onsager equations, nonlinear fokker-planck...

198
Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter Constantin Introduction Onsager Equation General Goals Examples Onsager equation for general corpora Kinetics Embedding in Fluid Results on NS+NLFP Related NS results Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter Constantin Department of Mathematics The University of Chicago Charlie Fefferman Fest, Princeton May 2009

Upload: others

Post on 06-May-2020

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Onsager Equations, Nonlinear Fokker-PlanckEquations, Navier-Stokes Equations

Peter Constantin

Department of MathematicsThe University of Chicago

Charlie Fefferman Fest, Princeton May 2009

Page 2: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

In this talk:

• Equilibrium: Onsager Equation on Metric Spaces

• Kinetics: Nonlinear Fokker-Planck Equation

• Dynamics: Coupling to Navier-Stokes Equation

Page 3: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

In this talk:

• Equilibrium: Onsager Equation on Metric Spaces

• Kinetics: Nonlinear Fokker-Planck Equation

• Dynamics: Coupling to Navier-Stokes Equation

Page 4: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

In this talk:

• Equilibrium: Onsager Equation on Metric Spaces

• Kinetics: Nonlinear Fokker-Planck Equation

• Dynamics: Coupling to Navier-Stokes Equation

Page 5: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Why?

• Nanoscale self-assembly

• Microfluidics

• Biomaterials

• Gels and Foams

• Soft Lattices, Jamming

• Pattern recognition

Page 6: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Major Problems

1 Modeling of interactions in the correct moduli space

2 Derivation of Micro-Macro Effect

3 PDE existence theory for coupled system

Page 7: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Major Problems

1 Modeling of interactions in the correct moduli space

2 Derivation of Micro-Macro Effect

3 PDE existence theory for coupled system

Page 8: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Major Problems

1 Modeling of interactions in the correct moduli space

2 Derivation of Micro-Macro Effect

3 PDE existence theory for coupled system

Page 9: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Page 10: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

• Configuration space: M = compact, separable, metricspace. m ∈ M = corpus = doodad.

• Reference measure: dµ – Borel Probability on M.

• Corpora state f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,bi-Lipschitz.

• Potential U[f ](m) =∫M k(m, p)f (p)dµ(p)

• Potential U = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ+1

2

∫M

U[f ]fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1e−U[f ].

Page 11: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

• Configuration space: M = compact, separable, metricspace. m ∈ M = corpus = doodad.

• Reference measure: dµ – Borel Probability on M.

• Corpora state f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,bi-Lipschitz.

• Potential U[f ](m) =∫M k(m, p)f (p)dµ(p)

• Potential U = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ+1

2

∫M

U[f ]fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1e−U[f ].

Page 12: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

• Configuration space: M = compact, separable, metricspace. m ∈ M = corpus = doodad.

• Reference measure: dµ – Borel Probability on M.

• Corpora state f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,bi-Lipschitz.

• Potential U[f ](m) =∫M k(m, p)f (p)dµ(p)

• Potential U = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ+1

2

∫M

U[f ]fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1e−U[f ].

Page 13: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

• Configuration space: M = compact, separable, metricspace. m ∈ M = corpus = doodad.

• Reference measure: dµ – Borel Probability on M.

• Corpora state f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+,

symmetric,bi-Lipschitz.

• Potential U[f ](m) =∫M k(m, p)f (p)dµ(p)

• Potential U = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ+1

2

∫M

U[f ]fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1e−U[f ].

Page 14: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

• Configuration space: M = compact, separable, metricspace. m ∈ M = corpus = doodad.

• Reference measure: dµ – Borel Probability on M.

• Corpora state f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,bi-Lipschitz.

• Potential U[f ](m) =∫M k(m, p)f (p)dµ(p)

• Potential U = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ+1

2

∫M

U[f ]fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1e−U[f ].

Page 15: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

• Configuration space: M = compact, separable, metricspace. m ∈ M = corpus = doodad.

• Reference measure: dµ – Borel Probability on M.

• Corpora state f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,bi-Lipschitz.

• Potential U[f ](m) =∫M k(m, p)f (p)dµ(p)

• Potential U = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ+1

2

∫M

U[f ]fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1e−U[f ].

Page 16: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

• Configuration space: M = compact, separable, metricspace. m ∈ M = corpus = doodad.

• Reference measure: dµ – Borel Probability on M.

• Corpora state f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,bi-Lipschitz.

• Potential U[f ](m) =∫M k(m, p)f (p)dµ(p)

• Potential U = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ+1

2

∫M

U[f ]fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1e−U[f ].

Page 17: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

• Configuration space: M = compact, separable, metricspace. m ∈ M = corpus = doodad.

• Reference measure: dµ – Borel Probability on M.

• Corpora state f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,bi-Lipschitz.

• Potential U[f ](m) =∫M k(m, p)f (p)dµ(p)

• Potential U = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ+1

2

∫M

U[f ]fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1e−U[f ].

Page 18: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

• Configuration space: M = compact, separable, metricspace. m ∈ M = corpus = doodad.

• Reference measure: dµ – Borel Probability on M.

• Corpora state f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,bi-Lipschitz.

• Potential U[f ](m) =∫M k(m, p)f (p)dµ(p)

• Potential U = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ+1

2

∫M

U[f ]fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1e−U[f ].

Page 19: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Goals:

1 Existence theory for solutions of Onsager’s equation

2 Classification of high intensity limits

3 Selection mechanisms for high intensity limits

Page 20: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Goals:

1 Existence theory for solutions of Onsager’s equation

2 Classification of high intensity limits

3 Selection mechanisms for high intensity limits

Page 21: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Goals:

1 Existence theory for solutions of Onsager’s equation

2 Classification of high intensity limits

3 Selection mechanisms for high intensity limits

Page 22: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example: Rods

M = Sn−1, dµ = area.

U[f ](m) =

∫M

k(m, p)f (p)dµ(p)

k(m, p) = k(p,m), k smooth, real, given. Kernels:

• Maier-Saupe: M = Sn−1, k(x , y) = b sin2(φ(x , y))

• Onsager model: M = Sn−1, k(x , y) = b| sin(φ(x , y))|

b = intensity, inverse temperature.

Page 23: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example: Rods

M = Sn−1, dµ = area.

U[f ](m) =

∫M

k(m, p)f (p)dµ(p)

k(m, p) = k(p,m),

k smooth, real, given. Kernels:

• Maier-Saupe: M = Sn−1, k(x , y) = b sin2(φ(x , y))

• Onsager model: M = Sn−1, k(x , y) = b| sin(φ(x , y))|

b = intensity, inverse temperature.

Page 24: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example: Rods

M = Sn−1, dµ = area.

U[f ](m) =

∫M

k(m, p)f (p)dµ(p)

k(m, p) = k(p,m), k smooth, real, given.

Kernels:

• Maier-Saupe: M = Sn−1, k(x , y) = b sin2(φ(x , y))

• Onsager model: M = Sn−1, k(x , y) = b| sin(φ(x , y))|

b = intensity, inverse temperature.

Page 25: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example: Rods

M = Sn−1, dµ = area.

U[f ](m) =

∫M

k(m, p)f (p)dµ(p)

k(m, p) = k(p,m), k smooth, real, given. Kernels:

• Maier-Saupe: M = Sn−1, k(x , y) = b sin2(φ(x , y))

• Onsager model: M = Sn−1, k(x , y) = b| sin(φ(x , y))|

b = intensity, inverse temperature.

Page 26: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example: Rods

M = Sn−1, dµ = area.

U[f ](m) =

∫M

k(m, p)f (p)dµ(p)

k(m, p) = k(p,m), k smooth, real, given. Kernels:

• Maier-Saupe: M = Sn−1, k(x , y) = b sin2(φ(x , y))

• Onsager model: M = Sn−1, k(x , y) = b| sin(φ(x , y))|

b = intensity, inverse temperature.

Page 27: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example: Rods

M = Sn−1, dµ = area.

U[f ](m) =

∫M

k(m, p)f (p)dµ(p)

k(m, p) = k(p,m), k smooth, real, given. Kernels:

• Maier-Saupe: M = Sn−1, k(x , y) = b sin2(φ(x , y))

• Onsager model: M = Sn−1, k(x , y) = b| sin(φ(x , y))|

b = intensity, inverse temperature.

Page 28: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Dimension Reduction, Maier-Saupe

n × n symmetric, traceless matrix S :

S 7→ Z (S)

Z (S) =

∫Sn−1

eb(S ijmimj )dµ.

fS(m) = (Z (S))−1eb(S ijmimj )

σ(S)ij =

∫Sn−1

(mimj −

δijn

)fS(m)dµ.

TheoremOnsager’s equation with Maier-Saupe potential is equivalent to

σ(S) = S .

Page 29: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Dimension Reduction, Maier-Saupe

n × n symmetric, traceless matrix S :

S 7→ Z (S)

Z (S) =

∫Sn−1

eb(S ijmimj )dµ.

fS(m) = (Z (S))−1eb(S ijmimj )

σ(S)ij =

∫Sn−1

(mimj −

δijn

)fS(m)dµ.

TheoremOnsager’s equation with Maier-Saupe potential is equivalent to

σ(S) = S .

Page 30: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Dimension Reduction, Maier-Saupe

n × n symmetric, traceless matrix S :

S 7→ Z (S)

Z (S) =

∫Sn−1

eb(S ijmimj )dµ.

fS(m) = (Z (S))−1eb(S ijmimj )

σ(S)ij =

∫Sn−1

(mimj −

δijn

)fS(m)dµ.

TheoremOnsager’s equation with Maier-Saupe potential is equivalent to

σ(S) = S .

Page 31: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Dimension Reduction, Maier-Saupe

n × n symmetric, traceless matrix S :

S 7→ Z (S)

Z (S) =

∫Sn−1

eb(S ijmimj )dµ.

fS(m) = (Z (S))−1eb(S ijmimj )

σ(S)ij =

∫Sn−1

(mimj −

δijn

)fS(m)dµ.

TheoremOnsager’s equation with Maier-Saupe potential is equivalent to

σ(S) = S .

Page 32: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Limit b →∞

[φ] =

∫S2

φ(m)f (m)dµ.

Isotropic:

limb→∞

[φ] =1

∫S2

φ(p)dµ

Oblate:

limb→∞

[φ] =1

∫ 2π

0φ(cosϕ, sinϕ, 0)dϕ

Prolate:lim

b→∞[φ] = φ(m), m ∈ S2.

The prolate state is selected. Why?

Page 33: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Limit b →∞

[φ] =

∫S2

φ(m)f (m)dµ.

Isotropic:

limb→∞

[φ] =1

∫S2

φ(p)dµ

Oblate:

limb→∞

[φ] =1

∫ 2π

0φ(cosϕ, sinϕ, 0)dϕ

Prolate:lim

b→∞[φ] = φ(m), m ∈ S2.

The prolate state is selected. Why?

Page 34: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Limit b →∞

[φ] =

∫S2

φ(m)f (m)dµ.

Isotropic:

limb→∞

[φ] =1

∫S2

φ(p)dµ

Oblate:

limb→∞

[φ] =1

∫ 2π

0φ(cosϕ, sinϕ, 0)dϕ

Prolate:lim

b→∞[φ] = φ(m), m ∈ S2.

The prolate state is selected. Why?

Page 35: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Limit b →∞

[φ] =

∫S2

φ(m)f (m)dµ.

