 y 215 y 106 years 101 years

*Remark: biomass production can influence metal removal strongly

Page 22: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

How to improve efficiency of phytoextraction?

Conclusion phytoextraction

• tobacco most promising in terms of metal removal, but ‘economics?• for all crops: clean up time = long

=> Realistic??? Yes, for low to moderate contaminations and if...(other aspects to be involved)

• Genetic transformation of high biomass producing plants

• Increase mobility/plant availability of metals in soils, using (1) metal chelating agents (f.i. EDTA), (2) adjusting pH of soils (3) siderophore producing rhizosphere bacteria

• Increase metal accumulation and translocation capacity in plants: metal accumulating endophytic bacteria

Page 23: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

1. Non ferro industry in ‘Noord-Limburg’ (Belgium)

2. Remediation options for soils contaminated with heavy metals

Content

metals

3. Phytoremediation of heavy metal contaminated soils3.1 Phytoextraction3.2 Phytostabilization

4. Conclusions

Page 24: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

3.2 PHYTOSTABILIZATION

TARGET AREA’S

large bare surfaces, caused by smelting activities (aerial deposition of acids and metals from zinc smelters)metals from zinc smelters)

Page 25: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

HEALTH RISKSHEALTH RISKS

contamination surroundings

metalconc. on vegetables ↑↑↑↑

metalconc. in vegetables ↑↑↑↑

METALCONC in BLOOD ↑↑↑↑

METALCONC in BLOOD ↑↑↑↑

winderosion

contamination surroundingse.g. kitchen gardens

inhalation

METALCONC in BLOOD ↑↑↑↑

rainfall

metals are solubilized ingastro intestinal tract

pica behaviour

Metal leachingsoilgroundwater

runoff

Page 26: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

IMMOBILIZATION + PHYTOSTABILIZATIONIMMOBILIZATION + PHYTOSTABILIZATION

PHYTOTOXICITY

‘GREEN’ AREA

sorption precipitation

BARE AREA

REDUCED PHYTOTOXICITY

Addition of metal immobilizing

soil amendment

BIOAVAILABLE FRACTION BIOAVAILABLE FRACTION

soil soil

= HIGH =LOW

Page 27: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Contamination surroundings

metaalconc. in vegetables ↑↑↑↑

Solubilization of

metaalconc. on vegetables ↑↑↑↑

⇒⇒⇒⇒ METALCONC in BLOOD ↑↑↑↑

⇒⇒⇒⇒ METALCONC in BLOOD ↑↑↑↑

IMMOBILIZATION + PHYTOSTABILIZATIONIMMOBILIZATION + PHYTOSTABILIZATION

groundwater

winderosion

Contamination surroundingse.g. kitchen gardens

inhalation

⇒⇒⇒⇒ METALCONC in BLOOD ↑↑↑↑

rainfall

soil

Solubilization of metalspecies in gastro-

intestinal tract

Pica gedrag

Metal leaching

runoff ↑↑↑↑

Page 28: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

MAIN AIMS OF STRATEGY

• !! is not a technology for real clean-up of contaminated soil but for stabilizing (inactivating) trace elements that are potentially toxic

• restoring plant cover and installation of a functioning • restoring plant cover and installation of a functioning ecosystem

• inhibition of lateral wind erosion, and reduction of trace element transfer to surface- and groundwater

• attenuation of the impact on site and to adjacent ecosystems

Page 29: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

PHYTOSTABILIZATION AT LOMMEL-MAATHEIDE (BELGIUM)

• Old pyrometallurgical zinc smelter site (1904-1974) -bare area

• Poor, acid, sandy soilZn: 2800-20000 mg/kgPb: 700-2000 mg/kgCd: 10-70 mg/kgCu: 400-2000 mg/kg

• Based on laboratory testsamendement selected: cyclonic ashes from Beringen:

Page 30: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Lommel-Maatheide 1990

Page 31: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Lommel-Maatheide 1990-2003

1990, 2 weeks after sowing 1995

2003

Page 32: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Cyclonic ashes (from Beringen)origin and production

• cyclonic ashes originate from the fluidized bed burning of coal refuse

• minerals present in the schists are: quartz, illite, kaolinite, chlorite, calcite (CaCO3), dolomite ((Ca,Mg)CO3), 3 3

anhydrite (CaSO4), siderite (FeCO3) and pyrite (FeS2); illite is the most dominant clay present

• the schists are burned by heating in an electronically guided fluidized bed oven at ca. 800°C

Page 33: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Cyclonic ashes (from Beringen) :some physico-chemical characteristics

• The pH of the product is strongly alcaline (± 11). The high pH can be explained by the presence of MgO and CaO which are formed during the heating of CaCO3 and (Ca,Mg)CO3 minerals present in the schists. The oxides form hydroxides (Ca(OH)2 and Mg(OH)2) when they come form hydroxides (Ca(OH)2 and Mg(OH)2) when they come in contact with water.

