outlines (lecture-3) introduction drying theory terminology (treybal

6
Lecture3. December 172007 Kamaruddin Abdullah Laboratory of Solar Conversion Technology Faculty of Engineering Darma Persada University [email protected] 6/3/2008 1 Outlines (Lecture3) Introduction Basic drying theory Thermophysical properties as basis for drying system design Solar drying Types of developed solar dryers Test Performances Conclusions 6/3/2008 2 Introduction High air temperature and humidityultural and in the tropics make many agricultural and marine products are susceptible to rapid decomposition and therefore, are not suitable for human consumption. Due poor post harvest handling around 1220% of harvest are reported loss every year Drying can extend shelf life of products by reducing its moisture to a level save for long storage 6/3/2008 3 Drying theory The term drying refers generally to the moisture removal from a substance. For example a wet solid such as wood, grains such as coffee, cocoa, rough rice etc. may be dried by evaporation of the moisture either into gas stream or without the benefit of the gas to carry away vapor, but mechanical removal of such moisture by expression or centrifuging is not ordinarily considered drying. 6/3/2008 4 Terminology (Treybal,1968) Moisture content, wet basis, X, Mass of moisture within a substance devided by mass of that substance, expressed in % w.b. Moisture content, dry basis, M, is the ratio between the mass of water with the mass of dry matter in solid and is expressed in percent.(% d.b.) Equilibrium moisture, Me, expressed commonly in terms of % dry basis is the moisture content of a substance when at equilibrium with a given temperature and RH surrounding a substance. 6/3/2008 Terminology Bound moisture. Is the moisture contained by a substance which exerts an equilibrium vapor pressure less than that of pure liquid at the same temperature. Bound moisture is the type of moisture held by chemical solution and in capillary within the solid. Unbound moisture. Is the moisture contained by a substance which exerts an equilibrium vapor pressure equal to that of pure liquid at the same temperature. Such condition can be in the form free water on the surface of substance. Free moisture, is the portion of moisture not being held by chemical reaction within the substance. Only free moisture can be evaporated, and the free moisture content of a solid depends upon the vapor concentration in the gas. 6/3/2008 6

Upload: dotram

Post on 04-Jan-2017

225 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Outlines (Lecture-3) Introduction Drying theory Terminology (Treybal

Lecture‐3.December 17‐2007

Kamaruddin AbdullahLaboratory of Solar Conversion TechnologyFaculty of EngineeringDarma Persada [email protected]

6/3/2008 1

Outlines (Lecture‐3)IntroductionBasic drying theoryThermophysical properties as basis for drying system designSolar dryingTypes of developed solar dryersTest PerformancesConclusions

6/3/2008 2

IntroductionHigh air temperature and humidityultural and  in the tropics make many agricultural and marine products are susceptible to rapid decomposition and therefore, are not suitable for human consumption.Due poor post harvest handling around 12‐20% of harvest are reported loss every yearDrying can extend shelf life of products by reducing its moisture to a level save for long storage

6/3/2008 3

Drying theoryThe term drying refers generally to the moisture removal from a substance. For example a wet solid such as wood, grains such as coffee, cocoa, rough rice etc.  may be dried by evaporation of the moisture either into gas stream or without the benefit of the gas to carry away vapor, but mechanical removal of such moisture by expression or centrifuging is not ordinarily considered drying. 

6/3/2008 4

Terminology (Treybal,1968)Moisture content, wet basis, X, Mass of moisture within a substance devided by mass of that substance, expressed in % w.b.Moisture content, dry basis, M,  is the ratio between the mass of water with the mass of dry matter in solid and is expressed in percent.(% d.b.)Equilibrium moisture, Me, expressed commonly in terms of % dry basis is the moisture content of a substance when at equilibrium with a given temperature and RH surrounding a substance.

6/3/2008 5

TerminologyBound moisture. Is the moisture contained by a substance which exerts an equilibrium vapor pressure less than that of pure liquid at the same temperature. Bound moisture is the type of moisture held by chemical solution and in capillary within the solid.

Unbound moisture. Is the moisture contained by a substance which exerts an equilibrium vapor pressure equal to that of pureliquid at the same temperature. Such condition can be in the form free water on the surface of substance.

Free moisture, is the portion of moisture not being held by chemical reaction within the substance. Only free moisture can be evaporated, and the free moisture content of a solid depends upon the vapor concentration in the gas.

6/3/2008 6

Page 2: Outlines (Lecture-3) Introduction Drying theory Terminology (Treybal

The Psychrometric chartPsychrometric chart describes  the all important properties of dry and moist air used during drying. Using the psychrometric chart one can study the drying process in a simple way. 