Isotropic:

limb→∞

[φ] =1

∫S2

φ(p)dµ

Oblate:

limb→∞

[φ] =1

∫ 2π

0φ(cosϕ, sinϕ, 0)dϕ

Prolate:lim

b→∞[φ] = φ(m), m ∈ S2.

The prolate state is selected. Why?

Page 36: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Limit b →∞

[φ] =

∫S2

φ(m)f (m)dµ.

Isotropic:

limb→∞

[φ] =1

∫S2

φ(p)dµ

Oblate:

limb→∞

[φ] =1

∫ 2π

0φ(cosϕ, sinϕ, 0)dϕ

Prolate:lim

b→∞[φ] = φ(m), m ∈ S2.

The prolate state is selected. Why?

Page 37: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑

i

ki (pi , qi )

U[f ] =N∑

i=1

Ui [f ], with

Ui [f ](pi ) =

∫eM ki (pi , qi )f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1e−eUef

Z = ΠNj=1Zj , with Zj =

∫Mj

e−Uj [fj ]dµj , fj = (Zj)−1e−Uj [fj ]

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 38: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑

i

ki (pi , qi )

U[f ] =N∑

i=1

Ui [f ], with

Ui [f ](pi ) =

∫eM ki (pi , qi )f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1e−eUef

Z = ΠNj=1Zj , with Zj =

∫Mj

e−Uj [fj ]dµj , fj = (Zj)−1e−Uj [fj ]

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 39: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑

i

ki (pi , qi )

U[f ] =N∑

i=1

Ui [f ],

with

Ui [f ](pi ) =

∫eM ki (pi , qi )f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1e−eUef

Z = ΠNj=1Zj , with Zj =

∫Mj

e−Uj [fj ]dµj , fj = (Zj)−1e−Uj [fj ]

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 40: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑

i

ki (pi , qi )

U[f ] =N∑

i=1

Ui [f ], with

Ui [f ](pi ) =

∫eM ki (pi , qi )f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1e−eUef

Z = ΠNj=1Zj , with Zj =

∫Mj

e−Uj [fj ]dµj , fj = (Zj)−1e−Uj [fj ]

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 41: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑

i

ki (pi , qi )

U[f ] =N∑

i=1

Ui [f ], with

Ui [f ](pi ) =

∫eM ki (pi , qi )f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1e−eUef

Z = ΠNj=1Zj , with Zj =

∫Mj

e−Uj [fj ]dµj , fj = (Zj)−1e−Uj [fj ]

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 42: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑

i

ki (pi , qi )

U[f ] =N∑

i=1

Ui [f ], with

Ui [f ](pi ) =

∫eM ki (pi , qi )f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1e−eUef

Z = ΠNj=1Zj , with Zj =

∫Mj

e−Uj [fj ]dµj , fj = (Zj)−1e−Uj [fj ]

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 43: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑

i

ki (pi , qi )

U[f ] =N∑

i=1

Ui [f ], with

Ui [f ](pi ) =

∫eM ki (pi , qi )f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1e−eUef

Z = ΠNj=1Zj , with Zj =

∫Mj

e−Uj [fj ]dµj , fj = (Zj)−1e−Uj [fj ]

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 44: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example of Interacting Corpora

M = S1, M = S1 × S1.

U[f ](p1, p2) =b∫

T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ) . Additionalsolution f1(p1, p2). As b →∞,

limb→∞

f1(p1, p2) = δ((

p1 − p2 −π

2

)modπ

)This state is selected. Why ?

Page 45: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example of Interacting Corpora

M = S1, M = S1 × S1.

U[f ](p1, p2) =b∫

T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ) . Additionalsolution f1(p1, p2). As b →∞,

limb→∞

f1(p1, p2) = δ((

p1 − p2 −π

2

)modπ

)This state is selected. Why ?

Page 46: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example of Interacting Corpora

M = S1, M = S1 × S1.

U[f ](p1, p2) =b∫

T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ) . Additionalsolution f1(p1, p2). As b →∞,

limb→∞

f1(p1, p2) = δ((

p1 − p2 −π

2

)modπ

)This state is selected. Why ?

Page 47: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example of Interacting Corpora

M = S1, M = S1 × S1.

U[f ](p1, p2) =b∫

T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ) . Additionalsolution f1(p1, p2). As b →∞,

limb→∞

f1(p1, p2) = δ((

p1 − p2 −π

2

)modπ

)This state is selected. Why ?

Page 48: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example of Interacting Corpora

M = S1, M = S1 × S1.

U[f ](p1, p2) =b∫

T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ) .

Additionalsolution f1(p1, p2). As b →∞,

limb→∞

f1(p1, p2) = δ((

p1 − p2 −π

2

)modπ

)This state is selected. Why ?

Page 49: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example of Interacting Corpora

M = S1, M = S1 × S1.

U[f ](p1, p2) =b∫

T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ) . Additionalsolution f1(p1, p2).

As b →∞,

limb→∞

f1(p1, p2) = δ((

p1 − p2 −π

2

)modπ

)This state is selected. Why ?

Page 50: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example of Interacting Corpora

M = S1, M = S1 × S1.

U[f ](p1, p2) =b∫

T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ) . Additionalsolution f1(p1, p2). As b →∞,

limb→∞

f1(p1, p2) = δ((

p1 − p2 −π

2

)modπ

)

This state is selected. Why ?

Page 51: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Example of Interacting Corpora

M = S1, M = S1 × S1.

U[f ](p1, p2) =b∫

T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ) . Additionalsolution f1(p1, p2). As b →∞,

limb→∞

f1(p1, p2) = δ((

p1 − p2 −π

2

)modπ

)This state is selected. Why ?

Page 52: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ

U[f ](x1, x2, θ) =

∫M

(x1x2 sin θ − y1y2 sinφ)2f (y1, y2, φ)dµ

Let

A[f ] =

∫M

(x1x2 sin θ)f (x1, x2, θ)dµ.

Let gb be any weakly convergent sequence of solutions ofOnsager’s equation, b →∞.Then,

limb→∞

A[gb] = 0.

Why is this different than before?

Page 53: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ

U[f ](x1, x2, θ) =

∫M

(x1x2 sin θ − y1y2 sinφ)2f (y1, y2, φ)dµ

Let

A[f ] =

∫M

(x1x2 sin θ)f (x1, x2, θ)dµ.

Let gb be any weakly convergent sequence of solutions ofOnsager’s equation, b →∞.Then,

limb→∞

A[gb] = 0.

Why is this different than before?

Page 54: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ

U[f ](x1, x2, θ) =

∫M

(x1x2 sin θ − y1y2 sinφ)2f (y1, y2, φ)dµ

Let

A[f ] =

∫M

(x1x2 sin θ)f (x1, x2, θ)dµ.

Let gb be any weakly convergent sequence of solutions ofOnsager’s equation, b →∞.Then,

limb→∞

A[gb] = 0.

Why is this different than before?

Page 55: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ

U[f ](x1, x2, θ) =

∫M

(x1x2 sin θ − y1y2 sinφ)2f (y1, y2, φ)dµ

Let

A[f ] =

∫M

(x1x2 sin θ)f (x1, x2, θ)dµ.

Let gb be any weakly convergent sequence of solutions ofOnsager’s equation, b →∞.

Then,

limb→∞

A[gb] = 0.

Why is this different than before?

Page 56: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ

U[f ](x1, x2, θ) =

∫M

(x1x2 sin θ − y1y2 sinφ)2f (y1, y2, φ)dµ

Let

A[f ] =

∫M

(x1x2 sin θ)f (x1, x2, θ)dµ.

Let gb be any weakly convergent sequence of solutions ofOnsager’s equation, b →∞.Then,

limb→∞

A[gb] = 0.

Why is this different than before?

Page 57: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ

U[f ](x1, x2, θ) =

∫M

(x1x2 sin θ − y1y2 sinφ)2f (y1, y2, φ)dµ

Let

A[f ] =

∫M

(x1x2 sin θ)f (x1, x2, θ)dµ.

Let gb be any weakly convergent sequence of solutions ofOnsager’s equation, b →∞.Then,

limb→∞

A[gb] = 0.

Why is this different than before?

Page 58: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Page 59: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Packing

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn.

Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

U[f ](p) =

∫eM[|F (p)− F (q)|2 + d2(p, q)

]f (q)dµ

Connection to the example of freely articulated 2n corpora,jamming.

Page 60: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Packing

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn. Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

U[f ](p) =

∫eM[|F (p)− F (q)|2 + d2(p, q)

]f (q)dµ

Connection to the example of freely articulated 2n corpora,jamming.

Page 61: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Packing

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn. Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

U[f ](p) =

∫eM[|F (p)− F (q)|2 + d2(p, q)

]f (q)dµ

Connection to the example of freely articulated 2n corpora,jamming.

Page 62: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Packing

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn. Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

U[f ](p) =

∫eM[|F (p)− F (q)|2 + d2(p, q)

]f (q)dµ

Connection to the example of freely articulated 2n corpora,jamming.

Page 63: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Packing

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn. Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

U[f ](p) =

∫eM[|F (p)− F (q)|2 + d2(p, q)

]f (q)dµ

Connection to the example of freely articulated 2n corpora,jamming.

Page 64: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

M compact metric space, d distance, µ Borel probabilitymeasure on M.

Let

k : M ×M → R

• symmetric k(m, p) = k(p,m)

• bounded below k(m, n) ≥ 0

• uniformly bi-Lipschitz:

|k(m, n)− k(p, n)| ≤ Ld(m, p)

If f > 0,∫M fdµ = 1, define

E [f ] =

∫M

f log fdµ+b

2

∫M

∫M

k(p, q)f (p)dµ(p)f (q)dµ(q).

Page 65: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

M compact metric space, d distance, µ Borel probabilitymeasure on M. Let

k : M ×M → R

• symmetric k(m, p) = k(p,m)

• bounded below k(m, n) ≥ 0

• uniformly bi-Lipschitz:

|k(m, n)− k(p, n)| ≤ Ld(m, p)

If f > 0,∫M fdµ = 1, define

E [f ] =

∫M

f log fdµ+b

2

∫M

∫M

k(p, q)f (p)dµ(p)f (q)dµ(q).

Page 66: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

M compact metric space, d distance, µ Borel probabilitymeasure on M. Let

k : M ×M → R

• symmetric k(m, p) = k(p,m)

• bounded below k(m, n) ≥ 0

• uniformly bi-Lipschitz:

|k(m, n)− k(p, n)| ≤ Ld(m, p)

If f > 0,∫M fdµ = 1, define

E [f ] =

∫M

f log fdµ+b

2

∫M

∫M

k(p, q)f (p)dµ(p)f (q)dµ(q).

Page 67: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

M compact metric space, d distance, µ Borel probabilitymeasure on M. Let

k : M ×M → R

• symmetric k(m, p) = k(p,m)

• bounded below k(m, n) ≥ 0

• uniformly bi-Lipschitz:

|k(m, n)− k(p, n)| ≤ Ld(m, p)

If f > 0,∫M fdµ = 1, define

E [f ] =

∫M

f log fdµ+b

2

∫M

∫M

k(p, q)f (p)dµ(p)f (q)dµ(q).

Page 68: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

k(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 69: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

k(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 70: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

k(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 71: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

k(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 72: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

k(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 73: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

k(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 74: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

The ur-corpus

Let M be a compact metrizable space and let k(x , y) besymmetric, bi-Lipschitz and bounded below.

In addition,assume:

k(x , x) = 0.

