physique des plasmas radiofréquence - polytechnique · physique des plasmas radiofréquence pascal...

54
Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique [email protected]

Upload: vanthuy

Post on 14-Sep-2018

235 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Physique des plasmas radiofréquence

Pascal Chabert

LPP, Ecole Polytechnique

[email protected]

Page 2: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Planning

trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février: Modèle d’une décharge capacitive Lundi 13 Février: Décharges capacitives multifréquence

Page 3: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

En parallèle: travail personnel ou en binôme

Pour le 6 Février: Lecture des chapitres 2 & 3 Pour le 20 Février : Ecrire un modèle global d’une décharge inductive utilisée comme source d’ionisation d’un propulseur à grille

Page 4: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Propulseur à grille excité par une décharge inductive (ICP)

Ar

Ar+

e

Ar+

e Ar Ar+ e

Ar Ar+ e

Ar Ar

Ar Ar

Ar+

Ar

Ar Ar+

Ar

Ar Ar+

Ar+

Page 5: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

1. Temperature and density domains

2. Non equilibrium

3. Thermal equilibrium properties

4. Collisions and reactions

5. Sheaths, Debye length, Child law

Introduction to plasma discharges

Page 6: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Plasmas

• Plasma : ionized gas

– Fully (fusion energy program)

– partially, ionization degree:

• Three types of species :

– electrons

– Ions (positive and negative)

– neutrals (radicals or stables)

• Discharges : 54 10101 outypicallyxiz

ig

iiz

nn

nx

Page 7: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Plasma discharges

• Potential is maximum at the

plasma center:

– Electrons are confined

– Negative ions are confined

– Positive ions are accelerated

toward the walls

Ji

Je JN

• Positive ion flux : directed

• Electron flux : isotropic

• Neutral flux : isotropic

Plasma

n+ = ne+ n-

<V>

~

Positive space

charge: sheaths

0

Page 8: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Relative densities and energies

n (cm-3) n (cm-3)

Page 9: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Non Equilibrium

• Plasma is sustained by electrons which provide ionization

e + Ar → Ar+ + e + e

• Electrons are usually near thermal equilibrium and have a large

average energy: Te is typically 35 000 K

• Ions and neutrals (heavy) remain near room temperature: 300K

• However, in discharges, ions gain directed energy toward the

surfaces, i.e. they are not in thermal equilibrium

Page 10: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Distribution functions Thermal Equilibrium

Collisions, cross sections Mean free path, collision frequency

Rate coefficient

Page 11: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Thermal equilibrium properties (1)

see page 22

Page 12: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Thermal equilibrium properties (2)

see page 24

Page 13: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Thermal equilibrium properties (3)

see page 24-25

Page 14: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Averages over Maxwellian distributions (1)

see page 23-24

Page 15: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Averages over Maxwellian distributions (2)

Page 16: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Averages over Maxwellian distributions (3)

Page 17: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Averages over Maxwellian distributions (4)

Page 18: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Collisions, cross sections

Number of targets in V:

Proportion of scattered flux:

“area” of targets (cross section):

Page 19: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Mean free path, collision frequency

The flux decays exponentially:

The characteristic length is called the mean free path:

The collision frequency is :

The rate coefficient for the collision process is :

Page 20: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

In plasmas

The cross section is a function of the incident electron energy

Electrons have a velocity distribution. The collision frequency is

defined as follows:

Page 21: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Elastic Collisions

Page 22: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Inelastic Collisions, e.g. ionization

f ( )

( )

Eiz

Idealized cross section:

Integral over a Maxwellian yields:

Which may be further simplified :

Page 23: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Rate coefficients for reactions

e + Ar → Ar+ + e + e Kiz

Page 24: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

1. The central problem of discharge modelling

2. Fluid equations

3. Particle and energy balance

4. Electromagnetic properties – waves

5. Radiofrequency Reactors

Plasma Dynamics

Page 25: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Central problem of discharge modeling

• Electromagnetic fields generate forces on particles

• But, particle motion generates electromagnetic field!

To find self-consistent solution…

• Need to solve simultaneously plasma transport and Maxwell’s

equations

• Difficult problem; needs simplification

• Various level of simplification of plasma transport

• Go from EM fields to Voltage and Currents: circuit theory

Page 26: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Kinetic description

• Follow the motion of each particle in the field: impossible

• Define macro-particle and solve the motion of each of these

self-consistently with the fields : Particle-in Cell simulations

• Or, define a distribution function and follow the evolution using

Boltzmann or Vlasov equations: kinetic theory

All of these are complicated and simpler approaches are often possible

Page 27: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Fluid equations

Particle conservation equation

Momentum conservation equation

Page 28: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Global model: particle balance

Plasma (volume V)

Surrounded

by a surface A

Page 29: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Global model: energy balance

Plasma (volume V)

Surrounded

by a surface A

Page 30: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Electromagnetic properties

The plasma may be treated as a dielectric with the following

dielectric constant (page 47):

If one ignores displacement currents then the plasma conductivity is:

Page 31: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Dispersion relation of EM waves

The plasma is in

fact a conductor at

low frequency and

a dielectric at high

frequency

Page 32: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Skin depth

Dielectric at high frequency ( > pe) Conductor at low frequency ( < pe)

pi pe rf domain

MHz GHz

Waves are absorbed in a skin depth Propagating waves (microwave

diagnostics: interferometry, reflectometry

etc.)

