overview of classical force fields and parameter optimization

72
Overview of Classical Force Fields and Parameter Optimization Strategy Part I - Overview of CHARMM FF and Parameter Optimization Part II - Introduction to Quantum Chemistry Calculations (SPARTAN) Application to parameterization of thioester Part III - Knowledge-based and Hybrid FF Application to protein structure prediction and folding studies Perth 2004

Upload: danglien

Post on 02-Jan-2017

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Overview of Classical Force Fields and Parameter Optimization

Overview of Classical Force Fields and Parameter Optimization Strategy

Part I - Overview of CHARMM FF and Parameter Optimization

Part II - Introduction to Quantum Chemistry Calculations (SPARTAN) Application to parameterization of thioester

Part III - Knowledge-based and Hybrid FF Application to protein structure prediction and folding studies

Perth 2004

Page 2: Overview of Classical Force Fields and Parameter Optimization

Classical Force Fields

Physics-based, full atom FF like CHARMM, AMBER,OPLS - Mechanisms, function, protein/RNA/DNA interactions…

• Knowledge-based, coarse-grained model - Protein structure prediction, folding kinetics, docking,…

• Hybrid force fields like Go + full atom FF - Mutational effects on protein folding kinetics,….

• Hybrid QM/MM approaches Enzyme reactions, bond breaking and making, excited states,…

Each problem has a different goal and time scale!

Page 3: Overview of Classical Force Fields and Parameter Optimization

General Considerations

• Description of molecules?• Optimization of force field parameters?• Training set of compounds/data?• Test set of compounds/data?• Limitations – questions you should not ask

of your force field

Page 4: Overview of Classical Force Fields and Parameter Optimization

Class I CHARMM, CHARMm (Accelyrs),AMBER, OPLS ECEPP, GROMOS, SYBYL(Tripos)

Class II MMFF94, UFF, …

Class III QM/MM (CHARMM, AMBER,…) Polarizable FF - Freisner/Berne(Schroedinger), AMOEBA (Tinker)

*Websites contain roadmaps of force field parameterization strategy.And they are different!!! So parameters from one cannot usually be usedin another force field.

Common Full Atom Force Fields

Page 5: Overview of Classical Force Fields and Parameter Optimization

Overview and parameter optimization of CHARMM Force Field

Based on protocol established by

Alexander D. MacKerell, Jr , U. Maryland

See references: www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm

Especially Sanibel Conference 2003, JCC v21, 86,105 (2000)

Page 6: Overview of Classical Force Fields and Parameter Optimization

E

Total= k

b(b− b

0)2 + kθ (θ −θ

0)2

angles∑

bonds∑

+

Vn

2[1+ cos(nφ −δ )]

dihedrals∑

+ k

ω (ω −ω0)2 + k

u(r

1,3− r

1,3,0)2

Urey−Bradley∑

impropers∑

+ (

qiq

j

εrijelectrostatics

∑ ) + εij[(

Rmin,ij

rij

)12 − 2(R

min,ij

rij

)6 ]VDW∑

Class I Potential Energy function

Non-bonded Interaction Terms

From MacKerell

Page 7: Overview of Classical Force Fields and Parameter Optimization

Class II force fields (e.g. MMFF) – Transferability, organic comb.

Kb, 2 b − bo( )2+ Kb, 3 b − bo( )3

+ Kb, 4 b − bo( )4[ ]bonds∑

+ Kθ , 2 θ −θ o( )2+ Kθ , 3 θ −θ o( )3

+ Kθ , 4 θ −θ o( )4[ ]angles∑

+ Kφ ,1 1− cosφ( ) + Kφ , 2 1− cos2φ( ) + Kφ , 3 1− cos3φ( )[ ]dihedrals∑

+ Kχimpropers∑ χ 2

+ Kbb 'bonds'∑

bonds∑ b − bo( ) b '−bo '( ) + Kθθ '

angles'∑

angles∑ θ −θ o( ) θ '−θ o '( )

+ Kbθangles∑

bonds∑ b − bo( ) θ −θ o( )

