overview - macromolecular crystallography · overview - macromolecular crystallography 1....

30
Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The diffraction experiment 4. Phase problem 1. MIR (Multiple Isomorphous Replacement) - No homologous structure known - Incorporate heavy atoms - Locate bound heavy atoms - Phase refinement 2. MAD (Multiwavelength Anomalous Diffraction) - No homologous structure known - Incorporate anomalous scatterers - Locate anomalous scatterers - Phase refinement 3. MR (Molecular Replacement) - Requires homologous structure - Rotation function (determine orientation of known molecule in unknown crystal) - Translation function (determine position of search molecule in unknown crystal) - Rigid body refinement 5. Phase improvement 6. Model building 7. Refinement

Upload: others

Post on 25-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Overview - Macromolecular Crystallography

1. Overexpression and crystallization2. Crystal characterization and data collection3. The diffraction experiment4. Phase problem

1. MIR (Multiple Isomorphous Replacement)- No homologous structure known- Incorporate heavy atoms- Locate bound heavy atoms- Phase refinement

2. MAD (Multiwavelength Anomalous Diffraction)- No homologous structure known- Incorporate anomalous scatterers- Locate anomalous scatterers- Phase refinement

3. MR (Molecular Replacement)- Requires homologous structure- Rotation function (determine orientation of known molecule in unknown crystal)- Translation function (determine position of search molecule in unknown crystal)- Rigid body refinement

5. Phase improvement6. Model building7. Refinement

Page 2: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

2a. Crystal Characterization2b. Data Collection

Page 3: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Crystal Mounting

Capillary-mountedcrystal for room

temperature datacollection

Loop-mounted crystalfor cryogenic data

collection

Cold N2 Gas

Page 4: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Diffraction Photograph

Visualization of the reciprocal lattice

Page 5: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Asymmetric Unit, Unit Cell and Crystal

Asymmetric Units

2-fold Axisof Symmetry

Page 6: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

N-fold Axis of Rotation

2422

Page 7: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Icosahedral symmetry

Page 8: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Molecular Symmetry I

C2 or 2 C3 or 3

Page 9: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Molecular Symmetry II

D2 / 222 D3 / 32

Page 10: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

2-Fold and 21 Screw Axis

Page 11: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Mirror Planes and Inversion Centers

Mirror plane Inversion center

Page 12: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Point Groups I

Molecular symmetries are described by point groups

There are 32 point groups, which are relevant forcrystallography (those containing 2-, 3-, 4- and 6-fold axes ofsymmetry)

Additional point groups are possible (e.g. 52 or D5), but notas crystallographic symmetry operations

This does not mean that a pentamer with 5-fold symmetrycannot be crystallized, it only means that the five-fold axis ofrotation cannot be a crystallographic symmetry element

Page 13: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Point Groups II

n

n

n/m

nm

nm

n2

n/mm

n-fold axis of rotation

n-fold axis of rotation and inversion center

n-fold axis of rotation and perpendicularmirror plane

n-fold axis of rotation and mirror planecontaining n-fold axis

n-fold axis of rotation, mirror plane containing then-fold axis and inversion center

n-fold axis of rotation and perpendicular 2-fold

n-fold axis of rotation, perpendicular mirror planeand mirror plane containing n-fold axis

Page 14: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Cubic System

432

23

Page 15: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Simple Lattices I

2 1 3

A 2-fold axis (1 2) and alattice translation (2→3)generate a secondary 2-foldaxis (1 3)

Crystallographicsymmetry operations arevalid throughout thecrystal (global symmetry)

:-{ :-{

:-{ :-{

:-{ :-{ :-{

:-{ :-{ :-{

:-{ :-{ :-{

:-{ :-{ :-{

:-{ :-{ :-{

:-{ :-{ :-{

Page 16: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Simple Lattices II

A two-dimensional latticewith 2-fold symmetry axes(indicated by )perpendicular to the planeof the figure and 2-foldscrew axes (indicated bythe half-arrows) in theplane.

Page 17: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Crystal Systems

a = b = c,α = β = γ = 90°

Four 3-foldsP, I, FCubic

a = b = c,α = β = γ ≠ 90°

3-foldRRhombohedral

a = b ≠ c,α = β = 90°, γ = 120°

3-fold or 6-foldPTrigonal/Hexagonal

a = b ≠ c,α = β = γ = 90°

One 4-foldP, ITetragonal

α = β = γ = 90°Three perpendicular2-fold axes

P, C, I, FOrthorhombic

β ≠ 90°One 2-fold axisP, CMonoclinic

a ≠ b ≠ c,α ≠ β ≠ γ

NonePTriclinic

PropertiesMinimal SymmetryBravais TypeCrystal System

Page 18: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Primitive and Centered Unit Cells

a b

c

PrimitiveP

B-centeredB

(could also be A- or C-centered)

I-centeredI

F-centeredF

Page 19: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Bravais Lattices14 Bravais lattices

