nyiso operating study summer 2017 · and are intended as a guide to system operation. ... nyiso...

32
NYISO Operating Study Summer 2017 A Report by the New York Independent System Operator June 2017

Upload: hatram

Post on 13-Sep-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

NYISO Operating Study Summer 2017 A Report by the New York Independent System Operator

June 2017

NYISO Operating Study Summer 2017 | 2

Table of Contents

EXECUTIVE SUMMARY ....................................................................................................................................... 4 

INTRODUCTION.................................................................................................................................................. 5 

PURPOSE ........................................................................................................................................................... 5 

SYSTEM OPERATING LIMIT (SOL) METHODOLOGY .............................................................................................. 6 

STUDY PARTICIPANTS ........................................................................................................................................ 7 

SYSTEM REPRESENTATION AND BASE STUDY ASSUMPTIONS .............................................................................. 7 

System Representation ....................................................................................................................... 7 

Generation Resource Changes .............................................................................................................................. 8 

Transmission Facilities Changes ............................................................................................................................ 8 

System Representation ....................................................................................................................... 8 

DISCUSSION ....................................................................................................................................................... 9 

Resource Assessment ......................................................................................................................... 9 

Load and Capacity Assessment ............................................................................................................................. 9 

Cross-State Interfaces ...................................................................................................................... 10 

Transfer Limit Analysis ........................................................................................................................................ 10 

Athens SPS........................................................................................................................................................... 11 

Sensitivity Testing ............................................................................................................................................... 12 

West Woodbourne Transformer ......................................................................................................................... 12 

ConEd – LIPA Transfer Analysis ........................................................................................................................... 12 

Transfer Limits for Outage Conditions ................................................................................................................ 13 

Transient Stability and Voltage transfer Limits ................................................................................................... 13 

Thermal Transfer Capabilities with Adjacent Balancing Areas ...................................................... 14 

New York – New England Analysis ...................................................................................................................... 15 

New York ‐ PJM Analysis ..................................................................................................................................... 17 

Ontario – New York Analysis ............................................................................................................................... 18 

TransÉnergie–New York Interface ....................................................................................................................... 19 

SUMMARY OF RESULTS – THERMAL TRANSFER LIMIT ANALYSIS ........................................................................ 21 

TABLE 1.a – NYISO CROSS-STATE INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL

LINES I/S ................................................................................................................................................... 22 

TABLE 1.b – NYISO CROSS-STATE INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL

LINES I/S ................................................................................................................................................... 23 

NYISO Operating Study Summer 2017 | 3

TABLE 2.a – NYISO to ISO-NE INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL

LINES I/S ................................................................................................................................................... 24 

TABLE 2.b – ISO-NE to NYISO INTERFACE THERMAL LIMITS - SUMMER 2017 ALL LINES I/S .... 25 

TABLE 3.a – NYISO to PJM INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL LINES

I/S 26 

TABLE 3.b – PJM to NYISO INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL LINES

I/S 28 

TABLE 4 – IESO to NYISO INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL LINES

I/S 30 

TABLE 5 – NYISO to IESO INTERFACE THERMAL TRANSFER LIMITS – SUMMER 2017ALL LINES

I/S 32 

APPENDIX A – SCHEDULE OF SIGNIFICANT INTERCHANES ASSUMED FOR TRANSFER LIMITS STUDIES ................. 33 

APPENDIX B – SUMMER 2017 BASE CASE CONDITIONS ...................................................................................... 36 

APPENDIX C – POWER FLOW TRANSCRIPTION DIAGRAM ................................................................................... 38 

APPENDIX D – RATINGS OF MAJOR TRANSMISSION FACILITIES IN NEW YORK .................................................... 39 

APPENDIX E – INTERFACE DEFINITIONS ............................................................................................................. 67 

APPENDIX F – ANNOTATED MUST OUTPUT ....................................................................................................... 72 

APPENDIX G – TRANSFER LIMIT SENSITIVITY GRAPHS ........................................................................................ 73 

APPENDIX H – COMPARSION OF TRANSFER LIMITS SUMMER 2017 VS. 2016 ...................................................... 81 

APPENDIX I – DISTRIBUTION FACTORS ............................................................................................................... 85 

NYISO Operating Study Summer 2017 | 4

Executive Summary

Thisstudyisconductedasaseasonalreviewoftheprojectedthermaltransfercapabilityfor

thesummer2017capabilityperiod.ThisstudyisperformedtofulfilltheNERCrequirementsR2of

FAC‐013andR11ofTOP‐002‐2a.Thestudyevaluatestheprojectedinternalandexternalthermal

transfercapabilitiesfortheforecastedloadanddispatchconditionsstudied.Theevaluatedlimits

areshowninTables1through5.Differencesintheevaluatedinternalinterfacelimitsfromsummer

2016tosummer2017areshownonpage11.Internalinterfaceshavechangedduetothenetwork

alterationsintheNewYorkControlArea(NYCA)andmodelingassumptions.Theeliminationofthe

1000MWConEdison–PJMWheelandtheimplementationofa400MWOperationalBaseFlow1has

causedaredistributionofflowsintheHudsonvalleyarea.Thisisthemaincausefortheincreasein

theUPNY‐ConEdlimitto4,900MWandadecreaseintheTotalEastthermaltransferlimitto4,900

MW.Differencesintheevaluatedexternalinterfacelimitsfromsummer2016tosummer2017are

shownonpage14.Externalinterfacelimitsareessentiallyunchangedfromthesummer2016,with

theexceptionofPJM‐NYISOandIESO‐NYISOwhicharelimitedto1,475MWand2,025MW,

respectively.ThemodelingoftheRamapoPAR3500out‐of‐serviceisthemaincauseforthe

reductioninPJM‐NYISOthermaltransferlimits.Allowingthemarkettosecurethe230kV

constraintsallowsfortheincreaseintheIESO‐NYISOthermaltransferlimit.

1 “Operational Base Flow” or “OBF” is defined in Section 35.2.1 of the currently effective NYISO/PJM Joint Operating Agreement, (Attachment CC to the NYISO OATT).

NYISO Operating Study Summer 2017 | 5

INTRODUCTION

Thefollowingreport,preparedbytheOperatingStudiesTaskForce(OSTF)atthedirection

andguidanceoftheSystemOperationsAdvisorySubcommittee(SOAS),highlightsthethermal

analysisevaluationforthesummer2017capabilityperiod.Thisanalysisindicatesthat,forthe

summer2017capabilityperiod,theNewYorkinterconnectedbulkpowersystemcanbeoperated

reliablyinaccordancewiththe"NYSRCReliabilityRulesforPlanningandOperatingtheNewYork

StatePowerSystem"andtheNYISOSystemOperatingProcedures.

Transferlimitscitedinthisreportarebasedontheforecastedloadanddispatchassumptions

andareintendedasaguidetosystemoperation.Changesingenerationdispatchorloadpatterns

thatsignificantlychangepre‐contingencylineloadingsmaychangelimitingcontingenciesor

limitingfacilities,resultinginhigherorlowerinterfacetransfercapabilities.

SystemOperatorsshouldmonitorthecriticalfacilitiesnotedintheincludedtablesalongwith

otherlimitingconditionswhilemaintainingbulkpowersystemtransferswithinsecureoperating

limits.

PURPOSE

Thepurposeofthestudyistodetermine:

Thetotaltransfercapabilities(TTC)betweenNYISOandadjacentareasincludingIESO,PJMandISO‐NEfornormalconditionsinthesummer/winterperiods.TheTTCiscalculatedbasedonNERCTPL‐001‐4CategoryP1andP2contingenciesandasetofselectedCategoryP4,P5andP7contingencies.

TheTTCbetweenNYISOandadjacentareasincludingIESO,PJMandISO‐NEforemergencyconditionsinthesummer/winterperiods.TheTTCiscalculatedbasedonNERCTPL‐001‐4CategoryP1andP2contingencies.

ThisstudyisbeingperformedtofulfillNERCrequirements,whichincludeRequirementR2of

FAC‐013andRequirementR11ofTOP‐002‐2aasquotedbelow.