6/3/2008 7

1 2

3

Absolute Humidity Kg/kg dry air

Dry bulb temperature

Wet bulb temperature

Enthalpy kJ/kg

RH

6/3/2008 8

Drying rate(%/h)

Moisture content (% wb)

Constant rate period

Falling rate period

6/3/2008 9

6/3/2008 10

Moisture content (% db)

Drying rate (%/min.)

6/3/2008 11

S

Basic equationM‐Me/Mo‐Me = A exp (‐ kt) ……..(10a)M(A, Me, K)= A (Mo‐Me) exp (‐ kt)+ Me…….(10b)

Linearization using Taylor expansion

Mi( A, k, Me) = Mi (A, k, Me) + dMi/dA (∆Ai) + dMi/dk (∆Ki) + dMi/dMe (∆Mei)..(10c)i=1,2.3..nwheredM/dA= (Mo‐Me) exp (‐kt)dM/dk= ‐A k (Mo‐Me) exp (‐kt)dM/dMe=‐A exp (‐kt) +1

Least Square MethodThe 1st iteration Let A=Ai, Me=Mei, K=KiSubstituting into eqs. (10a, 10c) will give the respective values of ∆Ai, ∆Ki, and ∆Mei. Me,new= Mei‐∆Mei, A new=Ai‐∆AiKnew=Ki‐∆Ki

∆Ai, ∆Ki, and ∆Mei≤ 0.004?

No Print Final value of A,K, and Me

End

Determination of drying parameters(Nishiyama, 1973)

yes

6/3/2008 12

Drying parameters (cont.)Equilibrium M.C.

The drying constant

&

Page 3: Outlines (Lecture-3) Introduction Drying theory Terminology (Treybal

Commodity Specific heat,Cp (kJ/kg)

Latent heat of evaporation,∆Hfg (kJ/kg)

Equilibrium m.c.Me (%,db)

Drying constant, k (1/min.)

1. Coffee berriesDyah W. (1997) Jusuf

(1990)

Cp=0.02125 M + 1.8175For 0.5<M<0.67

∆Hfg/∆Hfgw= (1+ 0.597exp(-0.19427Me))for RH>57%; Me>8%

Me = 3.7045+0.11716 ∆t+0.007679 ∆t2

K= exp( 15.432-5976.4 t )

2. Cocoa berriesNelwan, 1998.

∆Hfg/∆Hfgw= (1+ 0.7297 exp(-0.1361 t Me))at t =55 C and 7%<M<49%wb∆Hfg= 2411.7-3236.4 kJ/kg

(!-RH)=exp(-0.1936 t Me 1.1487)

K= exp( 15.432-5976.4 t)

3. Rough riceIR-36(finite cylinder model)

Thahir (1986)

∆Hfg/∆Hfgw= 1.298 atMe= 9.7%wb, and t= 30-50 oC

Me=17.89exp(-0.061∆t)∆t=tdb-twb

K=exp( 1.9283-2803.4/T)

3. Corn (Sadewavar.)

Sphere model, Thahir(1986)

∆Hfg/∆Hfgw= 1.298 atMe= 8.8%wb, and t= 30-50 oC

Me=12.46exp(-0.035∆t)∆t=tdb-twb

K=exp 1.9283-2803.4/T)

3. Black pepperSphere model(Prayudi, 1992)

∆Hfg=(2500-2.34 t)x (1+0.4132exp(-0.224 Me)

Me=16.86exp(-0.224∆t)∆t=tdb-twb

K=0.167exp(13.277-4900/T)

3. Mackerel(Fasirun, 2003)

∆∆Hfg/Hfg/∆∆HfgwHfgw==1.478 (at 55% db, 45 o C)1.478 (at 55% db, 45 o C)

Me=516.79[(-ln (1-RH)/T]0.556

K=exp(7.549-4503.8/T)313<T<323

6/3/2008 13

Solar dryingMain componentsSolar heat collector as hot air generatorDrying chamberAir moving devices to convey hot air into the drying chamber and later move the resulting moisture from the product due to drying process out of the drying chamberProducts holder, of different  forms, where products to be dried are placed or distributed

6/3/2008 14

Optimization of solar drying system

Objective function 

C= Σ xi ‐‐‐ min. .(1)

i=1,2,3,..n

Constraints, for i=3

Φ1(x1,x2,x3)=0      ..(2)

Φ2(x1,x2,x3)=0      .(3)

6/3/2008 15

6/3/2008 16

Lagrange multiplierOptimum condition:

