on potential methods for porous media flows · on potential methods for porous media flows...

26
On Potential Methods for Porous Media Flows Wolfgang L. Wendland Institute for Applied Analysis and Numerical Simulation & SIMTECH, Univ. Stuttgart joint work with Mirela Kohr (Babeş–Bolyai Univ., Cluj–Napoca, Romania) Massimo Lanza de Cristoforis (Univ. of Padova, Italy), Sergey E. Mikhailov (Brunel Univ. London, United Kingdom) Strobl 2016, 3.–10.7.

Upload: others

Post on 24-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

On Potential Methods for Porous Media Flows

Wolfgang L. Wendland

Institute for Applied Analysis and Numerical Simulation & SIMTECH, Univ. Stuttgart

joint work with Mirela Kohr (Babeş–Bolyai Univ., Cluj–Napoca, Romania)Massimo Lanza de Cristoforis (Univ. of Padova, Italy),

Sergey E. Mikhailov (Brunel Univ. London, United Kingdom)

Strobl 2016, 3.–10.7.

Page 2: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Contents1. The transmission problem2. Function spaces3. Solution properties for Brinkman and Stokes systems4. Potential operators5. The linear transmission problem6. The nonlinear Darcy–Forchheimer–Brinkman transmission problem7. The problem on manifolds8. More general spaces

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 1/25

Page 3: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

1. The transmission problem

∆u− αu− k|u|u− β(u · ∇)u−∇p = f and ∇ · u = 0 in Ω+;∆u−∇p = 0 and ∇ · u = 0 in Ω−;γ+u+ − γ−u− = h0 on Γ = ∂Ω connected boundary and∂+n;α(u+, p+; (f+ + E+(k|u+|u+ + β(u+ · ∇)u+)

)− µ∂−n (u−, p−; f−)

+ 12P(γ−u−+ γ+u+) = g0 on Γ;

u−(∞) = u∞ : lim|x|→∞

∫S2(x)

|u−(y(x)

)− u∞|dsy = 0, (Leray).

Ω+ ⊂ R3 bounded Lipschitz; Ω− := R3\Ω+;α, k, β ≥ 0;P(x) ∈ L∞(Γ)3×3 , P(x) = P∗(x) , ∀ ξ ∈ R3 : 〈Pξ, ξ〉R3 ≥ 0;S2(x) = y(x) : |y(x)− x| = 1 ; E(v) := 1

2(∇v + (∇v)>

);

〈∂±n;α(u±, p±; f±),ϕ〉L2(Γ) = 2〈E(u),Eγ−1± ϕ〉L2(Ω±)

+α〈u±, γ−1± ϕ〉L2(Ω±) − 〈p±,div (γ−1

± ϕ)〉L2(Ω±) + 〈f±, γ−1± ϕ〉L2(Ω±)

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 2/25

Page 4: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

2. Function spaces

Hs(R3) := f | F−1(1 + |ξ|2)−s/2Ff : f ∈ L2(R3,Hs(Ω) := f ∈ D′(Ω) : ∃F ∈ Hs(R3) ∧ F |Ω = f,

Hs(Ω) := f ∈ Hs(R3) ∧ suppf ⊆ Ω,(Hs(Ω)

)′ = H−s(Ω) , H−s(Ω) =(Hs(Ω)

)′, L2(Ω)−duality;

%(x) := (1 + |x|2)1/2 , Lp(%−1; Ω−) := f | %−1f ∈ Lp(Ω−),

H1(Ω−) := f ∈ D′(Ω−) | %−1f ∈ L2(Ω−) ∧∇f ∈ L2(Ω−),‖ f ‖2H1(Ω−) := (‖ %−1f ‖2L2(Ω−) + ‖ ∇f ‖2L2(Ω−)),

H1(Ω−) = D(Ω−)

‖·‖H1(Ω−) ⊂ H1(Ω−),

H1(Ω−) := v ∈ H1(R3) ∧ supp v ⊆ Ω−,

H−1(Ω−) =(H1(Ω−)

)′, H−1(Ω−) =

(H1(Ω−)

)′;Embedding: H1(Ω−) → L6(Ω−) for Ω− ⊂ R3.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 3/25

Page 5: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Traces:

γ± : H1(Ω±)→ H12 (Γ) , ∃ γ−1

± : H1/2(Γ)→ H1(Ω±),γ− : H1(Ω−) → H

12 (Γ) surjectively (Lang+Méndez 2006, Mikhailov 2011) .