“FAC‐013‐2—EstablishandCommunicateTransferCapabilitiesRequirementR2:

TheReliabilityCoordinatorandPlanningAuthorityshalleachprovideitsinter‐regionaland

intra‐regionalTransferCapabilitiestothoseentitiesthathaveareliability‐relatedneedforsuch

TransferCapabilitiesandmakeawrittenrequestthatincludesaschedulefordeliveryofsuch

TransferCapabilitiesasfollows:

NYISO Operating Study Summer 2017 | 6

R2.1.TheReliabilityCoordinatorshallprovideitsTransferCapabilitiestoitsassociated

RegionalReliabilityOrganization(s),toitsadjacentReliabilityCoordinators,andtothe

TransmissionOperators,TransmissionServiceProvidersandPlanningAuthoritiesthatworkinits

ReliabilityCoordinatorArea.

R2.2.ThePlanningAuthorityshallprovideitsTransferCapabilitiestoitsassociatedReliability

Coordinator(s)andRegionalReliabilityOrganization(s),andtotheTransmissionPlannersand

TransmissionServiceProvider(s)thatworkinitsPlanningAuthorityArea.”

“TOP‐002‐2b—NormalOperationsPlanningRequirementR11:

TheTransmissionOperatorshallperformseasonal,next‐day,andcurrent‐dayBulkElectric

SystemstudiestodetermineSystemOperatingLimits(SOLs).NeighboringTransmissionOperators

shallutilizeidenticalSOLsforcommonfacilities.TheTransmissionOperatorshallupdatethese

BulkElectricSystemstudiesasnecessarytoreflectcurrentsystemconditions;andshallmakethe

resultsofBulkElectricSystemstudiesavailabletotheTransmissionOperators,Balancing

Authorities(subjecttoconfidentialityrequirements),andtoitsReliabilityCoordinator.”

System Operating Limit (SOL) Methodology

“NYSRCReliabilityRulesforPlanningandOperatingtheNewYorkStatePowerSystem”isthe

documentedmethodologyforuseindevelopingSystemOperatingLimits(SOLs)withintheNYISO

ReliabilityCoordinatorArea.NYSRCReliabilityRulesrequirecompliancewithall�NorthAmerican

ElectricReliabilityCorporation(NERC)StandardsandNortheastPowerCoordinatingCouncil

(NPCC)StandardsandCriteria.RuleCofthatdocumentaddressesasthecontingenciestobe

evaluatedandtheperformancerequirementstobeapplied.RuleCalsoincorporatestheNYISO

StabilityLimitGuideline–RefertoAttachmentH,NYISOTransmissionPlanningGuideline#3‐1,

“GuidelineforStabilityAnalysisandDeterminationofStability‐BasedTransferLimits”oftheNYISO

“TransmissionExpansionandInterconnectionManual”.

NYISO Operating Study Summer 2017 | 7

STUDY PARTICIPANTS

First Last Company First Last CompanyHoa Fu PSEG Long Island* David Mahlmann NYISO

Anie Philip PSEG Long Island* Robert Golen NYISO

Amrit Singh PSEG Long Island* De Dinh Tran NYISO

Jalpa Patel PSEG Long Island* Raj Dontireddy NYISO

Robert Eisenhuth PSEG Long Island* Roleto Mangonon O&R

John Hastings National Grid Ruby Chan Central Hudson

Jeffery Maher National Grid Richard Wright Central Hudson

Christopher Falanga National Grid Akim Faisal Central Hudson

Daniel Head ConEd Yuri Smolanitsky PJM

Mohammed Hossain NYPA Daniel Sohm IESO

Abhilash Gari NYPA Farzad Farahmand IESO

Larry Hochberg NYPA Isen Widjaja IESO

Brian Gordon NYSEG Ovidiu Vasilachi IESO

Robert King NYSEG George Fatu IESO

Jence Mandizha NYSEG Hardeep Kandola IESO

Dean LaForest ISO-NE Edward Davidian IESO

Bilgehan Donmez ISO-NE Bryan Hartwell IESO

Elizabeth Forehand ISO-NE

*Agent for LIPA

SYSTEM REPRESENTATION AND BASE STUDY ASSUMPTIONS

System Representation

TherepresentationwasdevelopedfromtheNYISODataBankandassumestheforecast

summercoincidentpeakloadof33,178MW.TheotherNPCCBalancingAreasandadjacent

RegionalrepresentationswereobtainedfromtheRFC‐NPCCsummer2017ReliabilityAssessment

powerflowbasecaseandhasbeenupdatedtoreflectthesummer2017capabilityperiod.Thebase

casemodelincludes:

TheNYISOTransmissionOperatorarea

AllTransmissionOperatorareascontiguouswithNYISO

Allsystemelementsmodeledasinservice

Allgenerationrepresented

PhaseshiftersintheregulatingmodeinaccordancewiththeNYISOAvailableTransferCapabilityImplementationDocument(ATCID)

TheNYISOLoadForecast

TransmissionFacilityadditionsandretirements

NYISO Operating Study Summer 2017 | 8

GenerationFacilityadditionsandretirements

RemedialActionScheme(RAS)modelswherecurrentlyexistingorprojectedforimplementationwithinthestudiedtimehorizon.

SeriescompensationforeachlineattheexpectedoperatinglevelunlessspecifiedotherwiseintheATCID.

FacilityRatingsasprovidedbytheTransmissionOwnerandGeneratorOwner

Generation Resource Changes

Thestatusanddispatchlevelofgenerationrepresentedinthisanalysisisareasonable

expectationbasedontheinformationavailableatthetimeofthestudy.Thosemodeling

assumptionsincorporateknownunitoutagestatus.Theinter‐Areaschedulesrepresentedinthe

studybasecasearesummarizedinAppendixA.Thefollowingtableshowsgenerationdeactivations

andadditionssincethesummer2016capabilityperiod:

Deactivations

Cayuga1 ‐150 MWCayuga2 ‐150 MW

TotalRetirements ‐300MWAdditions

Greenidge#4(Return‐to‐service) 106MWJerichoRiseWindFarm(Nameplate) 78 MW

TotalAdditions 184MW

Transmission Facilities Changes

Significantfacilitychangessincethesummer2016capabilityperiodinclude:

ModelingRamapoPAR3500out‐of‐service

ModelingtheDunkirk–SouthRipley(68)230kVlineout‐of‐service

ModelingtheHudsonTransmissionProject–W49thSt.(Y56)345kVlineout‐of‐service

AdditionoftheDolsonAve.345kVsubstation

DolsonAve.isbeingaddedonthe345kVCoopersCorners–RockTavern(CCRT‐42)line.The

newstationwillchangetheTotalEastinterfacedefinitionbyreplacingtheCoopersCorners–Rock

Tavern(CCRT‐42)linewiththeCoopersCorners–DolsonAve(CCDA42)line.

System Representation

TheSiemensPTIPSS™MUSTandPSS™Esoftwarepackageswereusedtocalculatethethermal

limitsbasedonNormalandEmergencyTransferCriteriadefinedinthe“NYSRCReliabilityRulesfor

PlanningandOperatingtheNewYorkStatePowerSystem".Thethermaltransferlimitspresented

NYISO Operating Study Summer 2017 | 9

havebeendeterminedforalltransmissionfacilitiesscheduledinserviceduringthesummer2017

period.

Theschedulesusedinthebasecasepowerflowforthisanalysisassumedanetflowof400MW

fromPublicServiceElectric&Gas(PSE&G)toConsolidatedEdisonviathePARtransformers

controllingtheHudson–FarragutandLinden–Goethalsinterconnections,and400MWonthe

SouthMahwah–WaldwickcircuitsfromConsolidatedEdisontoPSE&G,controlledbythePARsat

Waldwick.TheHopatcong–Ramapo500kV(5018)circuitisscheduledinaccordancewiththe

"Market‐to‐MarketCoordinationProcess",August14,2013.Forthesummer2017basecase,the

scheduleforthetieis380MWfromPJMtoNewYork.ThefourOntario–MichiganPARsare

modeledin‐serviceandscheduledtoa0MWtransfer.Theseschedulesareconsistentwiththe

scenariosdevelopedintheRFC‐NPCCInter‐RegionalReliabilityAssessmentforsummer2017,and

theMMWGsummer2016powerflowbasecases.TheseriesreactorsontheDunwoodie–Mott

Haven(71and72),theFarragut–Gowanus(41and42)345kV,theSprainBrook–W.49thSt.