+ b − bo( ) Kφ , b1 cosφ + Kφ , b2 cos2φ + Kφ , b3 cos3φ[ ]dihedrals∑

bonds∑

+ b '−bo '( ) Kφ , b '1 cosφ + Kφ , b' 2 cos2φ + Kφ , b ' 3 cos3φ[ ]dihedrals∑

bonds'∑

+ θ −θ o( ) Kφ ,θ 1 cosφ + Kφ ,θ 2 cos2φ + Kφ ,θ 3 cos3φ[ ]dihedrals∑

angles∑

+ θ −θ o( ) θ '−θ o '( ) cosφdihedrals∑

angles'∑

angles∑

From MacKerell

Page 8: Overview of Classical Force Fields and Parameter Optimization

Vbond = Kb b − bo( )2

1 2

3 4

Vangle = Kθ θ −θo( )2

Vdihedral = Kφ (1+ (cosnφ −δ))

Intermolecular 1,4 interactions: 1 or scaled > 1,4 interactions: 1

Interactions between bonded atoms

From MacKerell

Page 9: Overview of Classical Force Fields and Parameter Optimization

Bond Energy versus Bond length

0

100

200

300

400

0.5 1 1.5 2 2.5

Bond length, Å

Po

ten

tial

En

erg

y,

kca

l/m

ol

Single Bond

Double Bond

Triple Bond

Chemical type Kbond bo

C-C 100 kcal/mole/Å2 1.5 ÅC=C 200 kcal/mole/Å2 1.3 ÅC=-C 400 kcal/mole/Å2 1.2 Å€

Vbond = Kb b − bo( )2

From MacKerell

Page 10: Overview of Classical Force Fields and Parameter Optimization

Dihedral energy versus dihedral angle

0

5

10

15

20

0 60 120 180 240 300 360

Dihedral Angle, degrees

Po

ten

tial

En

erg

y,

kca

l/m

ol

K=10, n=1

K=5, n=2

K=2.5, N=3

Vdihedral = Kφ (1+ (cosnφ −δ))

δ = 0˚

From MacKerell

Page 11: Overview of Classical Force Fields and Parameter Optimization

H

C

HHH

Vimproper = Kϕ ϕ −ϕo( )2

VUrey−Bradley = KUB r1,3 − r1,3o( )2

From MacKerell

Page 12: Overview of Classical Force Fields and Parameter Optimization

qi: partial atomic chargeD: dielectric constantε: Lennard-Jones (LJ, vdW) well-depthRmin: LJ radius (Rmin/2 in CHARMM)Combining rules (CHARMM, Amber) Rmin i,j = Rmin i + Rmin j εi,j = SQRT(εi * εj )

Intermolecular parameters

qiq j

4πDrij

+ εijnonbonded∑

Rmin,ij

rij

12

− 2Rmin,ij

rij

6

From MacKerell

Page 13: Overview of Classical Force Fields and Parameter Optimization

Electrostatic Energy versus Distance

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Distance, Å

Inte

ract

ion

en

erg

y,

kca

l/m

ol

q1=1, q2=1

q1=-1, q2=1

From MacKerell

Page 14: Overview of Classical Force Fields and Parameter Optimization

Charge Fitting Strategy

CHARMM- Mulliken* AMBER(ESP/RESP)

Partial atomic charges

C O H N0.5-0.5 0.35

-0.45

*Modifications based on interactions with TIP3 water

Page 15: Overview of Classical Force Fields and Parameter Optimization

εijRmin,ij

rij

12

− 2Rmin,ij

rij

6

Lennard-Jones Energy versus Distance

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1 2 3 4 5 6 7 8

Distance, Å

Inte

ract

ion

En

erg

y,

kca

l/m

ol

e=0.2,Rmin=2.5

Rmin,i,j

eps,i,j

From MacKerell

Page 16: Overview of Classical Force Fields and Parameter Optimization

Summary of Potential Terms

Page 17: Overview of Classical Force Fields and Parameter Optimization

What about a new ligand not present in theCHARMM force field??????

Page 18: Overview of Classical Force Fields and Parameter Optimization

Histidine Anabolic Pathway

•Imidazole Glycerol Phosphate Synthase: 5th step in Histidine Biosynthesis.•Branch point between Purine (nucleotide) and Histidine synthesis.

Page 19: Overview of Classical Force Fields and Parameter Optimization

Glutamate Glutamine

NH3 + PRFAR

NH3

hisH

hisF

AICAR + IMPG

Histidine Biosynthesis

Purine Biosynthesis

Imidazole Glycerol Phosphate Synthase: Proposed Mechanism*

*Beismann-Driemeyer & Sterner

Page 20: Overview of Classical Force Fields and Parameter Optimization

HisH Mechanism• HisH glutamine amidotransferase• Conserved catalytic triad: CYS84, HIS178, GLU180

-OONH3+NH2OCys84S+-OONH3+NH2Cys84HN+NHHis178+SOHN+NH-OONH3+Cys84NNHHis178+SONH3H2O-OONH3+Cys84NNHHis178+SOH2O-OONH3+Cys84HN+NHHis178+S-OONH3+OHOCys84SHis178+HN+NHOHOHis178

cys84

Thioester ?Not in FF

Page 21: Overview of Classical Force Fields and Parameter Optimization

Parameter Optimization Strategies

Minimal optimizationBy analogy (i.e. direct transfer of known parameters)Quick, starting point - dihedrals??