3. Solution properties for Brinkman and Stokes systems

Lemma: (Amrouche+Razafison 2006) Let u ∈ D′(Ω−)3∧∇u ∈ L2(Ω)3×3.Then there exists u∞ ∈ R3 s.th. u− u∞ ∈ H1(Ω−)3,

u∞ = 14 lim|x|→∞

∫S2

u(y(x)

)dsy,

u ∈ L6(Ω−)3 , ‖u− u∞‖L6(Ω−)3 ≤ C‖∇u‖L2(Ω−)3 ,

lim|x|→∞

∫S2

|u(y(x)

)− u∞|dsy = 0.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 4/25

Page 6: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Lα(u±, p±) := ∆u± − αu± −∇p±,

H1(Ω±,Lα) := (u±, p±, f±) ∈ H1(Ω±)3 × L2(Ω±)× H−1(Ω±)3.

Lemma: Let α ≥ 0 , Lα(u±, p±) = f±,div u± = 0 in Ω± and(u±, p±, f±) ∈ H1(Ω±,Lα).

Then Green’s formula holds for all w ∈ H1(Ω±)3:

±〈∂±n;α(u±, p±, f±) , γ±w〉Γ = 2〈E(u±),E(w)〉Ω± + α〈u±,w±〉Ω±− 〈p±,div w〉Ω± + 〈f±,w〉Ω±

and ∂±n;α(u±, p±, f±) ∈ H−1/2(Γ).

Lemma: Let α = 0 and (u, p) ∈ H1(Ω−,L0) be a solution of theStokes system. Then Green’s formula holds in Ω− and ∂n;0(u, p, f−) ∈H−1/2(Γ).If f− = 0 then u(x) = O(|x|−1) , ∇u(x) = O(|x|−2)and p(x) ∈ O(|x|−2) for |x| → ∞.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 5/25

Page 7: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

4. Potential operators

Brinkman fundamental solution in R3:(for n = 2 see e.g. Kohr & Pop 2004)

Gαjk(z) = 14π|z|

δjkA1(

√α|z|) + zjzk

|z|2 A2(√α|z|)

, P sj (z) = 1

2πzj

|z|3 ,

A1(%) = 2e−%(1 + %−1 + %−2)− 2%−2 = 1− 43%+ 3

4%2 − . . . ,

A2(%) = −2e−%(1 + 3%−1 + 3%−2) + 6%−2 = 1− 14%

2 − . . . ,

Sαijk(z) = P sj (z)δik + ∂kGαij(z) + ∂iGαkj(z)

Pd,αik (z) = 1

δik(α|z|2 − 2) 1

|z|3 + 6 zizk

|z|5

.

Stokes fundamental solution: Set α = 0.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 6/25

Page 8: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Newton potentials:

(Nα;Ω±Ψ)j(x) := −∫

y∈Ω±Gαjk(x− y)Ψk(y)dy: H−1(Ω±)3 → H1

div(Ω±)3,

(P sα;Ω±Ψ)(x) := −∫

y∈Ω±P sk (x− y)Ψk(y)dy : H−1(Ω±)3 → L2(Ω±)3.

Surface Potentials: Ψ(x) = (γ−1± g)(x) , x ∈ Ω±;

(Vα;Γ)j(x) := −∫

y∈ΓGαjk(x− y)gk(y)dsy : H−1/2(Γ)3 → H1

div(Ω±)3,

(P sα;Γg)(x) := −∫

y∈ΓP sk (x− y)gk(y)dsy : H−1/2(Γ)3 → L2(Ω±)3.