∇ C‐λ1 ∇ϕ1‐λ2 ∇ϕ2= 0           ……(4)

here∇C (x1,x2,x3) = Σιi (∂C/ ∂xi)    (i=1,2,3)    …(5)∇ϕ1 (x1,x2,x3) = Σιi (∂ ϕ1 / ∂xi) =0           ….(6)∇ϕ2 (x1,x2,x3) = Σιi (∂ ϕ2 / ∂xi) =0            …(7)

6/3/2008 17

ResultsCommodityCommodity RiceRice Ac(mAc(m22)) 60.960.9W (kg)W (kg) 20002000 Pw (Watt)Pw (Watt) 11141114ρρ(kg/m(kg/m33)) 599599 AbAb (m(m22)) 6.686.68Q(mQ(m33/s)/s) 1.21.2 θθdd(hrs(hrs)) 88Initl.Initl. costcost K (1/h)K (1/h) 0.150.15X1 (X1 (mill.Rpmill.Rp)) 6.0856.085 Td (Td (ooCC)) 46.546.5X2 (X2 (mill.Rpmill.Rp)) 0.3870.387X3 (X3 (mill.Rpmill.Rp)) 1.3391.339C (C (mill.Rpmill.Rp)) 7.8117.811!US$=Rp. 9100

GHE Solar drying system simulation

Solar heat collector is placed within the drying chamber to reduce the construction cost

Drying floor can also painted black to enhance solar heating

6/3/2008 18

Ap

Page 4: Outlines (Lecture-3) Introduction Drying theory Terminology (Treybal

Solar drying simulation

6/3/2008 19

Energy balance in heat collector to calculate the value of plate temperature Tp,

mp Cpp dTp/dt = τ α Ap(600 sin(π t/8)+300) - 1.5 h Ap (Tp - Tr) (1)

Drying chamber temperature, Tr

mr Cpa dTr/dt =mu Cp (Ta-Tr)+1.5 h Ap (Tp -Tr)+hw Aw(Tw-Tr)

-U Ad (Tr-Ta)-Wd (dM/dt) ∆Hfg+hf Af β (Tf-Tr) .. (2)

Temperature rice of the floor , Tf, which is painted black

mf Cpf dTf/dt= τ α β Ap(600 sin(π t/8)+300)-hf Af (Tf-Tr) -k Af (Tf-Tso)/xf (3)

Temperature of hot water tank

mw Cpw dTw/dt= [d(mb)/dt] η CV-Uw At(Tw-ta)-hw Aw (Tw-Tr) (4).

The ambient temperature change, Ta

Ta = 4 sin (π t/8) + 28 (5)

6/3/2008 20

Daytime drying: W=300 kg; mu=0.05 kg/s

0

20

40

60

80

100

0 1

1.5 2

2.5 3

3.5 4

4.5 5

5.5

Time (h)

Tp(C)Tr(C)Ta(C)I(t)/10Series1

GHE Solar drying system

Integrated the function of solar heat collector and drying chamber into one compartment to reduce construction costCan be design with different configurations according the geometry and product holder:Stationary:

House type with : flat bed, cabinet, drums, trolleys, etc.Ventury type or truncated pyramids or cones

Recirculation type: bunker, inclined drying chamber‐collector

6/3/2008 21

Recirculation dryerDryer with inclined collector‐drying chamber

Air in $

$$

Grain in

6/3/2008 22

Working principle: inclined collector‐drying chamber 

Uses pneumatic  conveyor to recirculate the grainsDrying process occurs when the grain falls into the collector‐drying chamber section of the dryerSeveral drying cycles are needed to accomplish drying processBiomass stove can be operated for day  and night dryingGood for small to medium capacity drying of grains (rough rice, corn, soybeans, etc.)

6/3/2008 23

Integrated collector‐drying chamberThe Energy balance

mg Cpg  dTg/dz= hr W (Tr‐Tg) ‐m  ∆Hfg dM/dz ‐ α τ I C2 ... (1)

dTg/dz= z1(Tr‐Tg)+z2 dM/dz‐z3I........................................(2)

Wa Cpa dTr/dz =‐ hc W (Tc‐Tr)+(Ua+Ub)W(Tr‐Ta)+hr W (Tr‐Tg)+m ∆Hfg dM/dz ......(3)

dTr/dz= z4(Tc‐Tr)+z5(Tr‐Ta)+z6(Tr‐Tg)+ z7dM/dz)............(4)