Maximal optimizationTime-consumingRequires appropriate experimental and target data

Choice based on goal of the calculationsMinimal database screening NMR/X-ray structure determinationMaximal free energy calculations, mechanistic studies, subtle environmental effects

Manual or Automated Fitting Procedures ?

Page 22: Overview of Classical Force Fields and Parameter Optimization

Roadmap Charmm27 Optimization*

*based on MacKerell, JCC v21, 86,105 (2000)

QM/MP2/6-31G*Barriers, bonds,…

Exp. DataIR,X-ray,…Stat.Var.

Initial Geometries Model Compounds?

Partial Atomic Charges

VDW Parameters

HF/6-31G* hydrated groups, TIP3W

Bonds, Angles, Torsions, Impropers

Condensed Phase MD Simulations

Parameterization Complete

Heat Vap,Rmin,…

Self-consistentiteration

Page 23: Overview of Classical Force Fields and Parameter Optimization

• Identify previously parameterized compounds• Access topology information – assign atom types,

connectivity, and charges – annotate changes

CHARMM topology (parameter files)

top_all22_model.inp (par_all22_prot.inp)top_all22_prot.inp (par_all22_prot.inp)top_all22_sugar.inp (par_all22_sugar.inp)top_all27_lipid.rtf (par_all27_lipid.prm)top_all27_na.rtf (par_all27_na.prm)top_all27_na_lipid.rtf (par_all27_na_lipid.prm)top_all27_prot_lipid.rtf (par_all27_prot_lipid.prm)top_all27_prot_na.rtf (par_all27_prot_na.prm)toph19.inp (param19.inp)

NA and lipid force fields have new LJparameters for the alkanes,representing increased optimization ofthe protein alkane parameters. Testshave shown that these are compatible(e.g. in protein-nucleic acidsimulations). For new systems issuggested that the new LJ parametersbe used. Note that only the LJparameters were changed; the internalparameters are identical

Getting Started

www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm

Page 24: Overview of Classical Force Fields and Parameter Optimization

NH

NNHO

OH

NH

NNHO

OHA B C

When creating a covalent link between model compounds move the chargeon the deleted H into the carbon to maintain integer charge(i.e. methyl (qC=-0.27, qH=0.09) to methylene (qC=-0.18, qH=0.09)

Break Desired Compound into 3 Smaller Ones

Indole Hydrazine Phenol

From MacKerell

Page 25: Overview of Classical Force Fields and Parameter Optimization

From top_all22_model.inp

RESI PHEN 0.00 ! phenol, adm jr.GROUPATOM CG CA -0.115 !ATOM HG HP 0.115 ! HD1 HE1GROUP ! | |ATOM CD1 CA -0.115 ! CD1--CE1ATOM HD1 HP 0.115 ! // \\GROUP ! HG--CG CZ--OHATOM CD2 CA -0.115 ! \ / \ATOM HD2 HP 0.115 ! CD2==CE2 HHGROUP ! | |ATOM CE1 CA -0.115 ! HD2 HE2ATOM HE1 HP 0.115GROUPATOM CE2 CA -0.115ATOM HE2 HP 0.115GROUPATOM CZ CA 0.11ATOM OH OH1 -0.54ATOM HH H 0.43BOND CD2 CG CE1 CD1 CZ CE2 CG HG CD1 HD1BOND CD2 HD2 CE1 HE1 CE2 HE2 CZ OH OH HHDOUBLE CD1 CG CE2 CD2 CZ CE1

HG will ultimately be deleted.Therefore, move HG (hydrogen) chargeinto CG, such that the CG chargebecomes 0.00 in the final compound.

Use remaining charges/atom typeswithout any changes.

Do the same with indole

Top_all22_model.inp contains all proteinmodel compounds. Lipid, nucleic acid andcarbohydate model compounds are in the fulltopology files.