(Wα;Γ)k(x) := −∫

y∈ΓSαik`(x− y)n`(y)hi(y)dsy : H1/2(Γ)3 → H1

div(Ω±)3,

(P dα;Γh)(x) :=∫

y∈ΓP d,αik (x− y)nk(y)hi(y)dsy : H1/2(Γ)3 → L2(Ω±)3.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 7/25

Page 9: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Boundary integral operators and jump relations at x ∈ Γ:

(γ±Vα;Γg)j(x) =: (Vα;Γg)j(x) =∫

y∈ΓGαjk(x− y)gk(y)dsy :

H−1/2(Γ)3 → H1/2(Γ)3,

(γ±Wα;Γh)j(x) =: ± 12δjkhk(x) + (Kα;Γh)j(x)

= ± 12δjkhk(x) + p.v.

∫x6=y∈Γ

Sαijk(x− y)nk(y)hi(y)dsy :

H1/2(Γ)3 → H1/2(Γ)3,

∂±nα;Γ(Vα;Γg, P sα;Γg)j(x) = ∓ 12δjkgk(x) + (K∗α;Γg)j(x) :(

H−1/2(Γ))3 → (

H1/2(Γ))3,

∂±nα;Γ(Wα;Γh, P dα;Γh)j(x) = (Dα;Γh)j(x) :(H1/2(Γ)

)3 → (H−1/2(Γ)

)3;

Ker Vα;Γ = Rn.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 8/25

Page 10: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

5. The linear transmission problem where k=β = 0

Theorem: The linear problem with k = β = 0 has for given dataf± ∈ H−1(Ω±)3 , h0 ∈ H1/2(Γ)3 , g0 ∈ H−1/2(Γ)3 , u∞ ∈ R3

a unique solution (u+, p+) ∈ H1div(Ω+)3 × L2(Ω+),

(u−, p−) ∈ H1div(Ω−)3 × L2(Ω−) and

‖u+‖H1(Ω+)3 + ‖p+‖L2(Ω+) + ‖u−− u∞‖H1(Ω−)3 + ‖p−‖L2(Ω−)

≤ C‖f+‖H1(Ω+)3 + ‖f−‖H−1(Ω−)3 + ‖h0‖H1/2(Γ)3 + ‖g0‖H−1/2(Γ)3

with C = C(Ω+,P, α, µ), satisfying

lim|x|→∞

∫S2|u−

(y(x)

)− u∞|dsy = 0

and(u−(x)− u∞) = O(|x|−1) , ∇u−(x) = O(|x|−2) , p−(x) = O(|x|−2)for |x| → ∞.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 9/25

Page 11: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Sketch of the proof:1. Ansatz: u± = v± + w± , pv,± + π± ; α = 0 in Ω−;where v± = Nα,Ω± f± , pv,± = P sα;Ω± f± satisfying the homogeneousBrinkman system in Ω+ and Stokes system in Ω−.

2. w± = Vα;Γϕ+ Wα;ΓΦ, π± = P sα;Γϕ+ P dα;ΓΦ,γ+w+ − γ−w− = h00 = h0 − γ+v+ + γ−v−,∂+n;α(w+, π+)− µ∂−n;α(w−, π−) + 1

2P(γ+w+ + γ−w−) = g00= g0 − ∂+

n;α(v+, π+) + µ∂n;0(v−, π−)− 12P(γ+v+ + γ−v−

3. Transmission conditions on Γ yield for Φ ∈ H1/2(Γ) , ϕ ∈ H−1/2(Γ)the Fredholm equations Φ = Kα,0;ΓΦ + Vα,0;Γϕ− h00,

12 (1 + µ)I + (1− µ)K∗Γϕ = −(1− µ)D0,ΓΦ−Dα,0;ΓΦ−K∗α,0,Γϕ− 1

2P((Vα,Γ + V0,Γ)ϕ+ (Kα,Γ +K0,Γ)

)Φ + g00.