Mass balance

mM|z‐mM|z+∆z = ‐ (ma Cp T|z ‐ma CpT|z+∆z )/∆Hfg  orLim ∆z‐‐‐>0

dmM/dz = ma dTr/dz /∆Hfg  ....................................................(5)

M dm/dz=  ma dTr/dz /∆Hfg  ‐mdM/dz ............................(6)

6/3/2008 24

∆z

z

z+∆z

Ua

Ub

I(t) mg

ma

Page 5: Outlines (Lecture-3) Introduction Drying theory Terminology (Treybal

Drying of corn in recirculation dryer‐inclined drying chamber‐collector system

6/3/2008 25

Solar recirculation dryer

GHE type with bunker for temporary instore dryer

6/3/2008 26

Air in

Working principle:  Bunker type

Uses pneumatic  conveyor to recirculate the grains and vortexDrying process occurs when the grain falls into a cyllinrical type heat exchanger located at the center of thedrying chamberSeveral drying cycles are needed to accomplish drying processBiomass stove can be operated during the night of bad weatherGood for medium to large capacity drying of grains (corn, rough rice, soybeans, etc.)

6/3/2008 27

Experiments: ‐Temporary instore dryer

Capacity :  266.4 kg/hDimension  :  2,28 m, height  3,09 mConveyor : Centrifugal Blower

Model : CZR – 200Voltage  :  220 Volt,  50 HzVolume : 450 m3/hSize : Ø 60 mmPressure : 1200 PaPowerType : Electric Motor, 0.25 kWModel : YY 632 ‐2RPM : 2840 rpmVoltage : 220 Volt, 50 Hz, 1,9 A, 

Auxiliary heaterType :Biomass stoveFuel : Charcoal, saw dust

6/3/2008 28

Sample: Rough rice –IR64Average MC :  23,6  % wbDegree of cleanliness :  97,2  %Dimension (L x W x th) :  9,87 × 1,94 × 2,37 mmBulk density :  463,92  gr/cm3

Intact grains :  97,8 %Persentage of cracked grains :  2,2 %

6/3/2008 29

Test results conducted by Ministry of Agriculture: Bunker type solar dryer (Prototype)1. Intial mass of grain

2. Drying time (hr)

3. Mass of grain after 10 hr drying

4. Drying rate

5. Average temperature at top section

6. Average temperature at the middle section

7. Temperature of polycarbonate wall

8. Increase in cracked grains

9. Homogenity in m.c.

10. Fuel use

~ charcoal (18 kg)

~ Solar irradiation (1252,67 Wh)

: 155 kg

: 10

: 140 kg

: 0,74 %/hr

: 40,34 0C

: 38,12 0C

: 40,65 0C

: 1,4 %

: 0.05% – 0.51 %

: 43710,19 kJ/hr

: 99%

:1%

6/3/2008 30

Page 6: Outlines (Lecture-3) Introduction Drying theory Terminology (Treybal

Experiment 2: inclined collector‐drying chamber (Prototype)

Over all Dimension: :  L:2630 mm,W: 1530 mm,H: 2520 mmHolding capasity : 93,31 kgRecirculation capacity : 42,12 kg/hPneumatic conveyor : Centrifugal Blower, 0,25 kW, 22 V,AC Type 

YY 632‐2, RPM: 2840Coveyor pipe:

Diameter : 420 mmLength : 1080 mm

Drying chamber:Dimension : 2270 × 1080 mmPolicarbonate thickness: 1,2 mmBlackened metal sheet thickness : 0,5 mmInclination from horizontal : 200

6/3/2008 31

Test results‐inclined collector‐drying chamber

1. Initial mass

2. Effective drying time

3. Final mass after 7 hrs drying

4. Drying rate

5. Temperature in heating chamber

6. Temperature of drying air

7. Temperature of absorber

8. Increase of cracked grains

9. Homogenity in m.c.

10. Energy consumption

~ Charcoal (12 kg)

~ Solar radiation (161,26 Wh)

: 24 kg

: 7 hr

: 12 kg

: 1,03 %/hr

: 67,41 0C

: 47,11 0C

: 51,56 0C

: 2,4 %

: 0.04% – 0.41 %

: 34690,63 kJ/hr

6/3/2008 32

Conclusions1) Several design configurations of GHE solar dryer 

have been developed in Indonesia and many have been distributed throughout the country

2) The dryers may be used as the main component of a SPU 

3) Laboratory and field test results have shown that the developed GHE solar dryers can be used to dry food crops (rough rice, corn, soybeans), estate crops (coffee and cocoa beans,  cloves,  pepper, etc., marine products (a variety of fish, sea weeds, fish crackers)

6/3/2008 33