From MacKerell

Page 26: Overview of Classical Force Fields and Parameter Optimization

Comparison of atom names (upper) and atom types (lower)

C2

NH

N4

N3O2

C5

OH

C

NH

NR1NH1O

CEL1

OHH

HEL1

H3

H5

From MacKerell

Page 27: Overview of Classical Force Fields and Parameter Optimization

Creation of topology for central model compound

Resi Mod1 ! Model compound 1Group !specifies integer charge group of atoms (notessential)ATOM C1 CT3 -0.27ATOM H11 HA3 0.09ATOM H12 HA3 0.09ATOM H13 HA3 0.09GROUPATOM C2 C 0.51ATOM O2 O -0.51GROUPATOM N3 NH1 -0.47ATOM H3 H 0.31ATOM N4 NR1 0.16 !new atomATOM C5 CEL1 -0.15ATOM H51 HEL1 0.15ATOM C6 CT3 -0.27ATOM H61 HA 0.09ATOM H62 HA 0.09ATOM H63 HA 0.09BOND C1 H11 C1 H12 C1 H13 C1 C2 C2 O2 C2 N3 N3 H3BOND N3 N4 C5 H51 C5 C6 C6 H61 C6 H62 C6 H63DOUBLE N4 C5 (DOUBLE only required for MMFF)

Start with alanine dipeptide.Note use of new aliphatic LJparameters and, importantly, atomtypes.NR1 from histidine unprotonated ringnitrogen. Charge (very bad) initiallyset to yield unit charge for the group.

CEL1/HEL1 from propene (lipidmodel compound). Seetop_all27_prot_lipid.rtf

Note use of large group to allowflexibility in charge optimization.

NNHO

From MacKerell

Page 28: Overview of Classical Force Fields and Parameter Optimization

RESI CYG 0.00GROUPATOM N NH1 -0.47 ! |ATOM HN H 0.31 ! HN-NATOM CA CT1 0.07 ! | HB1ATOM HA HB 0.09 ! | |GROUP ! HA-CA--CB--SGATOM CB CT2 -0.11 ! | | |ATOM HB1 HA 0.09 ! | HB2 |ATOM HB2 HA 0.09 ! O=C |ATOM SG S -0.07 ! | \!ATOM HG1 HS 0.16 ! \GROUP ! \ATOM CDG CC 0.55 ! \ATOM OE1 O -0.55 ! \GROUP ! HN2G \ATOM CGG CT2 -0.18 ! | \ATOM HG1G HA 0.09 ! HN1G-NG HB1G HG1G\ATOM HG2G HA 0.09 ! | | | \GROUP ! HAG-CAG--CBG--CGG--CDG=OE1ATOM CBG CT2 -0.18 ! | | |ATOM HB1G HA 0.09 ! | HB2G HG2GATOM HB2G HA 0.09 ! O1G=CGGROUP ! |ATOM CG CD 0.75 ! O2G-HO2GATOM O1G OB -0.55ATOM O2G OH1 -0.61ATOM HO2G H 0.44ATOM CAG CT1 -0.12ATOM HAG HB 0.09ATOM NG NH3 -0.62ATOM HN1G HC 0.31ATOM HN2G HC 0.31GROUPATOM C C 0.51ATOM O O -0.51

HG1 deleted from CYS andthe charge was moved toSG (-0.23 +0.16=0.07) sothat the SG charge becomes0.07 in final compound andthe group remains neutral

Changes annotated!

Page 29: Overview of Classical Force Fields and Parameter Optimization

Additive Models: account for lack of explicit inclusion ofpolarizability via “overcharging” of atoms.

1. RESP: HF/6-31G overestimates dipole moments (AMBER)

2. Interaction based optimization (CHARMM, OPLS)local polarization includedscale target interaction energies (CHARMM)

1.16 for polar neutral compounds1.0 for charged compounds

Partial Atomic Charge Determination Method Dependent Choices

For a particular force field do NOT change the QM level of theory. This isnecessary to maintain consistency with the remainder of the force field.

From MacKerell

Page 30: Overview of Classical Force Fields and Parameter Optimization

Starting charges??Mulliken population analysisAnalogy comparison

peptide bond methyl imidazole (N-N=C)?