• A mean specific surface of ± 20 m2 g-1 was measured.

• The cation exchange capacity was found to be about 20 meq/100 g

Page 34: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Cyclonic ashes (from Beringen) :working mechanism

• increased adsorption on binding sites of the original soil components freed due to a ‘liming effect’ (presence of (Ca(OH)2 and Mg(OH)2))

• precipitation reactions due to increased soil pH• precipitation reactions due to increased soil pH

• adsorption reactions on the surface of the modified clay

• coprecipitation of metals with Al, Fe and Mn oxides (hypothetic)

• possibly also formation of metal silicates

Page 35: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Laboratory tests before start of a field experiment

• Evaluation of one or several soil amendments:Short term evaluations:-physico chemicaltest (soil parameters, selective or sequential extractions)-biologicaltests (bacteria, plants, invertebrates):

=>elimination of toxicty ? =>side-effects?=>side-effects?

Long term evaluations:simulation experiment(results will be complemented with long term evaluation of the field)

• Selection of a seed mixture

Page 36: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

• selective or sequential extractions (Tessier)

a)

80%

100%

Residual

b)

80%

100%

Residual

• soil pH and conductivity

Illustration of laboratory evalutions: short term

0%

20%

40%

60%

CO

CA

SG

SC

CA

+S

G

BE

CA

+B

E

% C

d

Organic

Reducible

Carbonate

Exchangeable

0%

20%

40%

60%

CO

CA

SG

SC

CA

+S

G

BE

CA

+B

E

% Z

n

Organic

Reducible

Carbonate

Exchangeable

conclusion: CA reduces exchangeable metal fraction in favour of carbonate bound and residual fraction

Page 37: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

30

40

50

60

70

80

90B

iolu

min

esce

nce

indu

ctio

n (S

/N)

CO

CA

SG

SC

CA + SG

• bacterial availability test (BIOMET)

Correlation with chemical:

0

10

20

30

0 20 40 60 80 100% MH

Bio

lum

ines

cenc

e in

duct

ion

(S/N

)

BE

CA + BE y = 0.51x + 16.10R2 = 0.97

0

50

100

150

200

250

300

0 100 200 300 400 500

Ca(NO3)2 extractable Zn (mg/ kg)

BIO

ME

T (

Zn

eq in

mg/

kg)

Conclusion: CA reduces bacterial Zn availability almost to control leveleven in 100%MH soil

Page 38: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

• toxicity test with plants

growth response stress-enzyme (GPOD)

Oppervlakte blad boon tijd 1

15

20

25

30

oppe

rvla

kte

(cm

²)

CO

CA 5 %

SG 1 %

SC 1 %

CA 5 % + SG 1 %

BE 5 %

GPOD blad boon tijd 1

20000

30000

40000

50000

60000

mU

/ g v

ers

CO

CA 5 %

SG 1 %

SC 1 %

CA 5 % + SG 1 %

Conclusion: CA eliminates/reduces phytotoxicity in MH soilRemark: BE results�Ca-nitrate extractions

0

5

10

0 10 20 30 40 50 60 70 80 90 100 110

% MH

oppe

rvla

kte

(cm

²)

BE 5 %

CA 5 % + BE 5 %

0

10000

20000

0 10 20 30 40 50 60 70 80 90 100 110

% MH

BE 5 %

CA 5 % + BE 5 %

Page 39: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

• toxicity test with invertebrates (earthworm Eisenia fetida)

-40

-20

0

20

40

0 20 40 60 80 100

% w

eigh

t los

s

CO

CA

SG

-120

-100

-80

-60

% MH

% w

eigh

t los

s

SC

CA + SG

BE

CA + BE

Conclusion: no significant weight loss of Eisenia fetida after treatment of MH soil with CA

Page 40: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Illustration of laboratory evaluation: long term simulation

•columns (Ǿ25 cm), filled with 1m soil

•simulation of rainfall (destilled water)(annual rainfal of 600mm,

simulated in 1 week)simulated in 1 week)

•follow up of metal leaching and soil parameters (pH, exchangeable metals)

Page 41: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

CA-B (5%)Bodem Lommel

Zn tot= 730; Cd tot =8 ppm; pH = 6.5

Lime (2%)Bodem Budel

Zn tot = 170; Cd tot = 2.3, pH = 4.1

Zink

0

50

100

150

200

250

T1 T3 T6 T10 T15 T20 T30

Time

Zn in Ca-nitraat

(mg/kg DS)