Theorem(C-Zlatos) Let ν be a weak limit of a sequence fndµ ofminima of the free energy E corresponding to bn →∞. Thenthere exists m ∈ M such that ν is concentrated on the level setΣ(m) = p | k(m, p) = 0.This explains why the prolate Maier-Saupe state is selected.Pattern recognition example: Rhombi centered at the origin,with k the area of the symmetric difference. The ur-rhombus isthe square.

Page 75: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

The ur-corpus

Let M be a compact metrizable space and let k(x , y) besymmetric, bi-Lipschitz and bounded below. In addition,assume:

k(x , x) = 0.

Theorem(C-Zlatos) Let ν be a weak limit of a sequence fndµ ofminima of the free energy E corresponding to bn →∞. Thenthere exists m ∈ M such that ν is concentrated on the level setΣ(m) = p | k(m, p) = 0.This explains why the prolate Maier-Saupe state is selected.Pattern recognition example: Rhombi centered at the origin,with k the area of the symmetric difference. The ur-rhombus isthe square.

Page 76: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

The ur-corpus

Let M be a compact metrizable space and let k(x , y) besymmetric, bi-Lipschitz and bounded below. In addition,assume:

k(x , x) = 0.

Theorem(C-Zlatos) Let ν be a weak limit of a sequence fndµ ofminima of the free energy E corresponding to bn →∞. Thenthere exists m ∈ M such that ν is concentrated on the level setΣ(m) = p | k(m, p) = 0.

This explains why the prolate Maier-Saupe state is selected.Pattern recognition example: Rhombi centered at the origin,with k the area of the symmetric difference. The ur-rhombus isthe square.

Page 77: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

The ur-corpus

Let M be a compact metrizable space and let k(x , y) besymmetric, bi-Lipschitz and bounded below. In addition,assume:

k(x , x) = 0.

Theorem(C-Zlatos) Let ν be a weak limit of a sequence fndµ ofminima of the free energy E corresponding to bn →∞. Thenthere exists m ∈ M such that ν is concentrated on the level setΣ(m) = p | k(m, p) = 0.This explains why the prolate Maier-Saupe state is selected.

Pattern recognition example: Rhombi centered at the origin,with k the area of the symmetric difference. The ur-rhombus isthe square.

Page 78: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

The ur-corpus

Let M be a compact metrizable space and let k(x , y) besymmetric, bi-Lipschitz and bounded below. In addition,assume:

k(x , x) = 0.

Theorem(C-Zlatos) Let ν be a weak limit of a sequence fndµ ofminima of the free energy E corresponding to bn →∞. Thenthere exists m ∈ M such that ν is concentrated on the level setΣ(m) = p | k(m, p) = 0.This explains why the prolate Maier-Saupe state is selected.Pattern recognition example: Rhombi centered at the origin,with k the area of the symmetric difference.

The ur-rhombus isthe square.

Page 79: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

The ur-corpus

Let M be a compact metrizable space and let k(x , y) besymmetric, bi-Lipschitz and bounded below. In addition,assume:

k(x , x) = 0.

Theorem(C-Zlatos) Let ν be a weak limit of a sequence fndµ ofminima of the free energy E corresponding to bn →∞. Thenthere exists m ∈ M such that ν is concentrated on the level setΣ(m) = p | k(m, p) = 0.This explains why the prolate Maier-Saupe state is selected.Pattern recognition example: Rhombi centered at the origin,with k the area of the symmetric difference. The ur-rhombus isthe square.

Page 80: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Principle: if a µ measure-preserving transformation Texists such that locally around p = p0,k(Tp,Tq) ≤ ck(p, q) with c < 1, then p0 cannot be anur-corpus.

If a local k-preserving transformation around p = p0 hasthe property that µ(T (B)) ≥ Cµ(B) for small balls aroundp0, with C > 1, then p0 cannot be an ur-corpus.

Page 81: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Principle: if a µ measure-preserving transformation Texists such that locally around p = p0,k(Tp,Tq) ≤ ck(p, q) with c < 1, then p0 cannot be anur-corpus.If a local k-preserving transformation around p = p0 hasthe property that µ(T (B)) ≥ Cµ(B) for small balls aroundp0, with C > 1, then p0 cannot be an ur-corpus.

Page 82: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem(Zlatos-C) Let A0,A1 ⊆ M be compacts such that k(p, q) = 0for any p, q ∈ Aj (j = 0, 1) and letBj(ε) = p ∈ M | d(p,Aj) < ε. Assume that for some εj > 0there is a 1-1 map T : B1(ε1)→ B0(ε0)

such that T ,T−1 aremeasurable and there is C > 1 such that

∀p, q ∈ B1(ε1) : k(T (p),T (q)) ≤ k(p, q)

∀B ⊆ B1(ε1) measurable : µ(T (B)) ≥ Cµ(B).

Assume also that for each p ∈ A1, q ∈ M \ B1(ε1) we havek(p, q) > 0.Then ν(A1) < 1 for each measure ν that is a zerotemperature weak limit of minimizers.

This explains the selection of the triangle of maximal areawhen the sides are of fixed length, and of minimal area whenthe sides are allowed to shrink.

Page 83: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem(Zlatos-C) Let A0,A1 ⊆ M be compacts such that k(p, q) = 0for any p, q ∈ Aj (j = 0, 1) and letBj(ε) = p ∈ M | d(p,Aj) < ε. Assume that for some εj > 0there is a 1-1 map T : B1(ε1)→ B0(ε0) such that T ,T−1 aremeasurable

and there is C > 1 such that

∀p, q ∈ B1(ε1) : k(T (p),T (q)) ≤ k(p, q)

∀B ⊆ B1(ε1) measurable : µ(T (B)) ≥ Cµ(B).

Assume also that for each p ∈ A1, q ∈ M \ B1(ε1) we havek(p, q) > 0.Then ν(A1) < 1 for each measure ν that is a zerotemperature weak limit of minimizers.

This explains the selection of the triangle of maximal areawhen the sides are of fixed length, and of minimal area whenthe sides are allowed to shrink.

Page 84: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem(Zlatos-C) Let A0,A1 ⊆ M be compacts such that k(p, q) = 0for any p, q ∈ Aj (j = 0, 1) and letBj(ε) = p ∈ M | d(p,Aj) < ε. Assume that for some εj > 0there is a 1-1 map T : B1(ε1)→ B0(ε0) such that T ,T−1 aremeasurable and there is C > 1 such that

∀p, q ∈ B1(ε1) : k(T (p),T (q)) ≤ k(p, q)

∀B ⊆ B1(ε1) measurable : µ(T (B)) ≥ Cµ(B).

Assume also that for each p ∈ A1, q ∈ M \ B1(ε1) we havek(p, q) > 0.Then ν(A1) < 1 for each measure ν that is a zerotemperature weak limit of minimizers.

This explains the selection of the triangle of maximal areawhen the sides are of fixed length, and of minimal area whenthe sides are allowed to shrink.

Page 85: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem(Zlatos-C) Let A0,A1 ⊆ M be compacts such that k(p, q) = 0for any p, q ∈ Aj (j = 0, 1) and letBj(ε) = p ∈ M | d(p,Aj) < ε. Assume that for some εj > 0there is a 1-1 map T : B1(ε1)→ B0(ε0) such that T ,T−1 aremeasurable and there is C > 1 such that

∀p, q ∈ B1(ε1) : k(T (p),T (q)) ≤ k(p, q)

∀B ⊆ B1(ε1) measurable : µ(T (B)) ≥ Cµ(B).

Assume also that for each p ∈ A1, q ∈ M \ B1(ε1) we havek(p, q) > 0.

Then ν(A1) < 1 for each measure ν that is a zerotemperature weak limit of minimizers.

This explains the selection of the triangle of maximal areawhen the sides are of fixed length, and of minimal area whenthe sides are allowed to shrink.

Page 86: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem(Zlatos-C) Let A0,A1 ⊆ M be compacts such that k(p, q) = 0for any p, q ∈ Aj (j = 0, 1) and letBj(ε) = p ∈ M | d(p,Aj) < ε. Assume that for some εj > 0there is a 1-1 map T : B1(ε1)→ B0(ε0) such that T ,T−1 aremeasurable and there is C > 1 such that

∀p, q ∈ B1(ε1) : k(T (p),T (q)) ≤ k(p, q)

∀B ⊆ B1(ε1) measurable : µ(T (B)) ≥ Cµ(B).

Assume also that for each p ∈ A1, q ∈ M \ B1(ε1) we havek(p, q) > 0.Then ν(A1) < 1 for each measure ν that is a zerotemperature weak limit of minimizers.

This explains the selection of the triangle of maximal areawhen the sides are of fixed length, and of minimal area whenthe sides are allowed to shrink.

Page 87: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem(Zlatos-C) Let A0,A1 ⊆ M be compacts such that k(p, q) = 0for any p, q ∈ Aj (j = 0, 1) and letBj(ε) = p ∈ M | d(p,Aj) < ε. Assume that for some εj > 0there is a 1-1 map T : B1(ε1)→ B0(ε0) such that T ,T−1 aremeasurable and there is C > 1 such that

∀p, q ∈ B1(ε1) : k(T (p),T (q)) ≤ k(p, q)

∀B ⊆ B1(ε1) measurable : µ(T (B)) ≥ Cµ(B).

Assume also that for each p ∈ A1, q ∈ M \ B1(ε1) we havek(p, q) > 0.Then ν(A1) < 1 for each measure ν that is a zerotemperature weak limit of minimizers.

This explains the selection of the triangle of maximal areawhen the sides are of fixed length, and of minimal area whenthe sides are allowed to shrink.

Page 88: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension d

with metric gαβ, g = det(gαβ), (gαβ) = (gαβ)−1, volumeelement dµ =

√gdφ in local coordinates φ. Generalized

Doi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 89: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension dwith metric gαβ,

g = det(gαβ), (gαβ) = (gαβ)−1, volumeelement dµ =

√gdφ in local coordinates φ. Generalized

Doi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 90: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension dwith metric gαβ, g = det(gαβ),

(gαβ) = (gαβ)−1, volumeelement dµ =

√gdφ in local coordinates φ. Generalized

Doi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 91: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension dwith metric gαβ, g = det(gαβ), (gαβ) = (gαβ)−1,

volumeelement dµ =

√gdφ in local coordinates φ. Generalized

Doi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 92: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension dwith metric gαβ, g = det(gαβ), (gαβ) = (gαβ)−1, volumeelement dµ =

√gdφ in local coordinates φ.

GeneralizedDoi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 93: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension dwith metric gαβ, g = det(gαβ), (gαβ) = (gαβ)−1, volumeelement dµ =

√gdφ in local coordinates φ. Generalized

Doi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 94: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension dwith metric gαβ, g = det(gαβ), (gαβ) = (gαβ)−1, volumeelement dµ =

√gdφ in local coordinates φ. Generalized

Doi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 95: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension dwith metric gαβ, g = det(gαβ), (gαβ) = (gαβ)−1, volumeelement dµ =

√gdφ in local coordinates φ. Generalized

Doi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 96: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension dwith metric gαβ, g = det(gαβ), (gαβ) = (gαβ)−1, volumeelement dµ =

√gdφ in local coordinates φ. Generalized

Doi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 97: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Kinetics

M compact, connected Riemannian manifold of dimension dwith metric gαβ, g = det(gαβ), (gαβ) = (gαβ)−1, volumeelement dµ =

√gdφ in local coordinates φ. Generalized

Doi-Smoluchowski equation

∂t f = ∆g f + divg (f∇g U)

∆g Laplace-Beltrami,

divg (f∇g U) =1√

g∂α

(√ggαβf ∂βU

).