The operator . . . is invertible on H−1/2(Γ) andDα,0;Γ := Dα,Γ −D0,Γ , K

∗α,0,Γ := K∗α,Γ −K∗0,Γ− and P(. . . ) are

compact.

4, Green’s theorem and vanishing energy for h00 = g00 = 0 impliesuniqueness.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 10/25

Page 12: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

6. The nonlinear Darcy–Forchheimer–Brinkman transmissionproblem

Lemma: LetE±(w)(x) :=

w(x) for x ∈ Ω±,

0 for x ∈ Ω∓.Then the nonlinear

mappings Ik,β,Ω+(v) :=E+(k|v|v + β(v · ∇)v

)are positively homo-

geneous of order 2 and for v ∈ H1div (Ω+)3 into

L3/2(Ω+)3 and H−1(Ω+)3 are bounded:‖Ik,β,Ω+(v)‖L3/2(Ω+)3 ≤ c′1‖v‖2H1(Ω+)3 ,

‖Ik,β,Ω+(v)‖H−1(Ω+)3 ≤ c1‖v‖2H1(Ω+)3

and for v,w ∈ H1(Ω+)3 it holds‖Ik,β,Ω+(v)− Ik,β,Ω+(w)‖

H−1(Ω+)3

≤ c1(‖ v ‖H1(Ω+)3 + ‖ w ‖H1(Ω+)3)‖v−w‖H1(Ω+)3 .

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 11/25

Page 13: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Theorem: For the nonlinear problem∆u− αu− k|u|u− β(u · ∇)u−∇p = f and ∇ · u = 0 in Ω+;∆u−∇p = 0 and ∇ · u = 0 in Ω−;γ+u+ − γ−u− = h0 on Γ = ∂Ω and∂+n;α(u+, p+; (f+ + E+(k|u+|u+ + β(u+ · ∇)u+)

)− µ∂−n (u−, p−; f−)

+ 12P(γ−u−+ γ+u+) = g0 on Γ;

lim|x|→∞

∫S2(x)

|u−(y(x)

)− u∞|dsy = 0

there are two positive constants ζ and η depending on Ω+,P, α, µ, k, βsuch that for all given data with

‖(f+, f−,h0,u∞)‖X0 :=‖f+‖H−1(Ω+)3+‖f−‖H−1(Ω+)3+‖h0‖H1/2(Γ)3+‖g0‖H−1/2(Γ)3+|u∞|

≤ζ,

the nonlinear problem has a unique solution satisfying‖(u+, p+,u− − u∞, p−)‖Y :=

‖u+‖H1(Ω+)3 + ‖p+‖L2(Ω+)+ ‖u−−u∞‖H1(Ω−)3 + ‖p−‖L2(Ω−)≤ η

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 12/25

Page 14: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Corollary: The solution satisfies the apriori estimate

‖(u+, p+,u− − u∞, p−)‖Y ≤ C‖(f+, f−,h0,g0,u∞)‖X0

with C = C(Ω+,P, α, µ). Moreover

lim|x|→∞

∫S2|u−

(y(x)

)− u∞|dsy = 0.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 13/25

Page 15: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Sketch of the proof:

Let v ∈ H1(Ω+) be given and solve for u:∆u− αu−∇p = f+ + k|v|u + β(v · ∇)u , ∇ · u = 0 in Ω+,∆u−∇p = 0 , ∇ · u = 0 in Ω−.γ+u+ − γ−u− = h0,∂+n;α(u+, p+;

(f+ + E+(k|v|u + β(v · ∇)u)

)− µ∇−n;0(u−, p−, f−)+

+P(γ−u− + γ+u+) = g0 on Γ,lim|x|→∞

∫S2(x)

|u−(y(x)

)− u∞|dsy = 0,

This defines a mapping v 7→ u =: U(v) : Bζ → Bζwhere Bζ ⊂ H1

div(Ω+)3 is a closed ball of radius ζ. The a priori estimatesare uniform with respect to v and they allow us to find ζ > 0 such thatU becomes in Bζ a contraction if the given data are small enough. Thenthe Banach–Cacciapoli theorem yields the unique existence of u ∈ Bζwith U(u) = u.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 14/25