Final charges (methyl, vary qC to maintain integer charge, always qH =0.09) interactions with water (HF/6-31G*, monohydrates!) dipole moment

N

NO

H

CH3

H

CH3

From MacKerell

Page 31: Overview of Classical Force Fields and Parameter Optimization

Model compound 1-water interaction energies/geometries

Interaction Energies (kcal/mole) Interaction Distances (Å)Ab initio Analogy Optimized Ab initio Analogy Optimized

1) O2...HOH -6.12 -6.56 -6.04 2.06 1.76 1.78

2) N3-H..OHH -7.27 -7.19 -7.19 2.12 1.91 1.89

3) N4...HOH -5.22 -1.16 -5.30 2.33 2.30 2.06

4) C5-H..OHH -3.86 -3.04 -3.69 2.46 2.51 2.44

Energetic statistical analysis Ave. Difference 1.13 0.06 RMS Difference 1.75 0.09 Dipole Moments (debeye)

5.69 4.89 6.00Ab initio interaction energies scaled by 1.16.

MacKerell: Sanibel Conference 2003

Page 32: Overview of Classical Force Fields and Parameter Optimization

Comparison of analogy and optimized charges

NNHO

Name Type Analogy OptimizedC1 CT3 -0.27 -0.27H11 HA3 0.09 0.09H12 HA3 0.09 0.09H13 HA3 0.09 0.09C2 C 0.51 0.58O2 O -0.51 -0.50N3 NH1 -0.47 -0.32H3 H 0.31 0.33N4 NR1 0.16 -0.31C5 CEL1 -0.15 -0.25H51 HEL1 0.15 0.29C6 CT3 -0.27 -0.09H61 HA 0.09 0.09H62 HA 0.09 0.09H63 HA 0.09 0.09

Note charge on C6 methyl carbon.Non-integer charge is typicallyplaced on the adjacent aliphaticcarbon.

Page 33: Overview of Classical Force Fields and Parameter Optimization

2. Bond, angle, dihedral, UB and improper force constants

Vibrational spectra- FrequenciesConformational Energetics -

Relative energiesPotential energy surfaces

Vibrations are generallyused to optimize the bond,angle, UB and improperFCs while conformationalenergies are used for thedihedral FCs. However,vibrations will also be usedfor a number of the dihedralFCs, especially thoseinvolving hydrogens and inrings.( MacKerell 2003)

Summary of Parameterization

1. LJ (VDW) parameters – normally direct transfer from availableparameters is adequate, but should be tested by comparison to heats ofvaporization, density, partial molar volumes, crystal simulations,....

(MacKerell JCC 2002). Other solvents?

Page 34: Overview of Classical Force Fields and Parameter Optimization

# Freq Assign % Assign % Assign %1 62 tC2N 64 tN3N 462 133 tC1H3 50 tN3N 18 tC2N 173 148 tC1H3 46 tC6H3 254 154 dC2NN 44 dN3NC 28 dN4CC 165 205 tC6H3 59 tN4C 22 tN3N 216 333 tN4C 73 tC2N 227 361 dC1CN 45 dN4CC 21 dN3NC 168 446 rC=O 32 dN4CC 209 568 wNH 7710 586 dC1CN 21 dC2NN 20 rC=O 1811 618 wC=O 83 wNH 28 tC2N -2612 649 rC=O 27 dN4CC 1913 922 sC1-C 6214 940 wC5H 8015 1031 rCH3' 33 sC5-C 3116 1114 rCH3 6617 1139 rCH3' 76 wC=O 2018 1157 rCH3 61 wC5H 2119 1234 sC5-C 33 sN-N 3220 1269 sN-N 36 rCH3' 18

# Freq Assign % Assign %21 1446 rNH 3522 1447 rC5H 47 sC-N 1823 1527 dCH3 7724 1532 dCH3 8825 1599 dCH3a' 50 dCH3a 1726 1610 dCH3a 71 dCH3a' 2427 1612 dCH3a' 3028 1613 dCH3a 70 dCH3a' 2329 1622 dCH3a' 57 dCH3a 1930 1782 sN=C 7131 1901 sC=O 7832 3250 sCH3 76 sC5-H 2133 3258 sC5-H 78 sCH3 2134 3280 sCH3 9935 3330 sCH3a 75 sCH3a' 2536 3372 sCH3a' 10037 3377 sCH3a' 73 sCH3a 2438 3403 sCH3a 9939 3688 sN-H 100

Vibrational Spectra of Model Compound 1 from MP2/6-31G* QMcalculations

Frequencies in cm-1. Assignments and % are the modes and there respective percentscontributing to each vibration.