U[f ](p) =

∫M

k(p, q)f (q)dµ(q)

Page 98: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Dissipative Structure

Free Energy:

E [f ] =

∫M

log f +

1

2U[f ]

fdµ

NLFP:

∂t f = divg ·(

f∇g

(δE [f ]

δf

))Lyapunov functional:

d

dtE [f ] = −

∫M

f

∣∣∣∣∇g

(δE [f ]

δf

)∣∣∣∣2 dµ

Page 99: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Dissipative Structure

Free Energy:

E [f ] =

∫M

log f +

1

2U[f ]

fdµ

NLFP:

∂t f = divg ·(

f∇g

(δE [f ]

δf

))Lyapunov functional:

d

dtE [f ] = −

∫M

f

∣∣∣∣∇g

(δE [f ]

δf

)∣∣∣∣2 dµ

Page 100: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Dissipative Structure

Free Energy:

E [f ] =

∫M

log f +

1

2U[f ]

fdµ

NLFP:

∂t f = divg ·(

f∇g

(δE [f ]

δf

))Lyapunov functional:

d

dtE [f ] = −

∫M

f

∣∣∣∣∇g

(δE [f ]

δf

)∣∣∣∣2 dµ

Page 101: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Dissipative Structure

Free Energy:

E [f ] =

∫M

log f +

1

2U[f ]

fdµ

NLFP:

∂t f = divg ·(

f∇g

(δE [f ]

δf

))

Lyapunov functional:

d

dtE [f ] = −

∫M

f

∣∣∣∣∇g

(δE [f ]

δf

)∣∣∣∣2 dµ

Page 102: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Dissipative Structure

Free Energy:

E [f ] =

∫M

log f +

1

2U[f ]

fdµ

NLFP:

∂t f = divg ·(

f∇g

(δE [f ]

δf

))Lyapunov functional:

d

dtE [f ] = −

∫M

f

∣∣∣∣∇g

(δE [f ]

δf

)∣∣∣∣2 dµ

Page 103: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Connection to Onsager’s equation

For Doi-Smoluchowski

δE [f ]

δf= log f + U[f ]

Time independent solutions: Onsager equation:

f = Z−1e−U[f ]

Dynamics: nontrivial. Multiple steady states, gradient system,finite dimensional attractor. Inertial Manifolds: Vukadinovic(2008-9). The non-smooth setting needs to be developed:gradient flow in space of probabilities on metric spaces, (seeAmbrosio et al).

Page 104: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Connection to Onsager’s equation

For Doi-Smoluchowski

δE [f ]

δf= log f + U[f ]

Time independent solutions: Onsager equation:

f = Z−1e−U[f ]

Dynamics: nontrivial. Multiple steady states, gradient system,finite dimensional attractor. Inertial Manifolds: Vukadinovic(2008-9). The non-smooth setting needs to be developed:gradient flow in space of probabilities on metric spaces, (seeAmbrosio et al).

Page 105: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Connection to Onsager’s equation

For Doi-Smoluchowski

δE [f ]

δf= log f + U[f ]

Time independent solutions:

Onsager equation:

f = Z−1e−U[f ]

Dynamics: nontrivial. Multiple steady states, gradient system,finite dimensional attractor. Inertial Manifolds: Vukadinovic(2008-9). The non-smooth setting needs to be developed:gradient flow in space of probabilities on metric spaces, (seeAmbrosio et al).

Page 106: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Connection to Onsager’s equation

For Doi-Smoluchowski

δE [f ]

δf= log f + U[f ]

Time independent solutions: Onsager equation:

f = Z−1e−U[f ]

Dynamics: nontrivial. Multiple steady states, gradient system,finite dimensional attractor. Inertial Manifolds: Vukadinovic(2008-9). The non-smooth setting needs to be developed:gradient flow in space of probabilities on metric spaces, (seeAmbrosio et al).

Page 107: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Connection to Onsager’s equation

For Doi-Smoluchowski

δE [f ]

δf= log f + U[f ]

Time independent solutions: Onsager equation:

f = Z−1e−U[f ]

Dynamics: nontrivial. Multiple steady states, gradient system,finite dimensional attractor.

Inertial Manifolds: Vukadinovic(2008-9). The non-smooth setting needs to be developed:gradient flow in space of probabilities on metric spaces, (seeAmbrosio et al).

Page 108: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Connection to Onsager’s equation

For Doi-Smoluchowski

δE [f ]

δf= log f + U[f ]

Time independent solutions: Onsager equation:

f = Z−1e−U[f ]

Dynamics: nontrivial. Multiple steady states, gradient system,finite dimensional attractor. Inertial Manifolds: Vukadinovic(2008-9).

The non-smooth setting needs to be developed:gradient flow in space of probabilities on metric spaces, (seeAmbrosio et al).

Page 109: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Connection to Onsager’s equation

For Doi-Smoluchowski

δE [f ]

δf= log f + U[f ]

Time independent solutions: Onsager equation:

f = Z−1e−U[f ]

Dynamics: nontrivial. Multiple steady states, gradient system,finite dimensional attractor. Inertial Manifolds: Vukadinovic(2008-9). The non-smooth setting needs to be developed:gradient flow in space of probabilities on metric spaces, (seeAmbrosio et al).

Page 110: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Embedding in Fluid: Passive

∂t f + u · ∇x f + divg (W f ) = divg (f∇g (log f + U[f ]))

with

W (x ,m, t) =n∑

i ,j=1

cαji (m)∂ui

∂x j(x , t)

c ·ji (m) ∈ T ∗m(M).

Example, rods in 3D: M = S2,

W (x ,m, t) = (∇xu(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, if scales areseparated.

Page 111: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Embedding in Fluid: Passive

∂t f + u · ∇x f + divg (W f ) = divg (f∇g (log f + U[f ]))

with

W (x ,m, t) =n∑

i ,j=1

cαji (m)∂ui

∂x j(x , t)

c ·ji (m) ∈ T ∗m(M).

Example, rods in 3D: M = S2,

W (x ,m, t) = (∇xu(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, if scales areseparated.

Page 112: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Embedding in Fluid: Passive

∂t f + u · ∇x f + divg (W f ) = divg (f∇g (log f + U[f ]))

with

W (x ,m, t) =n∑

i ,j=1

cαji (m)∂ui

∂x j(x , t)

c ·ji (m) ∈ T ∗m(M).

Example, rods in 3D: M = S2,

W (x ,m, t) = (∇xu(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, if scales areseparated.

Page 113: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Embedding in Fluid: Passive

∂t f + u · ∇x f + divg (W f ) = divg (f∇g (log f + U[f ]))

with

W (x ,m, t) =n∑

i ,j=1

cαji (m)∂ui

∂x j(x , t)

c ·ji (m) ∈ T ∗m(M).

Example, rods in 3D:

M = S2,

W (x ,m, t) = (∇xu(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, if scales areseparated.

Page 114: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Embedding in Fluid: Passive

∂t f + u · ∇x f + divg (W f ) = divg (f∇g (log f + U[f ]))

with

W (x ,m, t) =n∑

i ,j=1

cαji (m)∂ui

∂x j(x , t)

c ·ji (m) ∈ T ∗m(M).

Example, rods in 3D: M = S2,

W (x ,m, t) = (∇xu(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, if scales areseparated.

Page 115: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Embedding in Fluid: Passive

∂t f + u · ∇x f + divg (W f ) = divg (f∇g (log f + U[f ]))

with

W (x ,m, t) =n∑

i ,j=1

cαji (m)∂ui

∂x j(x , t)

c ·ji (m) ∈ T ∗m(M).

Example, rods in 3D: M = S2,

W (x ,m, t) = (∇xu(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, if scales areseparated.

Page 116: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Embedding in Fluid: Passive

∂t f + u · ∇x f + divg (W f ) = divg (f∇g (log f + U[f ]))

with

W (x ,m, t) =n∑

i ,j=1

cαji (m)∂ui

∂x j(x , t)

c ·ji (m) ∈ T ∗m(M).

Example, rods in 3D: M = S2,

W (x ,m, t) = (∇xu(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, if scales areseparated.

Page 117: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Active: Navier-Stokes

∂tu + u · ∇u +∇p = ν∆u +∇ · σ∇ · u = 0

σ = σij(x , t)

added stress tensor.

Micro-Macro Effect

σ(x) =

∫Mc · ∇g U[f ](x ,m)− divg c f (x ,m)dµ(m) ∗

f = Z−1e−U[f ] ⇒ σ = 0 U = 0, W =(∇xu)m −m((∇xu)m ·m) ⇒ σ =

∫M(m ⊗m − 1

3 )dµ

Page 118: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Active: Navier-Stokes

∂tu + u · ∇u +∇p = ν∆u +∇ · σ∇ · u = 0

σ = σij(x , t)

added stress tensor.

Micro-Macro Effect

σ(x) =

∫Mc · ∇g U[f ](x ,m)− divg c f (x ,m)dµ(m) ∗

f = Z−1e−U[f ] ⇒ σ = 0 U = 0, W =(∇xu)m −m((∇xu)m ·m) ⇒ σ =

∫M(m ⊗m − 1

3 )dµ

Page 119: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Active: Navier-Stokes

∂tu + u · ∇u +∇p = ν∆u +∇ · σ∇ · u = 0

σ = σij(x , t)

added stress tensor.

Micro-Macro Effect

σ(x) =

∫Mc · ∇g U[f ](x ,m)− divg c f (x ,m)dµ(m) ∗

f = Z−1e−U[f ] ⇒ σ = 0 U = 0, W =(∇xu)m −m((∇xu)m ·m) ⇒ σ =

∫M(m ⊗m − 1

3 )dµ

Page 120: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Active: Navier-Stokes

∂tu + u · ∇u +∇p = ν∆u +∇ · σ∇ · u = 0

σ = σij(x , t)

added stress tensor.

Micro-Macro Effect

σ(x) =

∫Mc · ∇g U[f ](x ,m)− divg c f (x ,m)dµ(m) ∗

f = Z−1e−U[f ] ⇒ σ = 0

U = 0, W =(∇xu)m −m((∇xu)m ·m) ⇒ σ =

∫M(m ⊗m − 1

3 )dµ

Page 121: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Active: Navier-Stokes

∂tu + u · ∇u +∇p = ν∆u +∇ · σ∇ · u = 0

σ = σij(x , t)

added stress tensor.

Micro-Macro Effect

σ(x) =

∫Mc · ∇g U[f ](x ,m)− divg c f (x ,m)dµ(m) ∗

f = Z−1e−U[f ] ⇒ σ = 0 U = 0, W =(∇xu)m −m((∇xu)m ·m) ⇒ σ =

∫M(m ⊗m − 1

3 )dµ

Page 122: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem3DNS + NL Fokker-Planck eqns with *. Then

E (t) = 12

∫|u|2dx+

+∫

f log f + 12 (U[f ])f

dxdµ.

is nondecreasing on solutions.

If (u, f ) is a smooth solutionthen

dEdt = −ν

∫|∇xu|2dx−

−∫ ∫

M

f |∇g (log f + U[f ])|2 dµdx .

If the smooth solution is time independent, then u = 0 and fsolves the Onsager equation

f = Z−1e−U[f ].