Some crystal systems haveonly one lattice type (triclinic,trigonal/hexagonal andrhombohedral), some havetwo (monoclinic andtetragonal), cubic has threeand orthorhombic four

Rhombohedral R can be setup either hexagonal orrhombohedral

Rhombohedral

Page 20: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Space Groups - Introduction

• Combination of 32 point groups with translationalsymmetry elements yields the 230 space groups

• All space groups are tabulated in the InternationalTables of Crystallography

• For chiral molecules (protein, DNA, RNA, etc.) only 65space groups are possible, i.e. those space groups whichdo not contain mirror planes, glide planes or inversioncenters

• Space group P212121 is the most common space groupfound with proteins and will be discussed in more detail

Page 21: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Space groups - P212121P212121 - Hermann-Mauguin symbolD2222 - Point groupOrthorhombic - Crystal system19 - Space group number

Space group diagrams -Projections onto the ab-, bc- and ac-

planes showing symmetryelements

Cartoon diagram illustrating thesymmetry operation acting on amolecule represented by the opencircle(+, above plane/ -, belowplane)

Origin - Location of origin with respect tothe symmetry elements

Asymmetric unit - One choice of theasymmetric unit

Symmetry operation -(1) Identity operation(2) 21 screw axis along z at a = 1/4

and b = 0

Page 22: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Space Group - P212121Symmetry operations:(1) x,y,z(2) -x+1/2, -y, z+1/2(3) -x, y+1/2, -z+1/2(4) x+1/2,-y+1/2,-z

Reflection conditions:For reflections of type h00only those with even h areobserved. Reflections withodd h are forbidden bysymmetry.Same for 0k0 and 00l

Page 23: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Asymmetric Unit, Unit Cell and Crystal

Page 24: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

A Real Crystal

Space group P212121

4 asymmetric units

Molecularboundaries

Bovine pancreatictrypsin inhibitor(BPTI)

Empty spaces between molecules: Macromolecular crystals consist of protein andsolvent (30% - >80%). The Matthew’s coefficient describes crystal packing.

Page 25: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Packing Analysis I

Calculate unit cell volume: V = a • ( b x c) = abc (1 - cos2α - cos2β - cos2γ + 2 cosα cosβ cosγ)1/2

(if all angles = 90°: V = abc, if one angle (β) ≠90°: V= abc sin β)

Calculate volume of asymmetric unit:VAU = V / nAU

Calculate Matthew’s coefficient:VM = VAU / MrThe Matthew’s coefficient is between 1.7 - 4.0 Å3/Da

Calculate solvent content percentage:ρ = 1 - 1.23 / VM

Page 26: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Packing Analysis II

The MogA protein (molecular mass 21,500 Da) crystallizes inthe hexagonal space group P63 (six asymmetric units) with unitcell dimensions of a=b=66 Å, c=65 Å and γ=120°.

Calculate volume of unit cell: V= abc sin γ = 245206 Å3

Calculate volume of asymmetric unit: VAU = V / 6 = 40868 Å3

Calculate Matthew’s coefficient: VM = VAU / Mr = 1.9 Å3/Da

Calculate solvent content percentage: ρ = 1 - 1.23 / VM = 35%

This is a tightly packed crystal

Page 27: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Packing Analysis IIIThe MogA protein also crystallizes in orthorhombic space groupP212121 (4 asymmetric units) with unit cell dimensions of a=55Å, b=71 Å and c=165 Å. The protein is present as a trimer insolution.Calculate volume of unit cell: V = abc = 644325 Å3

Calculate volume of asymmetric unit: VAU = V / 4 = 161081 Å3

Calculate Matthew’s coefficient:1 monomer: VM = 7.5 Å3/Da2 monomers: VM = 3.75 Å3/Da3 monomers: VM = 2.5 Å3/Da4 monomers: VM = 1.9 Å3/Da5 monomers: VM = 1.5 Å3/Da

This crystal form contains a trimer in the asymmetric unit.

Page 28: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

Packing Analysis IVHow to reconcile the results? The protein is a trimer in solution and also in both crystal forms

Hexagonal crystals: A monomer is present in the asymmetric unit A crystallographic 3-fold axis of symmetry generates the trimer Check the International Tables to find the 3-fold axis

Orthorhombic crystals: A trimer is present in the asymmetric unit There is a local (non-crystallographic) 3-fold axis of symmetry The monomers within the trimer do not have to be identical The monomers within the trimer will be similar Non-crystallographic symmetry elements can be detected

Page 29: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

2a. Crystal Characterization2b. Data Collection

Page 30: Overview - Macromolecular Crystallography · Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The

X-rays• High-energy electromagnetic radiation (λ ~ 1 Å)• Produced by x-ray generator or synchrotron• In-house: rotating anode x-ray generator with copper anode (λ = 1.5418 Å)• Synchrotron: Large scale research facilities

• DESY (Hamburg)• BESSY (Berlin)• ESRF (Grenoble)• SLS (Villigen, Switzerland)

• Interatomic distances are on the order of 1 ÅInterference effects