Page 16: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

7. The problem on a compact Riemannian connected boundarylessorientable manifold Mn−1 ⊂ Rn.

In every chart of a finite atlas let for ξ ∈ Uτ ⊂ Rn−1 , x = x(ξ),the basis of the tangent bundle be: ∂j = ∂

∂ξjx , j = 1, . . . , n− 1;

fundamental tensor: gjk = ∂jx · ∂kx , g`mgmk = δ`k ; g = det gjk.For u(ξ) = uj∂j tangential field in the tangent bundle,div u = 1√

g∂k(√guk) , (grad p) = (gjk∂jp)∂k and u` = g`kuk.

Riemannian or Levi–Civita connection:Γ`jk := g`m(∂j∂kx) · ∂mx Christoffel symbol of 2nd kind,covariant derivative: ∇uv := uj(∂jvk + Γkj`v`)∂kdeformation tensor: (Def u)`k = 1

2 (∂ku` − Γm`kum + ∂`uk − Γmk`um)adjoint: (Def∗A)k = −(divA)k = −g`tA`k;t = −g`t(∂tA`k − Γmt`Amk)

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 15/25

Page 17: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Assumption: Mn−1 does not admit any nontrivial Killing fieldX, i.e. satisfying Def X = 0.Darcy–Forchheimer–Brinkman system onMn−1:(Lu)k := 2(Def∗Defu)k = −g`s

∂s(∂ku` − Γm`kum + ∂`uk − Γmk`um)

−Γms`(∂kum−Γjmkuj+∂muk−Γjkmuj)

Lu + Pu + k|u|u + β∇uu + grad p = f ,div u = 0 in Ω ⊂Mn−1.

Let Ω+ ⊂M be a Lipschitz domain with exterior normal vector n onΓ = ∂Ω+ and Ω− := Ω \ Ω+ also Lipschitz.

Conormal derivative (hydrodynamic tension) t±Pand Stokes theorem:

t±P : H1(Ω±)× L2(Ω±)× H−1(Ω±)→ H−1/2(Γ),

±∫Γ

t±P(u, p; f±) ·ϕdσΓ = 2∫

Ω±E±Def u : Def(γ−1

± ϕ)ds+

+∫

Ω±E±Pu · γ−1

± ϕds+∫

Ω±E±p div (γ−1

± ϕ)ds−∫

Ω+

f± · γ−1± ϕds.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 16/25

Page 18: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Let λ onMn−1 be a symmetric semidefinit matrix–valued function.

Theorem: The transmission problem onMn−1:

Lu+ + Pu + grad p+ = f+|Ω+ − (k|u+|u+ +β∇u+u+),div u+ = 0 in Ω+,

Lu− + grad p− = f−|Ω−−∇u−u− , div u− = 0 in Ω−,

µγ+u+ − γ−u− = h on Γ,t+P(u+.p+, f+ − E+(k|u+|u+ + β∇u+ u+)

)−t−0

(u−, p−; f− − E−(∇u−u)

)+ λγ+u+ = g

with sufficiently small given data(f+, f−,h,g) ∈ H−1(Ω+)× H−1(Ω−)×H1/2(Γ)×H−1/2(Γ)has a unique solution (u±, p±) ∈ H1(Ω±)× L2(Ω±).

The proof is based on Newton and boundary potentials in Ω±, and thatthe Killing fields are zero. Fundamental tensors can be constructed withA. Pomp’s Levi functions as approximation of the fundamental tensors.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 17/25

Page 19: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

8. More general spaces, 0 < s < 1:

Hs+ 1

2div (Ω±) :=

u ∈ Hs+ 1

2 (Ω±) ∧ div u = 0 in Ω±,

Hs− 1

2∗ (Ω+) :=

p ∈ Hs+ 1

2 (Ω+) ∧∫

Ω+

pds = 0,

Hsn(Γ) :=

v ∈ Hs(Γ) ∧

∫Γ

v·n dσ = 0,

Solutions: (u+, p+) ∈ Hs+ 12

div (Ω+)×Hs− 12

∗ (Ω+),(u−, p−) ∈ Hs+ 1

2div (Ω−)×Hs− 1

2 (Ω−);

Given data:(f+, f−,h,g) ∈ Hs−3/2(Ω+)× Hs−3/2(Ω−)×Hs

n(Γ)×Hs−1(Γ).