Page 123: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem3DNS + NL Fokker-Planck eqns with *. Then

E (t) = 12

∫|u|2dx+

+∫

f log f + 12 (U[f ])f

dxdµ.

is nondecreasing on solutions. If (u, f ) is a smooth solutionthen

dEdt = −ν

∫|∇xu|2dx−

−∫ ∫

M

f |∇g (log f + U[f ])|2 dµdx .

If the smooth solution is time independent, then u = 0 and fsolves the Onsager equation

f = Z−1e−U[f ].

Page 124: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem3DNS + NL Fokker-Planck eqns with *. Then

E (t) = 12

∫|u|2dx+

+∫

f log f + 12 (U[f ])f

dxdµ.

is nondecreasing on solutions. If (u, f ) is a smooth solutionthen

dEdt = −ν

∫|∇xu|2dx−

−∫ ∫

M

f |∇g (log f + U[f ])|2 dµdx .

If the smooth solution is time independent, then u = 0 and fsolves the Onsager equation

f = Z−1e−U[f ].

Page 125: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

NLFP + 3D time-dependent Stokes

∂t f + u · ∇x f + divg (Wf ) = divg (f∇g (log f + U[f ])),∂tu − ν∆xu +∇xp = divxσ + F , ∇x · u = 0.

TheoremLet u0 divergence-free, in W 2,r (T3), r > 3, f0 positive,∫M f0(x ,m)dµ = 1,

f0 ∈ L∞(dx ; C(M)) ∩∇x f0 ∈ Lr (dx ; H−s(M)), s ≤ d2 + 1.

Then the solution exists for all time and

‖u‖Lp [(0,T );W 2,r (dx)] <∞,‖∇x f ‖L∞[(0,T );Lr (dx ;H−s(M))] <∞

for any p > 2rr−3 , T > 0.

Page 126: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

NLFP + 3D time-dependent Stokes

∂t f + u · ∇x f + divg (Wf ) = divg (f∇g (log f + U[f ])),∂tu − ν∆xu +∇xp = divxσ + F , ∇x · u = 0.

TheoremLet u0 divergence-free, in W 2,r (T3), r > 3, f0 positive,∫M f0(x ,m)dµ = 1,

f0 ∈ L∞(dx ; C(M)) ∩∇x f0 ∈ Lr (dx ; H−s(M)), s ≤ d2 + 1.

Then the solution exists for all time and

‖u‖Lp [(0,T );W 2,r (dx)] <∞,‖∇x f ‖L∞[(0,T );Lr (dx ;H−s(M))] <∞

for any p > 2rr−3 , T > 0.

Page 127: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

NLFP + 3D time-dependent Stokes

∂t f + u · ∇x f + divg (Wf ) = divg (f∇g (log f + U[f ])),∂tu − ν∆xu +∇xp = divxσ + F , ∇x · u = 0.

TheoremLet u0 divergence-free, in W 2,r (T3), r > 3, f0 positive,∫M f0(x ,m)dµ = 1,

f0 ∈ L∞(dx ; C(M)) ∩∇x f0 ∈ Lr (dx ; H−s(M)), s ≤ d2 + 1.

Then the solution exists for all time and

‖u‖Lp [(0,T );W 2,r (dx)] <∞,‖∇x f ‖L∞[(0,T );Lr (dx ;H−s(M))] <∞

for any p > 2rr−3 , T > 0.

Page 128: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Time independent Stokes, counting:

−ν∆u +∇p = divxσ, ∇x · u = 0

gives∇xu ∼ σ

Dt f ∼ (∇xu) divg (cf ) ∼ σdivg (cf )

nonlocal Burgers

σ =

∫Mc · ∇g U[f ]− divg c fdµ

Page 129: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Time independent Stokes, counting:

−ν∆u +∇p = divxσ, ∇x · u = 0

gives

∇xu ∼ σ

Dt f ∼ (∇xu) divg (cf ) ∼ σdivg (cf )

nonlocal Burgers

σ =

∫Mc · ∇g U[f ]− divg c fdµ

Page 130: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Time independent Stokes, counting:

−ν∆u +∇p = divxσ, ∇x · u = 0

gives∇xu ∼ σ

Dt f ∼ (∇xu) divg (cf ) ∼ σdivg (cf )

nonlocal Burgers

σ =

∫Mc · ∇g U[f ]− divg c fdµ

Page 131: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Time independent Stokes, counting:

−ν∆u +∇p = divxσ, ∇x · u = 0

gives∇xu ∼ σ

Dt f ∼ (∇xu) divg (cf )

∼ σdivg (cf )

nonlocal Burgers

σ =

∫Mc · ∇g U[f ]− divg c fdµ

Page 132: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Time independent Stokes, counting:

−ν∆u +∇p = divxσ, ∇x · u = 0

gives∇xu ∼ σ

Dt f ∼ (∇xu) divg (cf ) ∼ σdivg (cf )

nonlocal Burgers

σ =

∫Mc · ∇g U[f ]− divg c fdµ

Page 133: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Time independent Stokes, counting:

−ν∆u +∇p = divxσ, ∇x · u = 0

gives∇xu ∼ σ

Dt f ∼ (∇xu) divg (cf ) ∼ σdivg (cf )

nonlocal Burgers

σ =

∫Mc · ∇g U[f ]− divg c fdµ

Page 134: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Time independent Stokes, counting:

−ν∆u +∇p = divxσ, ∇x · u = 0

gives∇xu ∼ σ

Dt f ∼ (∇xu) divg (cf ) ∼ σdivg (cf )

nonlocal Burgers

σ =

∫Mc · ∇g U[f ]− divg c fdµ

Page 135: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

NLFP + 2D time dependent Navier-Stokes

Theorem(C-Masmoudi) Let u0 ∈

(W α,r ∩ L2

)(R2), divergence-free,

f0 ∈W 1,r (H−s(M)), with r > 2, α > 1, s ≤ d2 + 1 and f0 ≥ 0,∫

M f0dµ ∈ (L1 ∩ L∞)(R2). Then the coupled NS and nonlinearFokker-Planck system in 2D has a global solutionu ∈ L∞loc(W 1,r ) ∩ L2

loc(W 2,r ) and f ∈ L∞loc(W 1,r (H−s)).Moreover, for T > T0 > 0, we have u ∈ L∞((T0,T ); W 2−0,r ).

No a priori bound.

supkλα− 1

k

R t0 ‖∇xSk−1(u(s))‖L∞ds

k ‖∆k(u)(t)‖Lp

Page 136: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

NLFP + 2D time dependent Navier-Stokes

Theorem(C-Masmoudi) Let u0 ∈

(W α,r ∩ L2

)(R2), divergence-free,

f0 ∈W 1,r (H−s(M)), with r > 2, α > 1, s ≤ d2 + 1 and f0 ≥ 0,∫

M f0dµ ∈ (L1 ∩ L∞)(R2).

Then the coupled NS and nonlinearFokker-Planck system in 2D has a global solutionu ∈ L∞loc(W 1,r ) ∩ L2

loc(W 2,r ) and f ∈ L∞loc(W 1,r (H−s)).Moreover, for T > T0 > 0, we have u ∈ L∞((T0,T ); W 2−0,r ).

No a priori bound.

supkλα− 1

k

R t0 ‖∇xSk−1(u(s))‖L∞ds

k ‖∆k(u)(t)‖Lp

Page 137: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

NLFP + 2D time dependent Navier-Stokes

Theorem(C-Masmoudi) Let u0 ∈

(W α,r ∩ L2

)(R2), divergence-free,

f0 ∈W 1,r (H−s(M)), with r > 2, α > 1, s ≤ d2 + 1 and f0 ≥ 0,∫

M f0dµ ∈ (L1 ∩ L∞)(R2). Then the coupled NS and nonlinearFokker-Planck system in 2D has a global solutionu ∈ L∞loc(W 1,r ) ∩ L2

loc(W 2,r ) and f ∈ L∞loc(W 1,r (H−s)).

Moreover, for T > T0 > 0, we have u ∈ L∞((T0,T ); W 2−0,r ).

No a priori bound.

supkλα− 1

k

R t0 ‖∇xSk−1(u(s))‖L∞ds

k ‖∆k(u)(t)‖Lp

Page 138: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

NLFP + 2D time dependent Navier-Stokes

Theorem(C-Masmoudi) Let u0 ∈

(W α,r ∩ L2

)(R2), divergence-free,

f0 ∈W 1,r (H−s(M)), with r > 2, α > 1, s ≤ d2 + 1 and f0 ≥ 0,∫

M f0dµ ∈ (L1 ∩ L∞)(R2). Then the coupled NS and nonlinearFokker-Planck system in 2D has a global solutionu ∈ L∞loc(W 1,r ) ∩ L2

loc(W 2,r ) and f ∈ L∞loc(W 1,r (H−s)).Moreover, for T > T0 > 0, we have u ∈ L∞((T0,T ); W 2−0,r ).

No a priori bound.

supkλα− 1

k

R t0 ‖∇xSk−1(u(s))‖L∞ds

k ‖∆k(u)(t)‖Lp

Page 139: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Let q > 2.

We say that (u0, f0) are standard initial data ifdivxu0 = 0, u0 ∈W 2,q(T2), f0 > 0,f0(x ,m) ∈W 1,q(T2; L2(M)) and

∫M f0(x ,m)dµ = 1.

Theorem(C-Seregin) Let q ≥ 4, (u0, f0) be standard initial data and letT > 0 be arbitrary. Let p > 2q

q−2 , α > d2 + 1. There exists a

constant K depending only on the norms of the initial data,T , κ, ν, p, q, α, with K bounded by a double exponential of T ,and a unique solution (u, f ) of the coupled NS-NLFP systemsuch that

‖∇x∇xu‖Lp(0,T ;Lq(T2)) ≤ K ,

supt≤T‖∇xu(·, t)‖L∞ ≤ K ,

andsupt≤T‖f (·, t)‖W 1,q(T2;H−α(M))) ≤ K .

hold.

Page 140: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Let q > 2. We say that (u0, f0) are standard initial data ifdivxu0 = 0, u0 ∈W 2,q(T2),

f0 > 0,f0(x ,m) ∈W 1,q(T2; L2(M)) and

∫M f0(x ,m)dµ = 1.

Theorem(C-Seregin) Let q ≥ 4, (u0, f0) be standard initial data and letT > 0 be arbitrary. Let p > 2q

q−2 , α > d2 + 1. There exists a

constant K depending only on the norms of the initial data,T , κ, ν, p, q, α, with K bounded by a double exponential of T ,and a unique solution (u, f ) of the coupled NS-NLFP systemsuch that

‖∇x∇xu‖Lp(0,T ;Lq(T2)) ≤ K ,

supt≤T‖∇xu(·, t)‖L∞ ≤ K ,

andsupt≤T‖f (·, t)‖W 1,q(T2;H−α(M))) ≤ K .

hold.

Page 141: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Let q > 2. We say that (u0, f0) are standard initial data ifdivxu0 = 0, u0 ∈W 2,q(T2), f0 > 0,f0(x ,m) ∈W 1,q(T2; L2(M)) and

∫M f0(x ,m)dµ = 1.

Theorem(C-Seregin) Let q ≥ 4, (u0, f0) be standard initial data and letT > 0 be arbitrary. Let p > 2q

q−2 , α > d2 + 1. There exists a

constant K depending only on the norms of the initial data,T , κ, ν, p, q, α, with K bounded by a double exponential of T ,and a unique solution (u, f ) of the coupled NS-NLFP systemsuch that

‖∇x∇xu‖Lp(0,T ;Lq(T2)) ≤ K ,

supt≤T‖∇xu(·, t)‖L∞ ≤ K ,

andsupt≤T‖f (·, t)‖W 1,q(T2;H−α(M))) ≤ K .

hold.