(M51andM52)345kV,Packard–Sawyer(77and78)230kVcables,aswellastheE.179thSt.–

HellGate(15055)138kVfeederarein‐serviceinthebasecase.TheseriesreactorsontheSprain

Brook–EastGardenCity(Y49)345kVcableareby‐passed.TheseriescapacitorsontheMarcy–

CoopersCorners(UCC2‐41)345kV,theEdic–Fraser(EF24‐40)345kVandtheFraser–Coopers

Corners(33)345kVcablesarein‐serviceinthebasecase.

TheNYISONiagaragenerationwasmodeledusinga50‐50splitonthe230kVand115kV

generators.ThetotaloutputfortheNiagarafacilitywasmodeledat2,100MW.TheOntarioNiagara

generationwasmodeledatanoutputof1,300MW.

DISCUSSION

Resource Assessment

Load and Capacity Assessment

Theforecastpeakdemandforthesummer2017capabilityperiodis33,178MW2.Thisforecast

isapproximately182MW(0.55%)lowerthantheforecastof33,360MWforthesummer2016

capabilityperiod,and778MW(2.29%)lowerthantheall‐timeNewYorkControlArea(NYCA)

seasonalpeakof33,956MW,whichoccurredonJuly19,2013.

2 Forecast Coincident Peak Demand (50th percentile baseline forecast)

NYISO Operating Study Summer 2017 | 10

TheInstalledCapacity(ICAP)requirementforthesummerperiodis39,150MWbasedonthe

NYSRC18.0%InstalledReserveMargin(IRM)requirementforthe2017CapabilityYear.NYCA

generationcapacityforsummer2017is38,581MW,andnetexternalcapacitypurchasesof2,533

MWhavebeensecuredforthesummerperiod.Thecombinedcapacityresourcesrepresenta23.9%

marginabovetheforecastpeakdemandof33,178MW.Thesevaluesweretakenfromthe2016

Load&CapacityDatareportproducedbytheNYISO,locatedat:

http://www.nyiso.com/public/webdocs/markets_operations/services/planning/Documents_

and_Resources/Planning_Data_and_Reference_Docs/Data_and_Reference_Docs/2016_Load__Capaci

ty_Data_Report.pdf

Theequivalentforcedoutagerateis4.83%,andincludesforcedoutagesandde‐ratingsbased

onhistoricalperformanceofallgenerationintheNYCA.Forsummer2016,theequivalentforced

outagerateassumedwas4.80%.

Cross-State Interfaces

Transfer Limit Analysis

Thisreportsummarizestheresultsofthermaltransferlimitanalysesperformedonpower

systemrepresentationmodelingtheforecastpeakloadconditionsforsummer2017.Normaland

emergencythermallimitswerecalculatedaccordingtoNormalandEmergencyTransferCriteria

definitionsinthe“NYSRCReliabilityRulesforPlanningandOperatingtheNewYorkStatePower

System".FacilityratingsappliedintheanalysiswerefromtheonlineMWratingsintheEMS,and

aredetailedinAppendixD.

Figure1presentsacomparisonofthesummer2017thermaltransferlimitstosummer2016

thermaltransferlimits.Changesintheselimitsfrompreviousyearsareduetochangesinthebase

caseloadflowgenerationandloadpatternsthatresultindifferentpre‐contingencylineloadings,

changesinlimitingcontingencies,orchangesincircuitratings,orlinestatus.AppendixHpresentsa

summarycomparisonofCross‐Statethermaltransferlimitsbetweensummer2017and2016,with

limitingelement/contingencydescriptions.Significantdifferencesinthesethermaltransferlimits

arediscussedbelow.

NYISO Operating Study Summer 2017 | 11

Figure1–Cross‐StateThermalTransferLimits

TotalEastinterfacethermaltransferlimitdecreased450MW.Thisismainlyduetothe

redistributionoflineflowscausedbytheeliminationofthe1000MWConEdison–PJMWheeland

theimplementationofa400MWOperationalBaseFlow.

UPNY‐ConEdinterfacethermaltransferlimithasincreased725MW.Thisismainlyduetothe

redistributionoflineflowscausedbytheeliminationofthe1000MWConEdison–PJMWheeland

theimplementationofa400MWOperationalBaseFlow.AcomparableUPNY‐SENYthermal

transferlimitwouldbe5,000MWforthesamelimitingelementandcontingencyasUPNY‐ConEd.

Athens SPS

In2008,aSpecialProtectionSystem(SPS)wentin‐serviceimpactingthethermalconstrainton

theLeedstoPleasantValley345kVtransmissioncorridor.TheSPSisdesignedtorejectgeneration

attheAthenscombined‐cycleplantifeithertheLeedstoPleasantValley345kV(92)circuitorthe

AthenstoPleasantValley345kV(91)circuitareout‐of‐serviceandtheflowontheremaining

circuitisabovetheLTErating.GenerationatAthenswillbetrippeduntiltheflowisbelowtheLTE

NYISO Operating Study Summer 2017 | 12

rating,theout‐of‐servicecircuitrecloses,ortheremainingcircuittrips.ThisSPSisexpectedtobe

activewhenthereisgenerationon‐lineattheAthensstation,andwillallowtheNYCAtransmission

systemtobesecuredtotheSTEratingofthe91lineforthelossofthe92line,andvice‐versa,for

normaloperatingconditions.TheSPSincreasesthenormalthermallimittomatchtheemergency

thermallimitacrosstheUPNY‐ConEdoperatinginterfacewhenthe91or92isthelimitingcircuit.

TheTable1“Emergency”limitfortheUPNY‐ConEdinterfacecanbeinterpretedasthe“Normal”

limit,whentheAthensSPSisactive.

Sensitivity Testing

ThethermallimitspresentedinSection6weredeterminedusingthebaseconditionsand

schedules.Theeffectsofvariousintra‐andinter‐Areatransfersorgenerationpatternsinthe

systemarepresentedinAppendixG.Certaingraphsindicatethattheremaynotbeameasurable

sensitivitytothespecificvariablecondition(summerpeakload),orthesensitivitymayoccurat

transferlevelsaboveothertransferconstraints(e.g.,voltageortransientstabilitylimitations).This

analysisdemonstrateshowtheparticularconstraint(thermaltransferlimits)mayrespondto

differentconditions.

West Woodbourne Transformer

TheTotal‐Eastinterfacemaybelimitedatsignificantlylowertransferlevelsforcertain

contingenciesthatresultinoverloadingoftheWestWoodbourne115/69kVtransformer.Should

theWestWoodbournetiebethelimitingfacility,itmayberemovedfromservicetoallowhigher

Total‐Easttransfers.Over‐currentrelaysareinstalledatWestWoodbourneandHonkFallsto

protectforcontingencyoverloads.

ConEd – LIPA Transfer Analysis

NormaltransfercapabilitiesweredeterminedusingthebasecasegenerationdispatchandPAR

settingsasdescribedinAppendixB.Emergencylimitsaredispatchdependant,andcanvarybased

ongenerationandloadpatternsintheLIPAsystem.

Foremergencytransfercapabilityanalysis,thePARscontrollingtheLIPAimportwere

adjustedtoallowformaximumtransfercapabilityintoLIPA:

NYISO Operating Study Summer 2017 | 13

ConEd–LIPAPARSettings

Normal Emergency

Jamaica–LakeSuccess138kV ‐200MW 115MW

Jamaica–ValleyStream138kV ‐100MW 120MW

SprainBrook–E.GardenCity345kV 637MW 637MW

ISO‐NE–LIPAPARSettings

NorwalkHarbor–Northport138kV 100MW 286MW

ThePARschedulesreferencedaboveandtheConEd‐LIPAtransferassessmentassumethe

followinglossfactorsandoilcirculationmodesindeterminationofthefacilityratingsforthe345

kVcables:

Y49hasa70%lossfactorinslowoilcirculationmode.