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 18/25

Page 20: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

References

[1] Adams, R.A.: Sobolev Spaces. Academic Press, New York 1975.[2] Agranovich, M.S.: Sobolev Spaces, their Generalizations and EllipticProblems in Smooth and Lipschitz Domains (Russian, Moscow, Izdat.MZEMO 2013) Springer Cham, Heidelberg 2015.[3] Alliot, F., Amrouche, C.: Weak solutions for the exterior Stokesproblem in weighted Sobolev spaces, Math. Methods Appl. Sci. 23(2000) 575–600.[4] Amrouche, C., Meslameni, M., Neasová, Š: The stanionary Oseenequations in an exterior domain: An approach in weighted Sobolevspaces, J. Differential Equations 256 (2014) 1955–1986.[5] Aubin, T.: Some Nonlinear Problems in Riemannian Geometry.Springer–Verlag, Berlin, Heidelberg 1998.[6] Behzadan, A., Holst, M.: Multiplication in Sobolev spaces, revisited.arXiv:1512.07379v1 [math.AP] (2015).[7] Buffa, A., Costabel, M., Sheen, D.: On traces for H (curl Ω) inLipschitz domains. J. Mathematical Anal. Appl. 276 (2002) 845–867.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 19/25

Page 21: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

[8] Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Localizedboundary–domain singular integral equations based on harmonicparametrix for divergence–form elliptic PDEs with variable matrixcoefficients. Integr. Eqn. Oper. Theory 76 (2013) 509–547.[9] Costabel, M.: Boundary integral operators on Lipschitz domains:Elementary results. SIAM J. Math. Anal 19 (1988) 613–626.[10] Dindoš, M., Mitrea, M.: The stationary Navier–Stokes system innonsmooth manifolds: The Poisson problem in Lipschitz and C1 domains.Arch. Ration. Mech. Anal. 174 (2004) 1–47.[11] Fabes, E., Mendes, O.,Mitrea, M.: Boundary layers onSobolev–Besov spaces and Poisson’s equation for the Laplacian onLipschitz domains. J. Funct. Anal. 159 (1998) 323–369.[12] Gagliardo, E.: Caratterizzazione delle trace sulla frontiera relative adalcune classi di funzione in n variabili. Rendiconti Sem. Mat. dellaUniversità di Padova 27 (1975) 284–305.[13] Galdi, G.P.: An Introduction to the Mathematical Theory of theNavier–Stokes Equations I, Linearised Steady Problems. Springer–Verlag,Berlin 1998.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 20/25

Page 22: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

[14] Gutt, G., Kohr, M., Pintea, C., Wendland, W.L.: On the transmissionproblems for the Oseen and Brinkman system on Lipschitz domains incompact Riemannian manifolds. DOI 10.1002/mana.201400365 (2014).[15] Han, Houde: Boundary integro–differential equations of ellipticboundary value problems and their numerical solution. Sci. Sin. Ser. A3(1988) 1153–1165.[16] Hsiao, G.C., Wendland, W.L.: A finite element method for an integralequation of the first kind. J. Math. Anal. Appl. 58 (1977) 449–491.[17] Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations.Springer–Verlag Berlin 2008.[18] Kang, Feng: Finite element method and natural boundary reduction.Proc. Internat. Congress of Mathematicians. Warszawa 1983, 1439–1453.[19] Kohr, M, Lanza di Cristoforis, C., Wendland, W.L.: NonlinearNeumann–transmission problem for Stokes and Brinkman equations onEuclidian Lipschitz domains. Potential Anal. 38 (2013) 1123–1171.[20] Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Boundary valueproblems of Robin type for the Brinkman andDarcy–Forchheimer–Brinkman systems in Lipschitz domains. J. Math.Fluid Mech. 16 (2014) 595–630.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 21/25