Page 142: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Let q > 2. We say that (u0, f0) are standard initial data ifdivxu0 = 0, u0 ∈W 2,q(T2), f0 > 0,f0(x ,m) ∈W 1,q(T2; L2(M)) and

∫M f0(x ,m)dµ = 1.

Theorem(C-Seregin) Let q ≥ 4, (u0, f0) be standard initial data and letT > 0 be arbitrary. Let p > 2q

q−2 , α > d2 + 1.

There exists aconstant K depending only on the norms of the initial data,T , κ, ν, p, q, α, with K bounded by a double exponential of T ,and a unique solution (u, f ) of the coupled NS-NLFP systemsuch that

‖∇x∇xu‖Lp(0,T ;Lq(T2)) ≤ K ,

supt≤T‖∇xu(·, t)‖L∞ ≤ K ,

andsupt≤T‖f (·, t)‖W 1,q(T2;H−α(M))) ≤ K .

hold.

Page 143: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Let q > 2. We say that (u0, f0) are standard initial data ifdivxu0 = 0, u0 ∈W 2,q(T2), f0 > 0,f0(x ,m) ∈W 1,q(T2; L2(M)) and

∫M f0(x ,m)dµ = 1.

Theorem(C-Seregin) Let q ≥ 4, (u0, f0) be standard initial data and letT > 0 be arbitrary. Let p > 2q

q−2 , α > d2 + 1. There exists a

constant K depending only on the norms of the initial data,T , κ, ν, p, q, α, with K bounded by a double exponential of T ,and a unique solution (u, f ) of the coupled NS-NLFP systemsuch that

‖∇x∇xu‖Lp(0,T ;Lq(T2)) ≤ K ,

supt≤T‖∇xu(·, t)‖L∞ ≤ K ,

andsupt≤T‖f (·, t)‖W 1,q(T2;H−α(M))) ≤ K .

hold.

Page 144: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Let q > 2. We say that (u0, f0) are standard initial data ifdivxu0 = 0, u0 ∈W 2,q(T2), f0 > 0,f0(x ,m) ∈W 1,q(T2; L2(M)) and

∫M f0(x ,m)dµ = 1.

Theorem(C-Seregin) Let q ≥ 4, (u0, f0) be standard initial data and letT > 0 be arbitrary. Let p > 2q

q−2 , α > d2 + 1. There exists a

constant K depending only on the norms of the initial data,T , κ, ν, p, q, α, with K bounded by a double exponential of T ,and a unique solution (u, f ) of the coupled NS-NLFP systemsuch that

‖∇x∇xu‖Lp(0,T ;Lq(T2)) ≤ K ,

supt≤T‖∇xu(·, t)‖L∞ ≤ K ,

andsupt≤T‖f (·, t)‖W 1,q(T2;H−α(M))) ≤ K .

hold.

Page 145: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Navier Stokes Equation

∂tu + u · ∇u +∇p = ν∆u +∇ · σ∇ · u = 0

The tensor σij(x , t) : driving stress.

Sufficient for regularity, if σ smooth∫ T

0‖u‖2

L∞(dx)dt <∞

Exponent of the amplification factorof tracers, key quantity∫ T

0‖∇u‖L∞(dx)dt <∞

Page 146: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Navier Stokes Equation

∂tu + u · ∇u +∇p = ν∆u +∇ · σ∇ · u = 0

The tensor σij(x , t) : driving stress.

Sufficient for regularity, if σ smooth∫ T

0‖u‖2

L∞(dx)dt <∞

Exponent of the amplification factorof tracers, key quantity∫ T

0‖∇u‖L∞(dx)dt <∞

Page 147: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Navier Stokes Equation

∂tu + u · ∇u +∇p = ν∆u +∇ · σ∇ · u = 0

The tensor σij(x , t) : driving stress.

Sufficient for regularity, if σ smooth∫ T

0‖u‖2

L∞(dx)dt <∞

Exponent of the amplification factorof tracers, key quantity∫ T

0‖∇u‖L∞(dx)dt <∞

Page 148: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

2D, Bounded stress

TheoremLet σ ∈ L∞(dtdx). Let u0 ∈ L2(dx). There exists a uniqueweak solution of the forced 2D NS eqns, with

u ∈ L∞(dt)(L2(dx)) ∩ L2(dt)(W 1,2(dx))

Moreover,

∫ T

0‖∇u‖

qq−1

Lq(dx)dt <∞, ∀ q ≥ 2

∫ T

0‖u‖pL∞(dx)dt <∞, ∀ p < 2.

Page 149: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

2D, Bounded stress

TheoremLet σ ∈ L∞(dtdx). Let u0 ∈ L2(dx). There exists a uniqueweak solution of the forced 2D NS eqns, with

u ∈ L∞(dt)(L2(dx)) ∩ L2(dt)(W 1,2(dx))

Moreover,

∫ T

0‖∇u‖

qq−1

Lq(dx)dt <∞, ∀ q ≥ 2

∫ T

0‖u‖pL∞(dx)dt <∞, ∀ p < 2.

Page 150: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

2D, Bounded stress

TheoremLet σ ∈ L∞(dtdx). Let u0 ∈ L2(dx). There exists a uniqueweak solution of the forced 2D NS eqns, with

u ∈ L∞(dt)(L2(dx)) ∩ L2(dt)(W 1,2(dx))

Moreover,

∫ T

0‖∇u‖

qq−1

Lq(dx)dt <∞, ∀ q ≥ 2

∫ T

0‖u‖pL∞(dx)dt <∞, ∀ p < 2.

Page 151: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Navier-Stokes with nearly singular forces

∂tu +u ·∇xu−ν∆xu +∇xp = divxσ, ∇x ·u = 0

TheoremLet u be a solution of the 2D Navier-Stokes system withdivergence-free initial data u0 ∈W 1,2(R2) ∩W 1,r (R2). LetT > 0 and let the forces ∇ · σ obey

σ ∈ L1(0,T ; L∞(R2)) ∩ L2(0,T ; L2(R2))∇ · σ ∈ L1(0,T ; Lr (R2)) ∩ L2(0,T ; L2(R2))

with r > 2.

Let

‖σ‖L∞ ∼ K , ‖∇ · σ‖Lr ∼ B

Page 152: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Navier-Stokes with nearly singular forces

∂tu +u ·∇xu−ν∆xu +∇xp = divxσ, ∇x ·u = 0

TheoremLet u be a solution of the 2D Navier-Stokes system withdivergence-free initial data u0 ∈W 1,2(R2) ∩W 1,r (R2). LetT > 0 and let the forces ∇ · σ obey

σ ∈ L1(0,T ; L∞(R2)) ∩ L2(0,T ; L2(R2))∇ · σ ∈ L1(0,T ; Lr (R2)) ∩ L2(0,T ; L2(R2))

with r > 2. Let

‖σ‖L∞ ∼ K , ‖∇ · σ‖Lr ∼ B

Page 153: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Then ∫ T

0‖∇u(t)‖L∞dt ≤ K log∗(B)

and also

1

M

M∑q=1

∫ T

0‖∆q∇u(t)‖L∞dt ≤ K

with K depending on T , norms of σ and the initial velocity,but not on gradients of σ nor M, and B depending on norms ofthe spatial gradients of σ.

u =∞∑

q=−1

∆q(u)

Littlewood-Paley decomposition

Page 154: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Then ∫ T

0‖∇u(t)‖L∞dt ≤ K log∗(B)

and also

1

M

M∑q=1

∫ T

0‖∆q∇u(t)‖L∞dt ≤ K

with K depending on T , norms of σ and the initial velocity,but not on gradients of σ nor M, and B depending on norms ofthe spatial gradients of σ.

u =∞∑

q=−1

∆q(u)

Littlewood-Paley decomposition

Page 155: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Then ∫ T

0‖∇u(t)‖L∞dt ≤ K log∗(B)

and also

1

M

M∑q=1

∫ T

0‖∆q∇u(t)‖L∞dt ≤ K

with K depending on T , norms of σ and the initial velocity,but not on gradients of σ nor M, and B depending on norms ofthe spatial gradients of σ.

u =∞∑

q=−1

∆q(u)

Littlewood-Paley decomposition

Page 156: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Then ∫ T

0‖∇u(t)‖L∞dt ≤ K log∗(B)

and also

1

M

M∑q=1

∫ T

0‖∆q∇u(t)‖L∞dt ≤ K

with K depending on T , norms of σ and the initial velocity,but not on gradients of σ nor M, and B depending on norms ofthe spatial gradients of σ.

u =∞∑

q=−1

∆q(u)

Littlewood-Paley decomposition

Page 157: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Natural questions for NS with singular forcing

∫ T

0‖u‖2

L∞(dx)dt <∞⇒∫ T

0‖∇u‖L∞(dx) <∞ ?

∫ T

0‖u‖2

L∞(dx)dt <∞ ?

∫ T

0‖∇u‖L∞(dx)dt <∞ ?

Partial regularity?

Page 158: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Natural questions for NS with singular forcing

∫ T

0‖u‖2

L∞(dx)dt <∞⇒∫ T

0‖∇u‖L∞(dx) <∞ ?

∫ T

0‖u‖2

L∞(dx)dt <∞ ?

∫ T

0‖∇u‖L∞(dx)dt <∞ ?

Partial regularity?

Page 159: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Natural questions for NS with singular forcing

∫ T

0‖u‖2

L∞(dx)dt <∞⇒∫ T

0‖∇u‖L∞(dx) <∞ ?

∫ T

0‖u‖2

L∞(dx)dt <∞ ?

∫ T

0‖∇u‖L∞(dx)dt <∞ ?

Partial regularity?

Page 160: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Natural questions for NS with singular forcing

∫ T

0‖u‖2

L∞(dx)dt <∞⇒∫ T

0‖∇u‖L∞(dx) <∞ ?

∫ T

0‖u‖2

L∞(dx)dt <∞ ?

∫ T

0‖∇u‖L∞(dx)dt <∞ ?

Partial regularity?

Page 161: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Holder regularity of weak solution

Ω1 b Ω domains in R2, 0 < T1 < T .

Q = Ω× (−T , 0), Q1 = Ω1 × (−T1, 0).

Parabolic balls: Q(z0,R) = B(x0,R)× (t0 − R2, t0), wherez0 = (x0, t0), x0 ∈ R2, t0 ∈ R. Means:

(f )z0,R = 1|Q(z0,R)|

∫Q(z0,R)

f (z)dz ,

[p]x0,R = 1|B(x0,R)|

∫B(x0,R)

p(x)dx .

Page 162: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Holder regularity of weak solution

Ω1 b Ω domains in R2, 0 < T1 < T .

Q = Ω× (−T , 0), Q1 = Ω1 × (−T1, 0).

Parabolic balls: Q(z0,R) = B(x0,R)× (t0 − R2, t0), wherez0 = (x0, t0), x0 ∈ R2, t0 ∈ R. Means:

(f )z0,R = 1|Q(z0,R)|

∫Q(z0,R)

f (z)dz ,

[p]x0,R = 1|B(x0,R)|

∫B(x0,R)

p(x)dx .

Page 163: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Holder regularity of weak solution

Ω1 b Ω domains in R2, 0 < T1 < T .

Q = Ω× (−T , 0), Q1 = Ω1 × (−T1, 0).