Y50hasa70%lossfactorinrapidcirculationmode.

EmergencyTransferviathe138kVPAR‐controlledJamaicatiesbetweenConEdisonandLIPA

ConEdisonandLIPAhavedeterminedpossibleemergencytransferlevelsviatheJamaica‐

ValleyStream(901)138kVandJamaica‐LakeSuccess(903)138kVPAR‐controlledtiesthatcould

beusedtotransferemergencypowerbetweenthetwoentitiesduringpeakconditions.The

emergencytransferlevelswerecalculatedinbothdirections,forsystempeakloadconditionswith

alltransmissionlinesinserviceandallgenerationavailableforfullcapacity.

ConEdtoLIPAemergencyassistance

BasedonanalysisofhistoricalconditionsperformedbyLIPAandConEdison,ConEdison

anticipatesbeingabletosupplyatotalflowupto235MWofemergencytransferfromConEdison

toLongIsland,ifrequested,viatheties.

LIPAtoConEdemergencyassistance

LIPAanticipatedbeingabletosupplyatotalflowupto505MWofemergencytransferfrom

LongIslandtoConEdison,ifrequested,viathetiesunderidealconditions(i.e.alllinesand

generationin‐service,importsviaNeptune,NNCandCSC).

Transfer Limits for Outage Conditions

TransferlimitsforscheduledoutageconditionsaredeterminedbytheNYISOSchedulingand

MarketOperationsgroups.TheNYISOReal‐TimeDispatchsystemmonitorstheEHVtransmission

continuouslytomaintainthesecureoperationoftheinterconnectedEHVsystem.

Transient Stability and Voltage transfer Limits

NYISO Operating Study Summer 2017 | 14

TheinterfacetransferlimitsshowninSection6aretheresultsofathermaltransferlimit

analysisonly.Transientstabilityandvoltageinterfacetransferlimitsforalllinesin‐serviceandline

outageconditionsaresummarizedandavailablethroughtheNYISOwebsitelocatedat:

http://www.nyiso.com/public/markets_operations/market_data/reports_info/index.jsp

Thermal Transfer Capabilities with Adjacent Balancing Areas

Figure2–Inter‐AreaThermalTransferCapabilities3

ThermaltransferlimitsbetweenNewYorkandadjacentBalancingAreasalsoaredetermined

inthisanalysis.Thesetransferlimitssupplement,butdonotchange,existinginternaloperating

limits.Theremaybefacilitiesinternaltoeachsystemthatmayreducethetransferlimitsbetween 3 TE-NY transfer capabilities shown in Figure 2 are not thermal transfer limits; for more information see Section 5.3.D

NYISO Operating Study Summer 2017 | 15

BalancingAreas.Reductionsduetothesesituationsareconsideredtobetheresponsibilityofthe

respectivereliabilityauthority.Someofthesepotentiallimitationsareindicatedinthesummary

tablesby“[ReliabilityCoordinating]Facility”limits,whichsupplementthe“DirectTie”limits

betweentheBalancingAreas.TransferconditionswithinandbetweenneighboringBalancingAreas

canhaveasignificanteffectoninter‐andintra‐Areatransferlimits.Coordinationbetween

BalancingAreasisnecessarytoprovideoptimaltransferwhilemaintainingthereliabilityand

securityoftheinterconnectedsystems.

PJM–NewYorkinterfacethermaltransferlimitdecreased600MW.Thisismainlyduetothe

modelingoftheRamapoPAR3500out‐of‐service.

IESO–NewYorkinterfacethermaltransferlimitincreased275MW.Theselimitsaresensitive

toloadinZoneAandflowtowardPJMontheDunkirk‐Erie230kVtie.Generationdispatchalso

affectsthesystemconstraintsasitaffectstheflowsonthe230kVsystem.Allowingthemarketto

securethe230kVconstraintsallowsfortheincreaseinthermaltransferlimit.

New York – New England Analysis

New England Transmission/Capacity Additions

Transmission

Forthesummer2017studyperiod,therearenomajorprojectscomingintoservicethatwill

impacttheNewYork–NewEnglandtransmissioncapability.Threenotabletransmissionelements

thatcameintoservicearetheSouthington345kV4C‐5TA‐2seriescircuitbreaker,theNorthfield

345/115kVautotransformerfeedingintotheErving115kVsubstation,andanadditional230/115

kVtransformeratBearSwamp.

ThenewSouthington345kV4C‐5TA‐2circuitbreakerinstalledin‐serieswiththeexisting4C‐

5T‐2CBrendersthepreviouslyhonoredstuckbreakercontingencyinvalid.Thistopology

modificationresultsinanidenticallimitingcontingencyandcorrespondinglimitingelement

associatedwiththeNE‐NYtransmissioncapabilityundernormalandemergencyoperating

conditions.

TheNorthfield345/115kVautotransformer,connectedtotheErving115kVsubstationviathe

1604Line,functionsasanadditionalpowerflowsourceintothePittsfieldareawithinWesternMA.

ThecommissioningofthisnewautotransformerdidnotimpacttheNewYork–NewEngland

transmissioncapability.

TheadditionalBearSwamp230/115kVtransformerfunctionsasaparalleltransmission

NYISO Operating Study Summer 2017 | 16

elementtoanexistingpowerflowsourceintothePittsfieldarea.Theinstallationofthisnew

transformeryieldsnoimpacttotheNewYork–NewEnglandtransmissioncapability.

Capacity

IntheNewEnglandControlArea,fromApril2017throughSeptember2017,nomajor

generationadditionsareanticipated.BraytonPointStation(BRA1‐4)isscheduledtoretireinMay

2017.Thegeneratingfleetiscomprisedofthreecoalburningturbinesandonedual‐fueloilor

naturalgasburningturbinerepresentinganetgenerationcapacityofapproximately1,600MW.

Thermal Transfer Limit Analysis

ThetransferlimitsbetweentheNYISOandISONewEnglandfornormalandemergency

transfercriteriaaresummarizedinSection6,Table2.

Cross-Sound Cable

TheCross‐SoundCableisanHVdcmerchanttransmissionfacilityconnectingtheNewHaven

Harbor345kV(UnitedIlluminating,ISO‐NE)stationandShoreham138kV(LIPA,NYISO)station.It

hasadesigncapacityof330MW.ThisfacilityisnotmeteredaspartofNYISO–ISO‐NEinterface,

andHVdctransfersareindependentoftransfersbetweentheNYISOandISO‐NE.

Smithfield – Salisbury 69 kV

CHG&EandNortheastUtilitieswilloperatetheSmithfield‐Salisbury69kV(FV/690)line

normallyclosed.Themaximumallowableflowonthislineis31MVAbasedonlimitationsinthe

NortheastUtilities69kVsystem.WhentheISO‐NEtoNYISOtransferisgreaterthanapproximately

400MW,however,thelinewillbeopened,duetopostcontingencylimitswithintheNortheast

Utilitiessystem.TheFV/690linehasdirectionalover‐currentprotectionthatwilltriptheFV/690

LineintheeventofanoverloadwhentheflowisintoNortheastUtilities,noprotectionexiststhat

willtriptheFV/690LineintheeventofanoverloadwhentheflowisintoNYISO.

Northport – Norwalk Harbor Cable Flow

FlowontheNNCNorwalkHarbortoNorthport,facilityiscontrolledbyaphaseangle‐

regulating(PAR)transformeratNorthport.Assystemconditionsvarythescheduledflowonthe

NNCmaybeusedtooptimizetransfercapabilitybetweentheBalancingAreas.Thethermaltransfer

limitsarepresentedinTable2fordifferentPARscheduleassumptionsontheNorthport–Norwalk

Harborinterconnection.ExhibitsinAppendixGgraphicallydemonstratetheoptimizationof

transfercapabilitybyregulatingtheflowontheNorthport‐NorwalkHarbortie.