From MacKerell

Page 35: Overview of Classical Force Fields and Parameter Optimization

Comparison of the scaled ab initio, by analogy andoptimized vibrations for selected modes

g98 Analogy Optimized# Freq Assi % # Freq Assi % # Freq AssisN=N30 1782 sN=C 71 21 1228 sN=C 37 31 1802 sN=C

rC5H 36 sN-N30 1646 sN=C 28

sC5-C 24rC5H 18

sN-N19 1234 sC5-C 33 20 1113 sN-N 53 20 1200 rNH

sN-N 32 rNH 26 sN-N20 1269 sN-N 36 rC5H

rCH3' 18 23 1395 dCH3sN-N

31 1802 sN=CsN-N

dC2NN4 154 dC2NN44 5 207 dC2NN36 4 158 dC2NN

dN3NC28 tN4C 31 dN3NCdN4CC16 dN4CC

10 586 dC1CN21 12 607 dC1CN26 11 574 dC1CNdC2NN20 dC2NN25 dC2NNrC=O 18 dN4CC

NH1-NR1 from 400/1.38 to550/1.36NR1=CEL1 from 500/1.342 to680/1.290:C-NH1-NR1 from 50.0/120.0 to50.0/115.0,

From MacKerell

Page 36: Overview of Classical Force Fields and Parameter Optimization

NH

NNHO

OH

NNHO

Dihedral optimization based on QM potentialenergy surfaces (HF/6-31G* or MP2/6-31G*).

NH

NNHO

OHNH

NH2O

HN

OH

From MacKerell

Page 37: Overview of Classical Force Fields and Parameter Optimization

Potential energy surfaces oncompounds with multiple rotatablebonds

1) Full geometry optimization2) Constrain n-1 dihedrals to minimum energy values or trans

conformation3) Sample selected dihedral surface4) Repeat for all rotatable bonds dihedrals5) Repeat 2-5 using alternate minima if deemed appropriate

NNHO

i)

ii) iii)

From MacKerell

Page 38: Overview of Classical Force Fields and Parameter Optimization

Note that the potential energy surface about a given torsion is the sum of the contributionsfrom ALL terms in the potential energy function, not just the dihedral term

From MacKerell

Page 39: Overview of Classical Force Fields and Parameter Optimization

Spartan - PM3 calculation of dihedral barrier

0 180 360

Page 40: Overview of Classical Force Fields and Parameter Optimization

From MacKerell

Page 41: Overview of Classical Force Fields and Parameter Optimization

Creation of full compound

1) Obtain indole and phenol from top_all22_model.inp2) Rename phenol atom types to avoid conflicts with indole (add P)3) Delete model 1 terminal methyls and perform charge adjustments

i) Move HZ2 charge (0.115) into CZ2 (-0.115 -> 0.000) total charge ondeleted C1 methyl (0.00) onto CZ2 (0.00 -> 0.00)

ii) Move HPG charge (0.115) into CPG (-0.115 -> 0.000) and move totalcharge on the C6 methyl (0.18) onto CPG (0.00 -> 0.18)

4) Add parameters by analogy (use CHARMM error messages)5) Generate IC table (IC GENErate)6) Generate cartesian coordinates based on IC table (check carefully!)

CZ2C2

NH

NNHO

C5CPG

OHN

NOC6H3

C1H3

H

H

From MacKerell

Page 42: Overview of Classical Force Fields and Parameter Optimization

Chemistry of ThioestersMost important example in biology of a thioester is acetyl coA, an intermediate used by nature in the

biosynthesis of numerous organic compounds.

O || -C – S - C-

Experimental Data*

C-S (1.75 A), O=C-S-C (~-4), C-S-C-H (low barrier)R-C-S (~113), R-C-O (~123), S-C-O (~124)