Parabolic balls:

Q(z0,R) = B(x0,R)× (t0 − R2, t0), wherez0 = (x0, t0), x0 ∈ R2, t0 ∈ R. Means:

(f )z0,R = 1|Q(z0,R)|

∫Q(z0,R)

f (z)dz ,

[p]x0,R = 1|B(x0,R)|

∫B(x0,R)

p(x)dx .

Page 164: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Holder regularity of weak solution

Ω1 b Ω domains in R2, 0 < T1 < T .

Q = Ω× (−T , 0), Q1 = Ω1 × (−T1, 0).

Parabolic balls: Q(z0,R) = B(x0,R)× (t0 − R2, t0), wherez0 = (x0, t0), x0 ∈ R2, t0 ∈ R.

Means:

(f )z0,R = 1|Q(z0,R)|

∫Q(z0,R)

f (z)dz ,

[p]x0,R = 1|B(x0,R)|

∫B(x0,R)

p(x)dx .

Page 165: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Holder regularity of weak solution

Ω1 b Ω domains in R2, 0 < T1 < T .

Q = Ω× (−T , 0), Q1 = Ω1 × (−T1, 0).

Parabolic balls: Q(z0,R) = B(x0,R)× (t0 − R2, t0), wherez0 = (x0, t0), x0 ∈ R2, t0 ∈ R. Means:

(f )z0,R = 1|Q(z0,R)|

∫Q(z0,R)

f (z)dz ,

[p]x0,R = 1|B(x0,R)|

∫B(x0,R)

p(x)dx .

Page 166: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Holder regularity of weak solution

Ω1 b Ω domains in R2, 0 < T1 < T .

Q = Ω× (−T , 0), Q1 = Ω1 × (−T1, 0).

Parabolic balls: Q(z0,R) = B(x0,R)× (t0 − R2, t0), wherez0 = (x0, t0), x0 ∈ R2, t0 ∈ R. Means:

(f )z0,R = 1|Q(z0,R)|

∫Q(z0,R)

f (z)dz ,

[p]x0,R = 1|B(x0,R)|

∫B(x0,R)

p(x)dx .

Page 167: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Spaces

For 0 < γ < 1,

space M2,γ(Q), seminorm

‖σ‖M2,γ(Q) =

supQ(z0,R)⊂Q

R1−γ(

1|Q(z0,R)|

∫Q(z0,R)

|σ(z)− (σ)z0,R |2dz) 1

2<∞.

NoteLr (Q) ⊂ M2,γ(Q)

for r ≥ 41−γ .

Page 168: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Spaces

For 0 < γ < 1, space M2,γ(Q),

seminorm

‖σ‖M2,γ(Q) =

supQ(z0,R)⊂Q

R1−γ(

1|Q(z0,R)|

∫Q(z0,R)

|σ(z)− (σ)z0,R |2dz) 1

2<∞.

NoteLr (Q) ⊂ M2,γ(Q)

for r ≥ 41−γ .

Page 169: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Spaces

For 0 < γ < 1, space M2,γ(Q), seminorm

‖σ‖M2,γ(Q) =

supQ(z0,R)⊂Q

R1−γ(

1|Q(z0,R)|

∫Q(z0,R)

|σ(z)− (σ)z0,R |2dz) 1

2<∞.

NoteLr (Q) ⊂ M2,γ(Q)

for r ≥ 41−γ .

Page 170: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Spaces

For 0 < γ < 1, space M2,γ(Q), seminorm

‖σ‖M2,γ(Q) =

supQ(z0,R)⊂Q

R1−γ(

1|Q(z0,R)|

∫Q(z0,R)

|σ(z)− (σ)z0,R |2dz) 1

2<∞.

NoteLr (Q) ⊂ M2,γ(Q)

for r ≥ 41−γ .

Page 171: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem(C-Seregin) Let

u ∈ L4(Q; R2), p ∈ L2(Q), σ ∈ M2,γ(Q; M2×2)

with 0 ≤ γ < 1, satisfying the Navier-Stokes equations

∂tu + u · ∇u − ν∆u = −∇p + div σ, div u = 0

in Q in the sense of distributions.

Then

u ∈ Cγ(Q1)

if 0 < γ < 1 andu ∈ BMO(Q1)

if γ = 0.

Page 172: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Theorem(C-Seregin) Let

u ∈ L4(Q; R2), p ∈ L2(Q), σ ∈ M2,γ(Q; M2×2)

with 0 ≤ γ < 1, satisfying the Navier-Stokes equations

∂tu + u · ∇u − ν∆u = −∇p + div σ, div u = 0

in Q in the sense of distributions. Then

u ∈ Cγ(Q1)

if 0 < γ < 1 andu ∈ BMO(Q1)

if γ = 0.

Page 173: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Additional results

Let H and V be the L2 and H1 spaces of divergence-freefunctions.

Theorem(C-S) Let u ∈ L∞(0,T ; H) ∩ L2(0,T ; V ), p ∈ L2(0,T ; L2(T2))be a solution of the initial value problem

∂tu + u · ∇u − ν∆u +∇p = div σ, div u = 0,

u(·, 0) = u0(·) ∈ H,

where σ ∈ Lr (T2 × (0,T ); M2×2) with r ≥ 4. Then, givens > 0, there exists a constant Cs depending only on s, ν, thenorm of u0 in H, the norm of σ in Lr (T2), such that

‖u‖L∞(T2×(s,T )) ≤ Cs .

Moreover, the function u is Holder continuous in T2 × [s,T ]with exponent γ = 1− 4

r .

Page 174: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Additional results

Let H and V be the L2 and H1 spaces of divergence-freefunctions.

Theorem(C-S) Let u ∈ L∞(0,T ; H) ∩ L2(0,T ; V ), p ∈ L2(0,T ; L2(T2))be a solution of the initial value problem

∂tu + u · ∇u − ν∆u +∇p = div σ, div u = 0,

u(·, 0) = u0(·) ∈ H,

where σ ∈ Lr (T2 × (0,T ); M2×2) with r ≥ 4.

Then, givens > 0, there exists a constant Cs depending only on s, ν, thenorm of u0 in H, the norm of σ in Lr (T2), such that

‖u‖L∞(T2×(s,T )) ≤ Cs .

Moreover, the function u is Holder continuous in T2 × [s,T ]with exponent γ = 1− 4

r .

Page 175: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Additional results

Let H and V be the L2 and H1 spaces of divergence-freefunctions.

Theorem(C-S) Let u ∈ L∞(0,T ; H) ∩ L2(0,T ; V ), p ∈ L2(0,T ; L2(T2))be a solution of the initial value problem

∂tu + u · ∇u − ν∆u +∇p = div σ, div u = 0,

u(·, 0) = u0(·) ∈ H,

where σ ∈ Lr (T2 × (0,T ); M2×2) with r ≥ 4. Then, givens > 0, there exists a constant Cs depending only on s, ν, thenorm of u0 in H, the norm of σ in Lr (T2), such that

‖u‖L∞(T2×(s,T )) ≤ Cs .

Moreover, the function u is Holder continuous in T2 × [s,T ]with exponent γ = 1− 4

r .

Page 176: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Idea of proof of Holder continuity for NS

Local iterative estimates for L4 space-time integrals of thevelocity, in the spirit of De Giorgi, Campanato.

Pressure

p = RiRj(σij − uiuj),

The iteration relates integrals on smaller parabolic cubes tointegrals on larger ones. For the iterative procedure tosucceed, the modulus of absolute continuity of the map

Ω ⊂T2 × (0,T )

7→∫

Ω|u(x , t)|4dxdt,

needs to be controlled uniformly apriori, to guarantee that suchan integral is arbitrarily small, if the parabolic Lebesguemeasure of Ω is small enough.

Page 177: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Idea of proof of Holder continuity for NS

Local iterative estimates for L4 space-time integrals of thevelocity, in the spirit of De Giorgi, Campanato. Pressure

p = RiRj(σij − uiuj),

The iteration relates integrals on smaller parabolic cubes tointegrals on larger ones.

For the iterative procedure tosucceed, the modulus of absolute continuity of the map

Ω ⊂T2 × (0,T )

7→∫

Ω|u(x , t)|4dxdt,

needs to be controlled uniformly apriori, to guarantee that suchan integral is arbitrarily small, if the parabolic Lebesguemeasure of Ω is small enough.

Page 178: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Idea of proof of Holder continuity for NS

Local iterative estimates for L4 space-time integrals of thevelocity, in the spirit of De Giorgi, Campanato. Pressure

p = RiRj(σij − uiuj),

The iteration relates integrals on smaller parabolic cubes tointegrals on larger ones. For the iterative procedure tosucceed, the modulus of absolute continuity of the map

Ω ⊂T2 × (0,T )

7→∫

Ω|u(x , t)|4dxdt,

needs to be controlled uniformly apriori, to guarantee that suchan integral is arbitrarily small, if the parabolic Lebesguemeasure of Ω is small enough.

Page 179: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Φ(u; z0, %) =( ∫

Q(z0,%)

|u − (u)z0,%|4dz) 1

2,

Ψ(u; z0, %) =( ∫

Q(z0,%)

|u|4dz) 1

2,

D(p; z0, %) =

∫Q(z0,%)

|p − [p]x0,%|2dz .

LemmaLet the function v ∈ L4(Q(z0,R)) satisfy the heat equation

∂tv −∆v = 0

in Q(z0,R). Then

Φ(v ; z0, %) ≤ c( %

R

)4Φ(v ; z0,R)

for all 0 < % ≤ R.

Page 180: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Φ(u; z0, %) =( ∫

Q(z0,%)

|u − (u)z0,%|4dz) 1

2,

Ψ(u; z0, %) =( ∫

Q(z0,%)

|u|4dz) 1

2,

D(p; z0, %) =

∫Q(z0,%)

|p − [p]x0,%|2dz .

LemmaLet the function v ∈ L4(Q(z0,R)) satisfy the heat equation

∂tv −∆v = 0

in Q(z0,R). Then

Φ(v ; z0, %) ≤ c( %

R

)4Φ(v ; z0,R)

for all 0 < % ≤ R.

Page 181: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Φ(u; z0, %) =( ∫

Q(z0,%)

|u − (u)z0,%|4dz) 1

2,

Ψ(u; z0, %) =( ∫

Q(z0,%)

|u|4dz) 1

2,

D(p; z0, %) =

∫Q(z0,%)

|p − [p]x0,%|2dz .

LemmaLet the function v ∈ L4(Q(z0,R)) satisfy the heat equation

∂tv −∆v = 0

in Q(z0,R). Then

Φ(v ; z0, %) ≤ c( %

R

)4Φ(v ; z0,R)

for all 0 < % ≤ R.

Page 182: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Φ(u; z0, %) =( ∫

Q(z0,%)

|u − (u)z0,%|4dz) 1

2,

Ψ(u; z0, %) =( ∫

Q(z0,%)

|u|4dz) 1

2,

D(p; z0, %) =

∫Q(z0,%)

|p − [p]x0,%|2dz .

LemmaLet the function v ∈ L4(Q(z0,R)) satisfy the heat equation

∂tv −∆v = 0

in Q(z0,R).

Then

Φ(v ; z0, %) ≤ c( %

R

)4Φ(v ; z0,R)

for all 0 < % ≤ R.

Page 183: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Φ(u; z0, %) =( ∫

Q(z0,%)

|u − (u)z0,%|4dz) 1

2,

Ψ(u; z0, %) =( ∫

Q(z0,%)

|u|4dz) 1

2,

D(p; z0, %) =

∫Q(z0,%)

|p − [p]x0,%|2dz .