Whitehall – Blissville 115 kV

NYISO Operating Study Summer 2017 | 17

Thephaseangleregulatoronthiscircuitwillcontrolpre‐contingencyflowbetweenthe

respectivestations.VELCO,NationalGrid,ISO‐NEandNYISOdevelopedajointoperating

procedure.Fortheanalyses,thepre‐contingencyscheduleis25MWfromBlissville(ISO‐NE)to

Whitehall(NYISO).ThescheduledflowmaybeadjustedtoprotecttheNationalGridlocal115kV

transmissionsouthofWhitehallfor345kVcontingencyeventsinsouthernVermont.

Plattsburgh – Sand Bar 115 kV (i.e. PV20)

ThephaseangleregulatingtransformerattheVELCOSandBarsubstationwasmodeled

holdingapre‐contingencyflowofapproximately100MWonthePV20tie.Thismodeling

assumptionwaspremiseduponcommonoperatingunderstandingsbetweenISO‐NEandtheNYISO

givenlocaloperatingpracticeontheMoses–Willis–Plattsburgh230kVtransmissioncorridor.

ISO‐NE’sanalysisexaminedandconsideredNewEnglandsystemlimitationsgiventhismodeling

assumptionanddidnotexaminegenerationdispatch/systemperformanceontheNewYorkside

ofthePV20tieforthisanalysis.

New York - PJM Analysis

Thermal Transfer Limit Analysis

ThetransferlimitsfortheNewYork‐PJMinterfacearesummarizedinSection6,Table3.The

phaseangleregulatingtransformerscontrollingtheHopatcong–Ramapo5018500kVcircuitare

usedtomaintainflowatthenormalratingoftheRamapo500/345kVtransformer.

Dunkirk-South Ripley (68) 230 kV Tie

GenerationretirementsinSouthwesternNYandincreasedflowsintoPJMviatheDunkirk–

SouthRipley(68)230kVlinehasputNYintoapositionwheretherearereliabilityconcernsinthe

local115kVnetwork.AsaresulttheNYISOandPJMhavedevelopedanoperatingdocumentthat

allowsoperationoftheDunkirk‐SouthRipleylinetomaintainreliabilityinboththePJMandNYISO

systems.PJMandNYISOcontinuetoexploresolutionstoreturntooperationwiththelinein

service.

Opening of PJM - New York 115 kV Ties as Required

ThenormalcriteriathermaltransferlimitspresentedinSection6weredeterminedforanall

linesin‐servicecondition.The115kVinterconnectionsbetweenFirstEnergyEastandNewYork

(Warren–Falconer,NorthWaverly–EastSayre,andLaurelLake–Westover)maybeopenedin

accordancewithNYISOandPJMOperatingProceduresprovidedthatthisactiondoesnotcause

unacceptableimpactonlocalreliabilityineithersystem.Over‐currentprotectionisinstalledonthe

NYISO Operating Study Summer 2017 | 18

Warren‐FalconerandtheNorthWaverly–EastSayre115kVcircuits;eitherofthesecircuits

wouldtripbyrelayactionforanactualoverloadcondition.Thereisnooverloadprotectiononthe

LaurelLake‐Westovercircuit,butitmaybeopenedbyoperatoractionifthereisanactualorpost‐

contingencyoverloadcondition.However,openingtheLaurelLake–Westovertiecouldpotentially

causelocalthermalandpre‐andpost‐contingencyvoltageviolationsforthe34.5kVdistribution

systemwithinFirstEnergyEasttransmissionzone.Sensitivityanalysisperformedindicatedthat

thethermalandvoltageconditionswereexacerbatedforconditionsthatmodeledhigh

simultaneousinterfaceflowsfromNYtoPJMandNYtoOntario.

DC Ties

NeptuneDCtieisexpectedtobeavailableatfullcapability,660MW.HudsonTransmission

Project(HTP)DCtieisexpectedtobeavailableatfullcapabilityforthesummer2017,660MW,but

wasmodeledasoutofservice.

Variable Frequency Transformer (VFT) Tie

TheVariableFrequencyTransformerTieisatransmissionfacilityconnectingtheLinden230

kV(PSEG,PJM)toLinden345kV(ConEd,NYISO).Forthesummer2017,LindenVFTwillhave330

MWfirmwithdrawalrightand300MWfirminjectionrightsintoPJMmarket.

Elimination of ConEdison – PJM Wheel and Implementation of 400 MW Operational Base Flow

AsofMay1st,2017anewprotocolhasbeenimplementedtosetdesiredflowonthe

Hopatcong‐Ramapo(5018)500kV,Ramapo‐WaldwickKandJ345kV,Linden‐GoethalsA230kV,

Marion‐FarragutC345kVandHudson‐FarragutB345kVlines,basedonthescheduledPJM‐NYSIO

ACinterchangeandRECOload.ThechangewasimplementedduetoConEdrequesttoterminate

non‐confirmingwheelingservicethathasbeenhistoricallymodeledasafixed1,000MWflowfrom

NYSIOtoPJMovertheJKinterfaceandfromPJMtoNYSIOovertheABCinterface.

Ontario – New York Analysis

Thermal Transfer Limit Analysis

ThethermaltransferlimitsbetweentheNYISOandOntario’sIndependentElectricitySystem

Operator(IESO)BalancingAreasfornormalandemergencytransfercriteriaarepresentedintables

4and5.ThethermaltransferlimitsfromOntariotoNYweredeterminedat80%ofZoneAload,

100%ofZoneAload,all‐in‐service,andwithline68(Dunkirk‐SouthRipley)plusline171(Warren‐

Falconer)outofservice.TheNYISONiagaragenerationwasmodeledatanoutputof2,100MW.

TheOntario–NewYorktiesatSt.Lawrence,L33PandL34P,werecontrollingto0MWinall

NYISO Operating Study Summer 2017 | 19

fourscenarios.Theinterconnectionflowlimitacrossthesetiesis300MW,aspresentedinTable4.3

“InterconnectionTotalTransferCapability(TTC)Limits”fromthedocument“OntarioTransmission

System”availableat:

http://ieso.ca/-/media/files/ieso/document-library/planning-forecasts/18-month-

outlook/onttxsystem_2016dec.pdf

Transient Stability Limitations

TransientstabilitylimitsfortheNYISO‐IESOinterconnectionarereportedin"NYPP‐OH

TRANSIENTSTABILITYTESTINGREPORTonDIRECTTIETRANSFERCAPABILITY‐OCTOBER

1993"availableat:

http://www.nyiso.com/public/webdocs/market_data/reports_info/operating_

studies/NOH‐1/NYPP‐OH_1993.PDF

Ontario – Michigan PARs

AllofthePARsonthefourtransmissionlinesinterconnectingOntarioandMichiganarein

serviceandregulating.Forthisstudy,thePARswerescheduledtoregulateat0MW.

Impact of the Queenston Flow West (QFW) Interface on the New York to Ontario Transfer Limit

TheQFWinterfaceisdefinedasthesumofthepowerflowsthroughthe230kVcircuitsoutof

Beck.QFWisthealgebraicsumofthefollowing:

TotalgenerationintheNiagarazoneofOntarioincludingtheunitsattheBeck#1,#2&PumpGeneratingStations,ThoroldandDecewFallsGS

Thetotalloadinthezone

TheimportfromNewYork

ForagivenQFWlimit,theimportcapabilityfromNewYorkdependsonthegeneration

dispatchandtheloadintheNiagarazone.TheOntarioNiagaragenerationissetto1,300MW.The

importcapabilityfromNewYorkcanbeincreasedbydecreasinggenerationintheOntarioNiagara

zone,increasingdemandintheOntarioNiagarazone,orboth.