*Arch.Bioch.Biophys. Zacharias et al. v222,22-34,1983

Page 43: Overview of Classical Force Fields and Parameter Optimization

Thioester Linkage in PhotoactiveYellow Protein - PDB

Page 44: Overview of Classical Force Fields and Parameter Optimization

RESI CYG 0.00GROUPATOM N NH1 -0.47 ! |ATOM HN H 0.31 ! HN-NATOM CA CT1 0.07 ! | HB1ATOM HA HB 0.09 ! | |GROUP ! HA-CA--CB--SGATOM CB CT2 -0.11 ! | | |ATOM HB1 HA 0.09 ! | HB2 |ATOM HB2 HA 0.09 ! O=C |ATOM SG S -0.07 ! | \!ATOM HG1 HS 0.16 ! \GROUP ! \ATOM CDG CC 0.55 ! \ATOM OE1 O -0.55 ! \GROUP ! HN2G \ATOM CGG CT2 -0.18 ! | \ATOM HG1G HA 0.09 ! HN1G-NG HB1G HG1G\ATOM HG2G HA 0.09 ! | | | \GROUP ! HAG-CAG--CBG--CGG--CDG=OE1ATOM CBG CT2 -0.18 ! | | |ATOM HB1G HA 0.09 ! | HB2G HG2GATOM HB2G HA 0.09 ! O1G=CGGROUP ! |ATOM CG CD 0.75 ! O2G-HO2GATOM O1G OB -0.55ATOM O2G OH1 -0.61ATOM HO2G H 0.44ATOM CAG CT1 -0.12ATOM HAG HB 0.09ATOM NG NH3 -0.62ATOM HN1G HC 0.31ATOM HN2G HC 0.31GROUPATOM C C 0.51ATOM O O -0.51

HG1 deleted from CYS andthe charge was moved toSG (-0.23 +0.16=0.07) sothat the SG charge becomes0.07 in final compound andthe group remains neutral.

This can be improved!!

Page 45: Overview of Classical Force Fields and Parameter Optimization

+ ….

Quantum Chemical Calculations for New CF Parameters

Classical Potentials:

QM Operators:

Born Oppenheimer Approximation:

Many particle wavefunction

Page 46: Overview of Classical Force Fields and Parameter Optimization

Electronic Hamiltonian

Page 47: Overview of Classical Force Fields and Parameter Optimization

See T. Martinez, http://www.ks.uiuc.edu/Training/SumSchool/lectures.html

Page 48: Overview of Classical Force Fields and Parameter Optimization

Basis Function Overview

S-type basis function is composed of sum of primitive gaussian functions. N isthe number gfs and is called the degree-of-contraction. C, α,and f are thecontraction coefficients, exponents, and scale factors.

It takes at least 3 Gaussiansto approximate an S orbital

Page 49: Overview of Classical Force Fields and Parameter Optimization

Basis Set Pople ClassificationMinimal Basis Set - STO-3G

One BF per occupied orbital on an atome.g. H 1s, 1st row elements 1s,2s,2px,2py,2pz like orbitals

C2H2 would have 12 STOs

Split Valence Basis Set - Inner and Outer’ basis functions3-21G: 1s - 3G; 2s, 2p - 2G; 2s’,2p’ - 1G6-31G: 1s - 6G; 2s, 2p - 3G; 2s’, 2p’ - 1G

PolarizationAdd higher angular momentum functionse.g. 6-31G* = 6-31G+d for 1st row 6-31G** = 6-31G+(d) 1st row, +p for H, He

+f for Sc to Zn

Page 50: Overview of Classical Force Fields and Parameter Optimization

 

Semiempirical Methods and Number of Parameters in MethodMNDO Modified Neglect of Differential Overlap 10AM1 Austin Model 1 13PM3 Parametric Model number 3 13

Perturbation Method to Treat Electron Correlation: MP2Improvement over HF, RHF and UHF

Density Functional Theory DFT - Heme calculations

Molecular Properties from WavefunctionsDipole moment, partial charges, vibrations, ….

Other Quantum Chemical Methods

Page 51: Overview of Classical Force Fields and Parameter Optimization

Choice of Basis Set in Spartan

Page 52: Overview of Classical Force Fields and Parameter Optimization

Bond angle C-CO-S bend

Bond stretch C=O CH3 stretches

PM3Spartan

Page 53: Overview of Classical Force Fields and Parameter Optimization

Dihedral Draw to Check Barriers

Page 54: Overview of Classical Force Fields and Parameter Optimization

0.090.140.21HA0.140.22HA

0.090.140.20HA-0.18-0.46-0.58CT2-0.55-0.50-0.50O0.550.640.36CC-0.07-0.290.11S

0.120.22HA0.090.070.20HA0.090.070.22HA-0.11-0.08-0.63CT2

CharmmESP6-31G**

Mulliken6-31G**

Atomtype

No waters inQM calc.

Page 55: Overview of Classical Force Fields and Parameter Optimization

1.85 Å1.81 ÅCT2 – S

122.9 º122.2 ºS – CC – O107.7 º100.2 ºCC – S – CT2117.1 º114.3 ºS – CC – CT2

Angles1.23 Å1.19 ÅCC – O1.54 Å1.51 ÅCC – CT21.79 Å1.78 ÅCC – S

MinimizationAb initio 6-31G*Bonds

Results on Fragment

Page 56: Overview of Classical Force Fields and Parameter Optimization

100 Å

SMD

Page 57: Overview of Classical Force Fields and Parameter Optimization
Page 58: Overview of Classical Force Fields and Parameter Optimization

Classical Force Fields• Physics-based, full atom FF like CHARMM, AMBER,

OPLS - Mechanisms, function, protein/RNA/DNA interactions…

Knowledge-based, coarse-grained model - Protein structure prediction, folding kinetics, docking,…

Hybrid force fields like Go + full atom FF - Mutational effects on protein folding kinetics,….