Inertial (low pressure)

Page 33: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Capacitively-coupled plasma

~ rf

Inductively-coupled plasma

~ rf

~ rf

Typical etching reactors: CCP’s, ICP’s

• Electrons follow the rf field

• Ions follow time-averaged field pi pe

rf domain MHz GHz

13.56 MHz or higher?

Page 34: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Magnetic confinement

m

qBc

qB

mRL

v

Cyclotron frequency:

Larmor radius:

For typical conditions (B 50 Gauss):

• Non-magnetized ions: RL 10-20cm

• Magnetized electrons: RL 1-2 mm

Anisotropic dielectric constant

Page 35: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Waves in magnetized plasmas

see page 265

Page 36: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Helicon reactors

Water cooling

rf

13.56 MHz

Matching network

and source cooling

Helicon antenna

Wafer holder

Load lock and

cartridge transfer

Source

solenoid

400l/s

turbo

pump

150l/s

turbo

Ar, SF6

Chamber

solenoid

B0 Helicons generate high density

plasmas. Interesting for:

• Very deep etching

• Space plasma propulsion

Page 37: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

1. DC sheaths

2. Plasma/sheath transition

3. Plasma transport

4. Plasma flux leaving the plasma and

reaching the surfaces

Bounded Plasmas

Page 38: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Why sheaths?

• Without sheaths, currents at the wall are :

e

ee

m

TkneJ

20

M

TkneJ i

i2

0

• Since me << M and Te >> Ti :

– Je >> Ji loss of electrons

• The positive space charge builds up an E field

directed to the walls which confines electrons and

accelerate ions to the wall

Plasma

n+ = ne+ n-

<V>

~

Positive space

charge: sheaths

0

E

Page 39: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Debye length (1)

Negative potential

perturbation

Field or potential screening occurs

within the Debye length

Boltzmann electrons:

Page 40: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Debye length (2) Space charge density:

Poisson’s equation:

Page 41: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Child law sheath (1)

• At high voltage, no electrons in the sheath

• No ion-neutral collisions

• Positive ion current is limited

by the charge space

Plasma Ji

s

-V0

0

x

Page 42: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Child law sheath (2)

Page 43: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Child law sheath (3)

Integrate twice over x:

Plasma Ji

s

-V0

0

x

Page 44: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Sheath thickness

• Positive ion current produced by the plasma (described later in the course):

• Using current continuity and Child law,

we obtain the sheath thickness:

4

3

0

eDe Tk

Ves

M

Tkneh

s

V

M

q eel

i02

23

02

1

0 2

9

4

M

TknehJ e

eli 0

Plasma

V01 V02>V01

+

-

Ii

+

+

+

+ +

+

+

+

e- +

+

+

e- e-

Page 45: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Plasma/sheath transition

This velocity is called the Bohm velocity

and is noted us= u B

The flux at the wall may then be written:

Page 46: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Plasma transport

Electric force

Pressure force

Friction force

Forces must balance !

Page 47: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

ns

n0

Plasma transport

The transport of the plasma, and consequently the ratio hl that controls the plasma

flux at the boundary, depends upon the pressure regime:

- So-called Schottky or ambipolar diffusion at high pressure

- Godyak solution at intermediate pressure regime

Page 48: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Ambipolar diffusion (1) – Page 84

Page 49: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

Ambipolar diffusion (2) – Page 86

Page 50: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

• At low pressure the ion-neutral collision frequency, and consequently the ion mobility, becomes a function of the fluid velocity:

• This leads to the following edge-to-center density ratio:

Godyak’s solution for intermediate pressures – Page 87

Page 51: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

To summarize, at low and intermediate pressure…

Sheath

x xs

ns

n0

0

n

Plasma

d

Page 52: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

at high pressure…

Sheath

x xs

ns

n0

0

n

Plasma

Page 53: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

hl vs pressure

Page 54: Physique des plasmas radiofréquence - polytechnique · Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr

The issue of electronegative plasmas and neutral depletion

• In the previous theories, we considered only positive ions and electrons, ne=ni, and

we considered constant neutral density.

• However, processing gases are electronegative and the plasma may contains a

large amount of negative ions, ne+nn=ni

• Moreover, contemporary reactors have high plasma densities which may lead to

neutral depletion at the reactor center

• These issues are very important ! All transport theories must be revisited (some of

these issues will be treated later in this course)

• Later in this course, we will see the effect of electronegativity on the plasma

stability