TransÉnergie–New York Interface

ThermaltransferlimitsbetweenTransÉnergie(Hydro‐Quebec)andNewYorkarenotanalyzed

aspartofthisstudy.RespectingtheNYSRCandNYISOoperatingreserverequirements,the

maximumallowabledeliveryintotheNYCAfromTransÉnergieontheChateauguay–Massena

(MSC‐7040)765kVtieislimitedto1310MW.Howeverinreal‐timethetotalflowislimitedto1800

MW;theadditionalflowisa“wheel‐through”transactiontoanotherBalancingAuthorityArea.

NYISO Operating Study Summer 2017 | 20

MaximumdeliveryfromNYCAtoQuebeconthe7040lineis1000MW.

TheDennisonScheduledLinerepresentsa115kVdual‐circuittransmissionlinethat

interconnectstheNewYorkControlAreatotheHydro‐QuebecControlAreaattheDennison

Substation,nearMassena,NY.TheLinehasanominalnorthtosouthcapacityof190MWin

summer,intoNewYork,andanominalsouthtonorthcapacityof100MWintoQuebec.

NYISO Operating Study Summer 2017 | 21

SUMMARY OF RESULTS – THERMAL TRANSFER LIMIT ANALYSIS

Table1–NYISOCROSSSTATEINTERFACETHERMALLIMITS

Table1.a

a. DysingerEast

b. UPNY–ConEd

c. SprainBrook–DunwoodieSo.

d. ConEd–LIPATransferCapability

Table1.b–MSC‐7040FlowSensitivity

a. CentralEast

b. TotalEast

c. MosesSouth

Table2.a–NYISOtoISO‐NEINTERFACETHERMALTRANSFERLIMITS

Northport‐NorwalkFlowSensitivity

Table2.b–ISO‐NEtoNYISOINTERFACETHERMALTRANSFERLIMITS

Northport‐NorwalkFlowSensitivity

Table3.a–NYISOtoPJMINTERFACETHERMALTRANSFERLIMITS

3‐115kVTiesI/SandO/S

Table3.b–PJMtoNYISOINTERFACETHERMALTRANSFERLIMITS

3‐115kVTiesI/SandO/S

Table4–IESOtoNYISOINTERFACETHERMALTRANSFERLIMITS

ZoneASystemSensitivity

Table5–NYISOtoIESOINTERFACETHERMALTRANSFERLIMITS

NYISO Operating Study Summer 2017 | 22

TABLE 1.a – NYISO CROSS-STATE INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017

ALL LINES I/S

DysingerEast UPNY‐ConEd1

SprainBrookDunwoodie‐So.

ConEd–LIPATransferCapability

NORMAL 1025(1) 4900 (3) 4200(5) 875(7)

EMERGENCY 1725(2) 5625 (4) 4225 (6) 1500(8)

LIMITINGELEMENT RATING LIMITINGCONTINGENCY

(1) Niagara–Packard(61)230kV @STE4 846MW L/O Niagara–Packard(62)230kVBeck–Packard(BP76)230kV

(2) Young–Huntley(133)115kV @STE 206MW L/O Buffalo–Huntley(130)115kV

(3) Leeds–PleasantValley(92)345kV @LTE 1538MW L/O Athens–PleasantValley(91)345kV

(4) Leeds–PleasantValley(92)345kV @STE 1724MW L/O Athens–PleasantValley(91)345kV

(5) MottHaven–Rainey(Q11)345kV @MTE2 1066MW L/O (SB:RAIN345_4W)MottHaven–Rainey(Q12)345kVRainey345/138kVTransformer3WRainey–East75St.138kV

(6) Dunwoodie–MottHaven(71)345kV @NORM 707MW Pre‐ContingencyLoading

(7) Dunwoodie–ShoreRd.(Y50)345kV @LTE 914MW3 L/O (SBRNS2@SprainBrook345kV)SprainBrook–EastGardenCity(Y49)345kVSprainBrook–Academy(M29)345kV

(8) Dunwoodie–ShoreRd.(Y50)345kV @NORM 653MW3 Pre‐ContingencyLoading

Note1:SeeSection5.2.BfordiscussiononAthensSPS2:TheratingusedforcablecircuitsduringSCUCreliabilityanalysisistheaverageoftheLTEandSTErating(MTERating).3:LIPAratingforY50circuitisbasedon70%lossfactorandrapidoilcirculation.4:DysingerEastlimitusedtheNYSRCRulesExceptionNo.13–PostContingencyFlowsonNiagaraProjectFacilities

NYISO Operating Study Summer 2017 | 23

TABLE 1.b – NYISO CROSS-STATE INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017

ALL LINES I/S

  MSC‐7040FLOW800MW

MSC‐7040FLOW1310MW

MSC‐7040FLOW1600MW

CENTRALEAST    

NORMAL 2625 (1) 2625 (1) 2625 (1)

EMERGENCY 2750 (2) 2750 (2) 2750 (2)

TOTALEAST

NORMAL 4900 (3) 4900 (3) 4900 (3)

EMERGENCY 5300(4) 5300(4) 5300(4)

MOSESSOUTH1,2 

NORMAL 2225 (5) 2550 (5) 2550(8)

EMERGENCY 2225 (6) 2700(7) 2675 (7)

 LIMITINGELEMENT RATING LIMITINGCONTINGENCY

(1) Fraser–CoopersCorners(33)345kV @LTE 1721MW L/O Marcy–FraserAnnex(UCC2‐41)345kV(SeriesCapacitor)Porter–Rotterdam(31)230kV

(2) Fraser–CoopersCorners(33)345kV @STE 1793MW L/O Marcy–FraserAnnex(UCC2‐41)345kV(SeriesCapacitor)

(3) Roseton–EastFishkill(RFK305)345kV

@LTE 2666MW L/O RockTavern–Ramapo(77)345kVRockTavern–Sugarloaf(76)345kVRamapo–Sugarloaf(76)345kVSugarloaf345/138kVTransformer

(4) CoopersCorners–MiddletownTAP(CMT34)345kV

@STE 1793MW L/O CoopersCorners–DolsonAve.(CCDA42)345kV

(5) Moses–Adirondack(MA2)230kV @LTE 386MW L/O Chateauguay–Massena(MSC‐7040)765kVMassena–Marcy(MSU1)765kVandTransÉnergiedelivery

(6) BrownsFalls–Taylorville(4)115kV @STE 134MW L/O Chateauguay–Massena(MSC‐7040)765kVMassena–Marcy(MSU1)765kVandTransÉnergiedelivery

(7) Marcy765/345kVT2Transformer @STE 1971MW L/O Marcy765/345kVT1Transformer

(8) Marcy–Edic(UE1‐7)345kV @LTE 1650MW L/O Marcy–FraserAnnex(UCC2‐41)345kV(SeriesCapacitor)ChasesLake–Porter(11)230kV

Note 

1:MosesSouthlimitusedtheNYSRCRulesExceptionNo.10–PostContingencyFlowsonMarcyAT‐1Transformer2:MosesSouthlimitusedtheNYSRCRulesExceptionNo.12–PostContingencyFlowsonMarcyTransformerT2

NYISO Operating Study Summer 2017 | 24

TABLE 2.a – NYISO to ISO-NE INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL

LINES I/S

NewYorktoNewEngland

DIRECTTIE NYISOFACILITY ISO‐NEFACILITY

    Northport–Norwalk100MW

 

NORMAL 1725(1) 2875 (3) 3025(4)

EMERGENCY 2250(2) 2875 (3) 3125(5)

     

    Northport–Norwalk0MW

 

NORMAL 1675(1) 2925 (3) 3050(4)

EMERGENCY 2225(2) 2925 (3) 3150(5)

NOTE 

1:TheNorthport–NorwalkHarbor(NNC)flowispositiveinthedirectionoftransfer2:TheNorthport–NorwalkHarbor(NNC)lineisnolongerpartoftheNewYork–NewEnglandInterfaceDefinition

LIMITINGELEMENT RATING LIMITINGCONTINGENCY

(1) PleasantValley–LongMountain(398)345kV @LTE 1313MW L/O MillstoneG324.0kV

(2) PleasantValley–LongMountain(398)345kV @STE 1596MW L/O MillstoneG324.0kV

(3) ReynoldsRd–Greenbush(9)115kV @STE 398MW L/O NewScotland–Alps(2)345kV

(4) Berkshire–Northfield(312)345kV @LTE 1697MW L/O PleasantValley–LongMountain(398)345kV