Page 23: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

[21] Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: On theRobin–transmission boundary value problem for the nonlinearDarcy–Forchheimer–Brinkman and Navier–Stokes system. J. Math. FluidMech, 18 (2016), 293–329.[22] Kohr, M., Mikhailov, S.E., Wendland, W.L.: Transmission problemsfor the Navier–Stokes and Darcy–Forchheimer–Brinkman systems inLipschitz domains on compact Riemannian manifolds. J.Math. FluidMech. DOI 10.1007/s 00021-016-0273-6.[23] Kohr, M., Pop, L.: Viscous Incompressible Flow for Low ReynoldNumbers. WIT Press, Southampton 2004.[24] Krutitskii, P.A, Medkova, D.: Neumann and Robin problems in acracked domain with jump conditions on cracks. J. Math. Anal. Appl.301 (2005) 99–114.[25] Ladyzhenskaja, O.A.: The Mathematical Theory of ViscousIncompressible Flow. Gordon and Breach, New York 1963.[26] Mc Lean, W.: Strongly Elliptic Systems and Boundary IntegralEquations. Univ. Press, Cambridge 2000.[27] Medkova, D.: Lq–solution of the Robin problem for the Oseensystem. Preprint MU AU ČRI M-2014-34, Praha 2014.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 22/25

Page 24: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

[28] Mikhailov, S.: About traces, extensions and co–normal derivativeoperators on Lipschitz domains. In: Integral Methods in Science andEngineering. (C. Constanda et al. eds.) Birkhäuser, Boston (2007)151–162.[29] Mitrea, M., Monniaux, S., Wright, M.: The Stokes operator withNeumann boundary conditions in Lipschitz domains J. Math. Sci. 176(2011) 409–457.[30] Mitrea, M., Wright, M.: Boundary Value Problems for the StokesSystem in Arbitrary Lipschitz Domains. Astérisque 344, 2012.[31] Nedelec, J.C., Planchard, J.: Une Méthode variationelle d’elementspour la résolution numérique d’un problème extérieur dans R3. RAIRO,Anal. Numer. 7 (1973) 105–129.[32] Nield, D.A., Bejan, A.: Convection in Porous Media. 4th ed.Springer, New York 2013.[33] Pomp, A.: The Boundary–Domain Integral Method for EllipticSystems with an Application to Shells. Lecture Notes in Mathematics1683, Springer Verlag, Berlin 1998.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 23/25

Page 25: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

[34] Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, NemytskijOperators and Nonlinear Partial Differential Equations. De Gruyter,Berlin, 1996.[35] Stephan, E.P. Wendland, W.L.: A hypersingular boundary integralmethod for two–dimensional screen and crack problems. Arch. RationalMech. Anal. 112 (1990) 363–390.[36] Tartaglione, A.: On the Stokes problem with slip boundaryconditions, Comm. Applied and Ind. Mathematics 1 (2010) 186–205.[37] Varnhorn, W.: The Stokes Equation. Akademie–Verlag, Berlin 1994.[38] Wendland, W.L., Zhu, J.: The boundary element method forthree-dimensional Stokes flows exterior to an open surface. Math.Comput. Modelling 15 (1991) 19–41.[39] Zeidler, E.: Nonlinear Functional Analysis and its Applications I,Fixed Point Theorems. Springer–Verlag, Berlin 1986.

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 24/25

Page 26: On Potential Methods for Porous Media Flows · On Potential Methods for Porous Media Flows WolfgangL.Wendland InstituteforAppliedAnalysisandNumericalSimulation&SIMTECH,Univ.Stuttgart

Thank you for your attention!

Prof. Dr. Dr.h.c. Wolfgang L. Wendland Potential Methods 25/25