LemmaLet the function v ∈ L4(Q(z0,R)) satisfy the heat equation

∂tv −∆v = 0

in Q(z0,R). Then

Φ(v ; z0, %) ≤ c( %

R

)4Φ(v ; z0,R)

for all 0 < % ≤ R.

Page 184: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

LemmaGiven G ∈ L2(Q(z0,R); M2×2), there exists a unique function

w ∈ C ([t0 − R2, t0]; L2(B(x0,R); R2))∩L2([t0 − R2, t0]; W 1,2(B(x0,R); R2))

such that∂tw −∆w = −div G

in Q(z0,R) andw = 0

on the parabolic boundary of Q(z0,R). Moreover, thefunction w satisfies the estimates:

|w |22,Q(z0,R) ≡ supt0−R2<t<t0

‖w(·, t)‖22,B(x0,R) + ‖∇w‖2

2,Q(z0,R)

≤ 2‖G‖22,Q(z0,R),

Φ(w ; z0,R) ≤ c |w |22,Q(z0,R).

Page 185: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

LemmaGiven G ∈ L2(Q(z0,R); M2×2), there exists a unique function

w ∈ C ([t0 − R2, t0]; L2(B(x0,R); R2))∩L2([t0 − R2, t0]; W 1,2(B(x0,R); R2))

such that∂tw −∆w = −div G

in Q(z0,R)

andw = 0

on the parabolic boundary of Q(z0,R). Moreover, thefunction w satisfies the estimates:

|w |22,Q(z0,R) ≡ supt0−R2<t<t0

‖w(·, t)‖22,B(x0,R) + ‖∇w‖2

2,Q(z0,R)

≤ 2‖G‖22,Q(z0,R),

Φ(w ; z0,R) ≤ c |w |22,Q(z0,R).

Page 186: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

LemmaGiven G ∈ L2(Q(z0,R); M2×2), there exists a unique function

w ∈ C ([t0 − R2, t0]; L2(B(x0,R); R2))∩L2([t0 − R2, t0]; W 1,2(B(x0,R); R2))

such that∂tw −∆w = −div G

in Q(z0,R) andw = 0

on the parabolic boundary of Q(z0,R).

Moreover, thefunction w satisfies the estimates:

|w |22,Q(z0,R) ≡ supt0−R2<t<t0

‖w(·, t)‖22,B(x0,R) + ‖∇w‖2

2,Q(z0,R)

≤ 2‖G‖22,Q(z0,R),

Φ(w ; z0,R) ≤ c |w |22,Q(z0,R).

Page 187: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

LemmaGiven G ∈ L2(Q(z0,R); M2×2), there exists a unique function

w ∈ C ([t0 − R2, t0]; L2(B(x0,R); R2))∩L2([t0 − R2, t0]; W 1,2(B(x0,R); R2))

such that∂tw −∆w = −div G

in Q(z0,R) andw = 0

on the parabolic boundary of Q(z0,R). Moreover, thefunction w satisfies the estimates:

|w |22,Q(z0,R) ≡ supt0−R2<t<t0

‖w(·, t)‖22,B(x0,R) + ‖∇w‖2

2,Q(z0,R)

≤ 2‖G‖22,Q(z0,R),

Φ(w ; z0,R) ≤ c |w |22,Q(z0,R).

Page 188: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

LemmaFor solutions of NSE, we have

Φ(u; z0, %) ≤ c[( %

R

)4+ Ψ(u; z0,R)

]Φ(u; z0,R)+

+ D(p; z0,R) + MR2+2γ

whenever Q(z0,R) ⊂ Q and 0 < % ≤ R. Here,M = ‖σ‖2

M2,γ(Q).

Lemma

D(p; z0, %) ≤

c[(

%R

)4D(p; z0,R) + Ψ(u; z0,R)Φ(u; z0,R) + MR2+2γ

]whenever Q(z0,R) ⊂ Q and 0 < % ≤ R.

Page 189: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

LemmaFor solutions of NSE, we have

Φ(u; z0, %) ≤ c[( %

R

)4+ Ψ(u; z0,R)

]Φ(u; z0,R)+

+ D(p; z0,R) + MR2+2γ

whenever Q(z0,R) ⊂ Q and 0 < % ≤ R.

Here,M = ‖σ‖2

M2,γ(Q).

Lemma

D(p; z0, %) ≤

c[(

%R

)4D(p; z0,R) + Ψ(u; z0,R)Φ(u; z0,R) + MR2+2γ

]whenever Q(z0,R) ⊂ Q and 0 < % ≤ R.

Page 190: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

LemmaFor solutions of NSE, we have

Φ(u; z0, %) ≤ c[( %

R

)4+ Ψ(u; z0,R)

]Φ(u; z0,R)+

+ D(p; z0,R) + MR2+2γ

whenever Q(z0,R) ⊂ Q and 0 < % ≤ R. Here,M = ‖σ‖2

M2,γ(Q).

Lemma

D(p; z0, %) ≤

c[(

%R

)4D(p; z0,R) + Ψ(u; z0,R)Φ(u; z0,R) + MR2+2γ

]

whenever Q(z0,R) ⊂ Q and 0 < % ≤ R.

Page 191: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

LemmaFor solutions of NSE, we have

Φ(u; z0, %) ≤ c[( %

R

)4+ Ψ(u; z0,R)

]Φ(u; z0,R)+

+ D(p; z0,R) + MR2+2γ

whenever Q(z0,R) ⊂ Q and 0 < % ≤ R. Here,M = ‖σ‖2

M2,γ(Q).

Lemma

D(p; z0, %) ≤

c[(

%R

)4D(p; z0,R) + Ψ(u; z0,R)Φ(u; z0,R) + MR2+2γ

]whenever Q(z0,R) ⊂ Q and 0 < % ≤ R.

Page 192: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

The following result is used to control the modulus of absolutecontinuity.

TheoremLet u ∈ L∞(0,T ; H) ∩ L2(0,T ; V ) be a solution of the 2DNavier-Stokes equations with initial data u0 ∈ H ∩ Lr (T2) andσ ∈ Lr (T2 × (0,T ); M2×2) with r ≥ 4. There exists a constantK depending only on the norm ‖σ‖Lr (T2×(0,T )),ν,T and the

norm of u0 in H ∩ Lr (T2) such that

sup0≤t≤T

‖u(·, t)‖Lr (T2) ≤ K .

Page 193: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Generalized Ladyzhenskaya inequalities

The previous result is based on the inequality

‖f ‖2L2r (R2) ≤ Cr‖f ‖Lr (R2)‖∇f ‖L2(R2)

that holds for all f ∈ Lr (R2) with ∇f ∈ L2(R2), generalizingthe r = 2 inequality due to Ladyzhenskaya. In turn, theinequality above is the n = 2 particular case of

‖f ‖2L2r (Rn) ≤ C‖f ‖Lr (Rn)‖∇f ‖

B0,n2 (Rn)

valid for all r ≥ n2 , with B0,n

2 the Besov space with norm

‖f ‖Bs,pq (Rn) =

∞∑j=−∞

λqsj ‖∆j f ‖qLp(Rn)

1q

Page 194: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Generalized Ladyzhenskaya inequalities

The previous result is based on the inequality

‖f ‖2L2r (R2) ≤ Cr‖f ‖Lr (R2)‖∇f ‖L2(R2)

that holds for all f ∈ Lr (R2) with ∇f ∈ L2(R2),

generalizingthe r = 2 inequality due to Ladyzhenskaya. In turn, theinequality above is the n = 2 particular case of

‖f ‖2L2r (Rn) ≤ C‖f ‖Lr (Rn)‖∇f ‖

B0,n2 (Rn)

valid for all r ≥ n2 , with B0,n

2 the Besov space with norm

‖f ‖Bs,pq (Rn) =

∞∑j=−∞

λqsj ‖∆j f ‖qLp(Rn)

1q

Page 195: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Generalized Ladyzhenskaya inequalities

The previous result is based on the inequality

‖f ‖2L2r (R2) ≤ Cr‖f ‖Lr (R2)‖∇f ‖L2(R2)

that holds for all f ∈ Lr (R2) with ∇f ∈ L2(R2), generalizingthe r = 2 inequality due to Ladyzhenskaya.

In turn, theinequality above is the n = 2 particular case of

‖f ‖2L2r (Rn) ≤ C‖f ‖Lr (Rn)‖∇f ‖

B0,n2 (Rn)

valid for all r ≥ n2 , with B0,n

2 the Besov space with norm

‖f ‖Bs,pq (Rn) =

∞∑j=−∞

λqsj ‖∆j f ‖qLp(Rn)

1q

Page 196: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Generalized Ladyzhenskaya inequalities

The previous result is based on the inequality

‖f ‖2L2r (R2) ≤ Cr‖f ‖Lr (R2)‖∇f ‖L2(R2)

that holds for all f ∈ Lr (R2) with ∇f ∈ L2(R2), generalizingthe r = 2 inequality due to Ladyzhenskaya. In turn, theinequality above is the n = 2 particular case of

‖f ‖2L2r (Rn) ≤ C‖f ‖Lr (Rn)‖∇f ‖

B0,n2 (Rn)

valid for all r ≥ n2 , with B0,n

2 the Besov space with norm

‖f ‖Bs,pq (Rn) =

∞∑j=−∞

λqsj ‖∆j f ‖qLp(Rn)

1q

Page 197: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

Generalized Ladyzhenskaya inequalities

The previous result is based on the inequality

‖f ‖2L2r (R2) ≤ Cr‖f ‖Lr (R2)‖∇f ‖L2(R2)

that holds for all f ∈ Lr (R2) with ∇f ∈ L2(R2), generalizingthe r = 2 inequality due to Ladyzhenskaya. In turn, theinequality above is the n = 2 particular case of

‖f ‖2L2r (Rn) ≤ C‖f ‖Lr (Rn)‖∇f ‖

B0,n2 (Rn)

valid for all r ≥ n2 , with B0,n

2 the Besov space with norm

‖f ‖Bs,pq (Rn) =

∞∑j=−∞

λqsj ‖∆j f ‖qLp(Rn)

1q

Page 198: Onsager Equations, Nonlinear Fokker-Planck …web.math.princeton.edu/conference/fefferman09/pdfs/...Onsager Equations, Nonlinear Fokker-Planck Equations, Navier-Stokes Equations Peter

OnsagerEquations,Nonlinear

Fokker-PlanckEquations,

Navier-StokesEquations

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Embedding inFluid

Results onNS+NLFP

Related NSresults

References

• P. Constantin, Smoluchowski Navier-Stokes systems,Contemporary Mathematics 429 G-Q Chen, E. Hsu, M.Pinsky editors, AMS, Providence (2007), 85-109

• P. Constantin, N. Masmoudi, Global well-posedness for aSmoluchowski equation coupled with Navier-Stokesequations in 2D, Commun. Math. Phys. 278 (2008),179-191.

• P. Constantin, G. Seregin, Holder Continuity of Solutionsof 2D Navier-Stokes Equations with Singular Forcing, toappear

• P. Constantin, G. Seregin, Global regularity of solutions ofcoupled Navier-Stokes equations and nonlinear FokkerPlanck equations, to appear

• P. Constantin, The Onsager equation for corpora, J.Comp. Theor. Nanoscience, 2009, to appear.

• P. Constantin, A. Zlatos, On the high intensity limit ofinteracting corpora,CMS, to appear.