(5) Berkshire–Northfield(312)345kV @STE 1793MW L/O PleasantValley–LongMountain(398)345kV

NYISO Operating Study Summer 2017 | 25

TABLE 2.b – ISO-NE to NYISO INTERFACE THERMAL LIMITS - SUMMER 2017 ALL LINES I/S

NewEnglandtoNewYork

DIRECTTIE NYISOFACILITY ISO‐NEFACILITY

    Norwalk–Northport@0MW

 

NORMAL 1825(1) 1550(5)

EMERGENCY 2050(2) 1500(5)

    Norwalk–Northport@100MW

 

NORMAL 1850(1) 1600(5)

EMERGENCY 1975(3) 1600(5)

    Norwalk–Northport@200MW

 

NORMAL 1425(4) 1650(5)

EMERGENCY 1500(3) 1650(5)

 

NOTE 

1:TheNorthport–NorwalkHarbor(NNC)flowispositiveinthedirectionoftransfer2:TheNorthport–NorwalkHarbor(NNC)lineisnolongerpartoftheNewEngland–NewYorkInterfaceDefinition

LIMITINGELEMENT RATING LIMITINGCONTINGENCY

(1) PleasantValley–LongMountain(398)345kV @LTE 1313MW L/O Alps–Berkshire(393)345kVBerkshire–NorthfieldMount(312)345kVNorthfieldMount–Vernon(381)345kVBerkshire345/115kVTransformer

(2) PleasantValley–LongMountain(398)345kV @NORM 1135MW Pre‐ContingencyLoading

(3) Northport–NorwalkHarbor(NNC)138kV @STE 532MW L/O PleasantValley–LongMountain(398)345kV

(4) Northport–NorwalkHarbor(NNC)138kV @LTE 518MW L/O PleasantValley–LongMountain(398)345kVPleasantValley–EastFishkill(F37)345kV

(5) NorwalkJunction–ArchersLane(3403D)345kV @LTE 850MW L/O LongMountain–FrostBridge(352)345kV

NYISO Operating Study Summer 2017 | 26

TABLE 3.a – NYISO to PJM INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL

LINES I/S

DIRECTTIE

NYISOFACILITY

PJMFACILITY

DIRECTTIE

NYISOFACILITY

PJMFACILITY

OneRamapoPARIn‐service(16%Transfer) TwoRamapoPARsIn‐service(32%Transfer)

NORMAL 1200(1) 1200(2)3 1225(3)4 1175(14) 1375(1) 1375(2)3 1425(3)4 1350(14)

3‐115‐O/S 1675(6) 1175(2)3 1175(3) 4 1300 (15) 2450(10) 1325(2)3 1325 (3) 4 1450(15)

EMERGENCY 1200(1) 2725(4)3 1450(5)4 1175(14) 1375(1) 2900(9)3 1650(5)4 1350(14)3‐115‐O/S 2750(7) 2425(4)3 1400 (5) 4 1325 (16) 2825(11) 2550(4)3 1550 (5) 4 1475(16)

Dunkirk‐SouthRipley(68)230kVOut‐of‐service

NORMAL 1150(1) 1500(2)3 1275(3)4 1125(14) 1300(1) 1625(2)3 1425(3)4 1275(14)3‐115‐O/S 1525(6) 1575(2)3 1275 (3)4 1225 (15) 1625(6) 1675(2)3 1375(3)4 1300(15)

EMERGENCY 1150(1) 3475(8)3 1475(5)4 1125(14) 1300(1) 3625(8)3 1625(5)4 1275(14)3‐115‐O/S 2400(7) 3050(8)3 1475(5)4 1250 (16) 2325(12) 2775(13)3 1575(5)4 1350 (16)

LIMITINGELEMENT RATING LIMITINGCONTINGENCY

(1) Goudey–LaurelLake(952)115kV @STE 108MW

Pre‐ContingencyLoading

(2) Packard–Sawyer(77)230kV @LTE 644MW L/O Packard–Sawyer(78)230kVSawyer–Huntley(78)230kVNiagara–Packard(61)230kVPackard230/115kVTransformer

(3) Packard–NiagaraBoulevard(181‐922)115kV

@STE 206MW L/O Packard–Sawyer(77)230kVSawyer–Huntley(77)230kVPackard–Sawyer(78)230kVSawyer–Huntley(78)230kVSawyer230/23kVTransformers

(4) SouthRipley–Dunkirk(68)230kV @STE 475MW L/O Hopatcong–Branchburg(5060)500kV

(5) Packard–NiagaraBoulevard(181‐922)115kV

@NORM 160MW Pre‐ContingencyLoading

(6) Hillside–EastTowanda(70)230kV @LTE 531MW L/O LibertyGeneration

(7) Hillside–EastTowanda(70)230kV @STE 630MW L/O HopeCreekGen#1

(8) Watercure–Oakdale(31)345kV @STE 1076MW L/O Hopatcong–Branchburg(5060)500kV

(9) SouthRipley–Dunkirk(68)230kV @STE 475MW L/O Waldwick345/230kVTransformer

(10) Hillside–EastTowanda(70)230kV @LTE 531MW L/O SusquehannaGen#1

(11) Hillside–EastTowanda(70)230kV @STE 630MW L/O SusquehannaGen#2

(12) Hillside–EastTowanda(70)230kV @STE 630MW L/O Mainesburg345/115kVTransformer

(13) Hillside–Watercure(69)230kV @STE 657MW L/O Mainesburg345/115kVTransformer

NYISO Operating Study Summer 2017 | 27

(14) Oxbow–NorthMeshoppen230kV @NORM 478MW Pre‐ContingencyLoading

(15) Canyon–EastTowanda230kV @EMER 574MW L/O Marcy–FraserAnnex(UCC2‐41)345kV(SeriesCapacitor)Fraser–CoopersCorners(33)345kV(SeriesCapacitor)

(16) Canyon–EastTowanda230kV @EMER 574MW L/O Towanda–NorthMeshoppen115kV

NOTE 

1:EmergencyTransferCapabilityLimitsmayhaverequiredlineoutagesasdescribedinSection5.3.B.2:PARscheduleshavebeenadjustedinthedirectionoftransfer.3:InternalSecuredLimit:LimittosecureinternaltransmissionelementsthataresecuredwithpricingintheNYISOmarkets(typically230kVandabove)4:InternalNon‐SecuredLimit:LimittosecureinternaltransmissionelementsthatarenotsecuredwithpricingintheNYISOmarkets(typically115kV)

NYISO Operating Study Summer 2017 | 28

TABLE 3.b – PJM to NYISO INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL

LINES I/S

DIRECTTIE

NYISOFACILITY

PJMFACILITY

DIRECTTIE

NYISOFACILITY

PJMFACILITY

OneRamapoPARIn‐service(16%Transfer) TwoRamapoPARsIn‐service(32%Transfer)

NORMAL 1150(1) 2525(2)3 1650(3)4 2325(4) 1625(1) 2950(2)3 2125(3)4 2800(4)

3‐115‐O/S 1675(7) 2000(2)3 2025 (3)4 1875(10) 2125 (7) 2450(2)3 2525 (3)4 2300(10)

EMERGENCY 1350(5) 2525(2)3 2075(6)4 2325(4) 1775(5) 2950(2)3 2525(6)4 2800(4)3‐115‐O/S 1925(8) 2000(2)3 2400 (9)4 1875(10) 2375 (8) 2450(2)3 2925 (9)4 2300(10)

Dunkirk‐SouthRipley(68)230kVOut‐of‐service

NORMAL 925(5) 3050(11)3 1575(3)4 1800(10) 1375(5) 4050(15)3 2050(3)4 2225(10)3‐115‐O/S 1475(7) 2075(13)3 1900 (3)4 1300(10) 1975 (7) 2575(13)3 2450(3)4 2300(10)