• Hybrid QM/MM approaches Enzyme reactions, bond breaking and making, excited states,…

Each problem has a different goal and time scale!

Page 59: Overview of Classical Force Fields and Parameter Optimization

Protein Structure Prediction

SISSIRVKSKRIQLG….

1-D protein sequence 3-D protein structure

Sequence Alignment

Ab Initio protein folding

SISSRVKSKRIQLGLNQAELAQKV------GTTQ…

QFANEFKVRRIKLGYTQTNVGEALAAVHGS…

Target protein of unknown structure

Homologous/analogous protein of known structure

Ab Initio Folding: the Energy Function

E = E

backbone+E

residue / residue ?

Page 60: Overview of Classical Force Fields and Parameter Optimization

Ab initio Structure Prediction –Prediction without Homology

• ReducedRepresentation:Cα,Cβ,O.

• Interaction Potentials:AMH and Contactaveraged over MS

• Non-additive HB

Page 61: Overview of Classical Force Fields and Parameter Optimization

EAM

= −εa

γAM

[Pi, P

j, P

iµ , P

jµ ,x i − j( )]exp

−(rij− r

i' j '

µ )2

2σij

2

j−12≤i≤ j−3∑

µ=1

E

long= −

εa

γlong

Pi, P

j,k

c

k(N )U r

min(k),r

max(k),r

ij

{ }

k=1

3

∑i< j−12∑

Weights γ learned from training set

EAMC= E

AM+ E

C= (E

short+ E

medium) + E

long

Ab initio Interaction Potentials

Associate similar sequence/structure fragments inprotein database

Long range interactions mimic pair distribution functions

Page 62: Overview of Classical Force Fields and Parameter Optimization

Optimization Strategy for Coarse Grained Energy Function

Energy Landscape Theory

When <?Es /? E> is maximum the energy landscape is optimally funneled.

Vary the parameters to obtain discrimination

Onuchic, Luthey-Schulten, Wolynes (1997) Annu. Rev. Phys. Chem. 48:545-600.Eastwood,Hardin,Luthey -schulten,Wolynes( 2001)IBM. J.RES.&DEV.45:475-497

Energy

?Es

?? Emolten globule

distribution

native states

Optimization over an Ensemble of Folds

Page 63: Overview of Classical Force Fields and Parameter Optimization

Energy Landscapes of Prediction Energy Function

Q fraction of native contacts

Page 64: Overview of Classical Force Fields and Parameter Optimization

CASP5 Wolynes-Schulten PredictionT0170

FF domain of HYPA/FBP11

T0170 contact map

1h40

NM

R s

truc

ture

T0170 prediction

Hubbard Plot

Blue – NMR structureOrange – Predicted StructureGlobal RMSD 2.67 Å.

Page 65: Overview of Classical Force Fields and Parameter Optimization

CASP5 Result

Page 66: Overview of Classical Force Fields and Parameter Optimization

Functional Annotation RequiresStructures of ~ Q=0.4

Page 67: Overview of Classical Force Fields and Parameter Optimization

Hybrid Force Field CalculationsFuture Directions?

• Protein Folding Kinetics and Mutational Studies– Go Potentials– Charmm + Go Potentials

T. Pogorelov and Z. Luthey-Schulten, Biophysical J. 87 (2004)

Page 68: Overview of Classical Force Fields and Parameter Optimization

LAMBDA REPRESSORMUTATIONS Q33Y and A37G

Page 69: Overview of Classical Force Fields and Parameter Optimization

Folding of lambda-repressor

Page 70: Overview of Classical Force Fields and Parameter Optimization

T. Pogorelov and Z. Luthey-Schulten, Biophysical J. 87 (2004)

Page 71: Overview of Classical Force Fields and Parameter Optimization

Free-Energy Potentials for Fast and Slow Mutants

Page 72: Overview of Classical Force Fields and Parameter Optimization

Acknowledgements

• Rommie Amaro – HisH/HisF• Felix Autenrieth - Cyt c2 Parameterization• Taras Pogorelo - Go + CHARMM