ONB

CA-B

Cadmium

Zink

0

50

100

150

200

250

T1 T3 T6 T10 T15 T20 T30

Time

Zn in Ca-nitraat

(mg/kg DS)

ONB

kalk

Cadmium

Conclusion:-with CA-B exchangebale soil metal content stays at a constant low level =>Increase of the difference with untreated soil

- -with lime: exchangeable soil metal content increases with time=> decrease of the difference with UNT

Cadmium

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T1 T3 T6 T10 T15 T20 T30

Time

Cd in Ca-nitraat

(mg/kg DS)

ONB

CA-B

Cadmium

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T1 T3 T6 T10 T15 T20 T30

Time

Cd in Ca-nitraat

(mg/kg DS)

ONB

kalk

Page 42: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Conclusion laboratory tests:

CA are able to consistently reduce metal mobility and toxicity in MAATHEIDE soil;

long term effect expected

Field-experiment

Page 43: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Lommel-Maatheide 1990-2003

1990, 2 weeks after sowing 1995

2003

Page 44: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

FOLLOW-UP EVALUATIONS

• physico-chemical: general soil parameters, selective or sequential extractions, pore water...

• biological:bacteria, plants, invertebratesinvertebrates– toxicity and availability

tests– biodiversity in the field

(plants, mycorrhizas, nematodes)

Page 45: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Total zinc concentration (mg/kg dry soil), water-extractable zinc(mg/kg dry soil) and ratio water-extractable zinc on total zinc concentration at different moments after the treatment

Zn tot ZnH20 Ratio tot/H20

5 year

13 year

Page 46: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

OVERPELT 1997-2003:amendment tested ‘compost+beringite’

1997 1998, 2 months after sowing1997

1999

1998, 2 months after sowing

2002

Page 47: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

EFFECT OF SOIL ADDITIVES ON METAL PERCOLATION

Leaching of Zn

2000

4000

6000

8000

10000

12000

Cum

ulat

ive

amou

nt o

f Zn

leac

hed

(mg) UNT

C

C+CA

C+CA+SS

a

b

Leaching of Cd

50

100

150

200

250

Cum

ulat

ive

amou

nt o

f C

d le

ache

d (m

g) UNT

C

C+CA

C+CA+SS

a

b

0

2000

0 25 50 75 100 125 150

Cumulative amount of water leached (liter)

Cum

ulat

ive

amou

nt o

f Zn

b

cd

⇒Reduction of Zn and Cd leaching after all treatments

0

50

0 25 50 75 100 125 150

Cumulative amount of water leached (liter)

Cum

ulat

ive

amou

nt o

f C

d le

ache

d (m

g)

C+CA+SSb

cd

Page 48: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Leaching of Cu

0204060

80100120140

0 25 50 75 100 125 150

Cumulative amount of water leached (liter)

Cum

ulat

ive

amou

nt o

f C

u le

ache

d (m

g) UNT

C

C+CA

C+CA+SS

a

b

cc

Leaching of Pb

0

50

100

150

200

0 25 50 75 100 125 150

Cumulative amount of water leached (liter)

Cum

ulat

ive

amou

nt o

f P

b le

ache

d (m

g) UNT

C

C+CA

C+CA+SS

a

b c

c

⇒increase of Cu and Pb leaching after compost addition!⇒partly compensated by combination with CA⇒completely compensated by combination with CA+SS

Page 49: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Cyclonic ashes from Beringen not available anymore:search for alternative cyclonic ashes:

Methodolgy:

•Analysis of the product itself (pH, conductivity, metal content,...)

•Short termevaluations on treated soils:•Short termevaluations on treated soils:-physico-chemical tests (extractions)-biological tests (organisms of different trophic levels)

(=>evaluate reduction in toxicity, possible-side effects)

•Long termevaluations on treated soils:-simulation experiments+effect on metal leaching-field validation+follow up (physical+biological)

Page 50: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

4. General conclusions

• In case studies on field scale phytostabilization has been shown to be succesful

• Phyto-extraction will only be realistic when incorporated in a long-lasting system of sustainable agricultural/ sylvicultural use of contaminated soils (economical aspects!!)

• Plant-based strategies are promising, attractive and easily acceptable for the remediation of soils contaminated with heavy metals

Page 51: Phytoremediation of heavy metal contaminated sitesenfo.agt.bme.hu/drupal/sites/default/files/ARuttensPhytorem.pdf · Phytoremediation of heavy metal contaminated sites: a focus on

Acknowledgements

• OVAM (Public Waste Agency of the Flemish Region)

• EU project QLRT-2001-00429 (PHYTAC)EU project QLRT-2001-00429 (PHYTAC)

• European Fund for Regional Development