EMERGENCY 925(5) 3125(12)3 1950(6)4 1800(10) 1375(5) 4050(16)3 2425(6)4 2225(10)3‐115‐O/S 1700(8) 2550(14)3 2225 (9)4 1300(10) 2200 (8) 3050(14)3 2775(9)4 2300(10)

LIMITINGELEMENT RATING LIMITINGCONTINGENCY

(1) NorthWaverly–EastSayre(956)115kV @STE 143MW L/O Hillside–EastTowanda(70)230kVHillside–Watercure(69)230kVHillside230/115kVTransformer

(2) SouthRipley–Dunkirk(68)230kV @LTE 475MW L/O PierceBrook–FiveMileRd.(37)345kV

(3) NorthWaverly–Lounsberry115kV @STE 143MW L/O Watercure–Oakdale(31)345kVOakdale–ClarksCorner(36)345kV

(4) Lenox–NorthMeshoppen115kV @NORM 136MW Pre‐ContingencyLoading

(5) Falconer–Warren(171)115kV @STE 140MW L/O PierceBrook–FiveMileRd.(37)345kV

(6) NorthWaverly–Lounsberry115kV @STE 143MW L/O Watercure–Oakdale(31)345kV

(7) Hillside–EastTowanda(70)230kV @LTE 531MW L/O Watercure–Mainesburg(30)345kV

(8) Hillside–EastTowanda(70)230kV @STE 630MW L/O Watercure–Mainesburg(30)345kV

(9) Jennison–Kattelville(943)115kV @NORM 110MW Pre‐ContingencyLoading

(10) PierceBrook–FarmersValley115kV @EMER 191MW L/O PierceBrook–HomerCity(48)345kV

(11) Hillside–Watercure(69)230kV @LTE 637MW L/O Watercure–Mainesburg(30)345kV

(12) Hillside–Watercure(69)230kV @STE 657MW L/O Watercure–Mainesburg(30)345kV

(13) Watercure–Oakdale(71)230kV @LTE 400MW L/O Watercure–Oakdale(31)345kVOakdale–ClarksCorner(36)345kV

(14) Watercure–Oakdale(71)230kV @STE 440MW L/O Watercure–Oakdale(31)345kV

(15) Watercure–Oakdale(31)345kV @LTE 1074MW L/O Lenox–NorthMeshoppen115kV

NYISO Operating Study Summer 2017 | 29

(16) Watercure–Oakdale(31)345kV @STE 1076MW L/O Hopatcong–Ramapo(5018)500kV

NOTE 

1:EmergencyTransferCapabilityLimitsmayhaverequiredlineoutagesasdescribedinSection5.3.B.2:PARscheduleshavebeenadjustedinthedirectionoftransfer.3:InternalSecuredLimit:LimittosecureinternaltransmissionelementsthataresecuredwithpricingintheNYISOmarkets(typically230kVandabove)4:InternalNon‐SecuredLimit:LimittosecureinternaltransmissionelementsthatarenotsecuredwithpricingintheNYISOmarkets(typically115kV)

NYISO Operating Study Summer 2017 | 30

TABLE 4 – IESO to NYISO INTERFACE THERMAL TRANSFER LIMITS - SUMMER 2017 ALL LINES

I/S

DIRECTTIE

NYISOFACILITY

IESOFACILITY

DIRECTTIE

NYISOFACILITY

IESOFACILITY

100%ZoneALoad(2,653MW) 80%ZoneALoad(2,122MW)*

NORMAL 1900(1) 250(2)3 925(3)4 2200(4) 2000(1) 1500(2)3 2025(10)4 2200(4)

EMERGENCY 2250(5) 1575(6)3 1325(7)4 2625 (8) 2400(9) 2850 (6)3 2275(11)4 2625 (8)

Dunkirk‐SouthRipley(68)230kV&Warren‐Falconer(171)115kVOut‐of‐service  

NORMAL 1925(1) 475(2)3 950(3)4 2200(4) 2025(1) 1825(2)3 2100(10)4 2500(12)EMERGENCY 2300(5) 1950(6)3 1400(7)4 2750(13) 2425(9) 2350(6)3 2350(11)4 2750 (13)

LIMITINGELEMENT RATING LIMITINGCONTINGENCY

(1) Beck–Niagara(PA27)230kV @LTE 460MW L/O Beck–Niagara(PA301)345kV

(2) Niagara–Packard(61)230kV @STE1 846MW L/O Niagara–Packard(62)230kVBeck–Packard(PB76)230kV

(3) Packard–NiagaraBoulevard(181‐922)115kV

@STE 206MW L/O Packard–Sawyer(77)230kVSawyer–Huntley(77)230kVPackard–Sawyer(78)230kVSawyer–Huntley(78)230kVSawyer230/23kVTransformers

(4) Allanburg–MountHope(Q30M)230kV @STE 392MW L/O Beck–Middleport–Beach(Q24HM)230kVBeck–Middleport–Beach(Q29HM)230kV

(5) Beck–Niagara(PA27)230kV @NORM 400MW Pre‐ContingencyLoading

(6) Packard–Sawyer(77)230kV @STE 746MW L/O Packard–Sawyer(78)230kV

(7) Young–Huntley(133)115kV @STE 206MW L/O Buffalo–Huntley(130)115kV

(8) MiddleportT6(500kV/230kV) @NORM 750MW Pre‐ContingencyLoading

(9) Beck–Niagara(PA27)230kV @STE 558MW L/O Beck–Niagara(PA301)345kV

(10) Niagara230/115kVTransformer @STE1 288MW L/O Packard–Sawyer(77)230kVSawyer–Huntley(77)230kVPackard–Sawyer(78)230kVSawyer–Huntley(78)230kVSawyer230/23kVTransformers

(11) Niagara230/115kVTransformer @NORM 192MW Pre‐ContingencyLoading

(12) Allanburg–MountHope(Q30M)230kV @LTE 392MW L/O Beck–Allanburg(Q35M)230kV

(13) Allanburg–MountHope(Q30M)230kV @NORM 370MW Pre‐ContingencyLoading

 

Note 

NYISO Operating Study Summer 2017 | 31

1:Ontario‐NYISOlimitusedtheNYSRCRulesExceptionNo.13–PostContingencyFlowsonNiagaraProjectFacilities2:*ZoneALoadisapproximately8%ofthetotalNYCALoad.2,122MWofZoneALoadwouldequatetoaNYCALoadof26,530MW3:InternalSecuredLimit:LimittosecureinternaltransmissionelementsthataresecuredwithpricingintheNYISOmarkets(typically230kVandabove)4:InternalNon‐SecuredLimit:LimittosecureinternaltransmissionelementsthatarenotsecuredwithpricingintheNYISOmarkets(typically115kV)

NYISO Operating Study Summer 2017 | 32

TABLE 5 – NYISO to IESO INTERFACE THERMAL TRANSFER LIMITS – SUMMER 2017ALL LINES

I/S

  DIRECT

TIENYISO

FACILITYIESO

FACILITY1

NORMAL 1625(1) 900(2)

EMERGENCY 2225 (3) 1175 (4)

  LIMITING ELEMENT  RATING LIMITING CONTINGENCY 

(1) Beck–Niagara(PA27)230kV @LTE 460MW L/O Beck – Niagara (PA 301) 345 kV 

Beck – Allanburg (Q28A) 230 kV 

Beck #2 units 19 & 20 + Thorold GS

(2) Allanburg–MountHope(Q30M)230kV @STE 392MW L/O Beck–Middleport–Beach(Q24HM)230kVBeck–Middleport–Beach(Q29HM)230kV

(3) Beck–Niagara(PA27)230kV @STE 558MW L/O Beck–Niagara(PA302)345kV

(4) Beck–Hannon(Q29HM)230kV @NORM 415MW Pre‐ContingencyLoading

Note 

1:ThislimitcanbeincreasedbyreducinggenerationorincreasingdemandintheNiagarazoneofOntario.SeeSection5.3.C.d.fordiscussion.